5,667 research outputs found

    Implementation of connected and autonomous vehicles in cities could have neutral effects on the total travel time costs: modeling and analysis for a circular city

    Get PDF
    Autonomous vehicles promise to revolutionize the automobile market, although their implementation could take several decades in which both types of cars will coexist on the streets. We formulate a model for a circular city based on continuous approximations, considering demand surfaces over the city. Numerical results from our model predict direct and indirect effects of connected and autonomous vehicles. Direct effects will be positive for our cities: (a) less street supply is needed to accommodate the traffic; (b) congestion levels decrease: travel costs may decrease by 30%. Some indirect effects will counterbalance these positive effects: (c) a decrease of 20% in the value of travel time can reduce the total cost by a third; (d) induced demand could be as high as 50%, bringing equivalent total costs in the future scenario; (e) the vehicle-kilometers traveled could also affect the future scenario; and (f) increases in city size and urban sprawl. As a conclusion, the implementation of autonomous vehicles could be neutral for the cities regarding travel time costs. City planning agencies still have to promote complementary modes such as active mobility (walking and bicycle), transit (public transportation), and shared mobility (shared autonomous vehicles and mobility as a service).Peer ReviewedPostprint (published version

    Large-scale residential demand response ICT architecture

    Get PDF

    Optimized Surface Code Communication in Superconducting Quantum Computers

    Full text link
    Quantum computing (QC) is at the cusp of a revolution. Machines with 100 quantum bits (qubits) are anticipated to be operational by 2020 [googlemachine,gambetta2015building], and several-hundred-qubit machines are around the corner. Machines of this scale have the capacity to demonstrate quantum supremacy, the tipping point where QC is faster than the fastest classical alternative for a particular problem. Because error correction techniques will be central to QC and will be the most expensive component of quantum computation, choosing the lowest-overhead error correction scheme is critical to overall QC success. This paper evaluates two established quantum error correction codes---planar and double-defect surface codes---using a set of compilation, scheduling and network simulation tools. In considering scalable methods for optimizing both codes, we do so in the context of a full microarchitectural and compiler analysis. Contrary to previous predictions, we find that the simpler planar codes are sometimes more favorable for implementation on superconducting quantum computers, especially under conditions of high communication congestion.Comment: 14 pages, 9 figures, The 50th Annual IEEE/ACM International Symposium on Microarchitectur

    The discrete dynamics of small-scale spatial events: agent-based models of mobility in carnivals and street parades

    Get PDF
    Small-scale spatial events are situations in which elements or objects vary in such away that temporal dynamics is intrinsic to their representation and explanation. Someof the clearest examples involve local movement from conventional traffic modelingto disaster evacuation where congestion, crowding, panic, and related safety issue arekey features of such events. We propose that such events can be simulated using newvariants of pedestrian model, which embody ideas about how behavior emerges fromthe accumulated interactions between small-scale objects. We present a model inwhich the event space is first explored by agents using ?swarm intelligence?. Armedwith information about the space, agents then move in an unobstructed fashion to theevent. Congestion and problems over safety are then resolved through introducingcontrols in an iterative fashion and rerunning the model until a ?safe solution? isreached. The model has been developed to simulate the effect of changing the route ofthe Notting Hill Carnival, an annual event held in west central London over 2 days inAugust each year. One of the key issues in using such simulation is how the processof modeling interacts with those who manage and control the event. As such, thischanges the nature of the modeling problem from one where control and optimizationis external to the model to one where this is intrinsic to the simulation

    Financial predictions using cost sensitive neural networks for multi-class learning

    Get PDF
    The interest in the localisation of wireless sensor networks has grown in recent years. A variety of machine-learning methods have been proposed in recent years to improve the optimisation of the complex behaviour of wireless networks. Network administrators have found that traditional classification algorithms may be limited with imbalanced datasets. In fact, the problem of imbalanced data learning has received particular interest. The purpose of this study was to examine design modifications to neural networks in order to address the problem of cost optimisation decisions and financial predictions. The goal was to compare four learning-based techniques using cost-sensitive neural network ensemble for multiclass imbalance data learning. The problem is formulated as a combinatorial cost optimisation in terms of minimising the cost using meta-learning classification rules for Naïve Bayes, J48, Multilayer Perceptions, and Radial Basis Function models. With these models, optimisation faults and cost evaluations for network training are considered

    Transit in Montgomery County

    Get PDF
    This project improved the reliability of Montgomery County, Maryland\u27s public bus system by analyzing the system\u27s bus arrival prediction software with respect to operator behavior between bus trips. Through a series of interviews and data analysis, this behavior was quantified into an algorithm that would better account for schedule deviations between bus trips, making predictions more accurate for customers. Operator concerns with the bus schedule and future improvements to the algorithm were also documented to further enhance system reliability

    FORGE: An eLearning Framework for Remote Laboratory Experimentation on FIRE Testbed Infrastructure

    Get PDF
    The Forging Online Education through FIRE (FORGE) initiative provides educators and learners in higher education with access to world-class FIRE testbed infrastructure. FORGE supports experimentally driven research in an eLearning environment by complementing traditional classroom and online courses with interactive remote laboratory experiments. The project has achieved its objectives by defining and implementing a framework called FORGEBox. This framework offers the methodology, environment, tools and resources to support the creation of HTML-based online educational material capable accessing virtualized and physical FIRE testbed infrastruc- ture easily. FORGEBox also captures valuable quantitative and qualitative learning analytic information using questionnaires and Learning Analytics that can help optimise and support student learning. To date, FORGE has produced courses covering a wide range of networking and communication domains. These are freely available from FORGEBox.eu and have resulted in over 24,000 experiments undertaken by more than 1,800 students across 10 countries worldwide. This work has shown that the use of remote high- performance testbed facilities for hands-on remote experimentation can have a valuable impact on the learning experience for both educators and learners. Additionally, certain challenges in developing FIRE-based courseware have been identified, which has led to a set of recommendations in order to support the use of FIRE facilities for teaching and learning purposes
    corecore