17,956 research outputs found

    Internal Model Hop-by-hop Congestion Control for High-Speed Networks

    Get PDF
    This paper presents a hop-by-hop congestion control for highspeed networks. The control policy relies on the data exchange between adjacent nodes of the network (nearest-neighbour interaction). The novelty of this paper consists in the extensive use of Internal Model Control (IMC) to set the rates of the traffic flows. As a result, the proposed congestion control provides upper-bounds of the queue lengths in all the network buffers (overflow avoidance), avoids wasting the assigned capacity (full link utilisation) and guarantees the congestion recovery. Numerical simulations prove the effectiveness of the scheme

    A Review of Traffic Signal Control.

    Get PDF
    The aim of this paper is to provide a starting point for the future research within the SERC sponsored project "Gating and Traffic Control: The Application of State Space Control Theory". It will provide an introduction to State Space Control Theory, State Space applications in transportation in general, an in-depth review of congestion control (specifically traffic signal control in congested situations), a review of theoretical works, a review of existing systems and will conclude with recommendations for the research to be undertaken within this project

    Breaking the Legend: Maxmin Fairness notion is no longer effective

    Get PDF
    In this paper we analytically propose an alternative approach to achieve better fairness in scheduling mechanisms which could provide better quality of service particularly for real time application. Our proposal oppose the allocation of the bandwidth which adopted by all previous scheduling mechanism. It rather adopt the opposition approach be proposing the notion of Maxmin-charge which fairly distribute the congestion. Furthermore, analytical proposition of novel mechanism named as Just Queueing is been demonstrated.Comment: 8 Page

    Traffic Congestion Pricing Methods and Technologies

    Get PDF
    This paper reviews the methods and technologies for congestion pricing of roads. Congestion tolls can be implemented at scales ranging from individual lanes on single links to national road networks. Tolls can be differentiated by time of day, road type and vehicle characteristics, and even set in real time according to current traffic conditions. Conventional toll booths have largely given way to electronic toll collection technologies. The main technology categories are roadside-only systems employing digital photography, tag and beacon systems that use short-range microwave technology, and in vehicle-only systems based on either satellite or cellular network communications. The best technology choice depends on the application. The rate at which congestion pricing is implemented, and its ultimate scope, will depend on what technology is used and on what other functions and services it can perform. Since congestion pricing calls for the greatest overall degree of toll differentiation, congestion pricing is likely to drive the technology choice.Road pricing; Congestion pricing; Electronic Toll Collection technology

    A survey of energy saving techniques for mobile computers

    Get PDF
    Portable products such as pagers, cordless and digital cellular telephones, personal audio equipment, and laptop computers are increasingly being used. Because these applications are battery powered, reducing power consumption is vital. In this report we first give a survey of techniques for accomplishing energy reduction on the hardware level such as: low voltage components, use of sleep or idle modes, dynamic control of the processor clock frequency, clocking regions, and disabling unused peripherals. System- design techniques include minimizing external accesses, minimizing logic state transitions, and system partitioning using application-specific coprocessors. Then we review energy reduction techniques in the design of operating systems, including communication protocols, caching, scheduling and QoS management. Finally, we give an overview of policies to optimize the code of the application for energy consumption and make it aware of power management functions. Applications play a critical role in the user's experience of a power-managed system. Therefore, the application and the operating system must allow a user to control the power management. Remarkably, it appears that some energy preserving techniques not only lead to a reduced energy consumption, but also to more performance

    Transport congestion events detection (TCED): towards decorrelating congestion detection from TCP

    Get PDF
    TCP (Transmission Control Protocol) uses a loss-based algorithm to estimate whether the network is congested or not. The main difficulty for this algorithm is to distinguish spurious from real network congestion events. Other research studies have proposed to enhance the reliability of this congestion estimation by modifying the internal TCP algorithm. In this paper, we propose an original congestion event algorithm implemented independently of the TCP source code. Basically, we propose a modular architecture to implement a congestion event detection algorithm to cope with the increasing complexity of the TCP code and we use it to understand why some spurious congestion events might not be detected in some complex cases. We show that our proposal is able to increase the reliability of TCP NewReno congestion detection algorithm that might help to the design of detection criterion independent of the TCP code. We find out that solutions based only on RTT (Round-Trip Time) estimation are not accurate enough to cover all existing cases. Furthermore, we evaluate our algorithm with and without network reordering where other inaccuracies, not previously identified, occur
    • 

    corecore