562 research outputs found

    Conforming Delaunay Triangulations in 3D

    Get PDF
    We describe an algorithm which, for any piecewise linear complex (PLC) in 3D, builds a Delaunay triangulation conforming to this PLC. The algorithm has been implemented, and yields in practice a relatively small number of Steiner points due to the fact that it adapts to the local geometry of the PLC. It is, to our knowledge, the first practical algorithm devoted to this problem

    On Monotone Sequences of Directed Flips, Triangulations of Polyhedra, and Structural Properties of a Directed Flip Graph

    Get PDF
    This paper studied the geometric and combinatorial aspects of the classical Lawson's flip algorithm in 1972. Let A be a finite set of points in R2, omega be a height function which lifts the vertices of A into R3. Every flip in triangulations of A can be associated with a direction. We first established a relatively obvious relation between monotone sequences of directed flips between triangulations of A and triangulations of the lifted point set of A in R3. We then studied the structural properties of a directed flip graph (a poset) on the set of all triangulations of A. We proved several general properties of this poset which clearly explain when Lawson's algorithm works and why it may fail in general. We further characterised the triangulations which cause failure of Lawson's algorithm, and showed that they must contain redundant interior vertices which are not removable by directed flips. A special case if this result in 3d has been shown by B.Joe in 1989. As an application, we described a simple algorithm to triangulate a special class of 3d non-convex polyhedra. We proved sufficient conditions for the termination of this algorithm and show that it runs in O(n3) time.Comment: 40 pages, 35 figure

    Conforming restricted Delaunay mesh generation for piecewise smooth complexes

    Get PDF
    A Frontal-Delaunay refinement algorithm for mesh generation in piecewise smooth domains is described. Built using a restricted Delaunay framework, this new algorithm combines a number of novel features, including: (i) an unweighted, conforming restricted Delaunay representation for domains specified as a (non-manifold) collection of piecewise smooth surface patches and curve segments, (ii) a protection strategy for domains containing curve segments that subtend sharply acute angles, and (iii) a new class of off-centre refinement rules designed to achieve high-quality point-placement along embedded curve features. Experimental comparisons show that the new Frontal-Delaunay algorithm outperforms a classical (statically weighted) restricted Delaunay-refinement technique for a number of three-dimensional benchmark problems.Comment: To appear at the 25th International Meshing Roundtabl

    Computing Three-dimensional Constrained Delaunay Refinement Using the GPU

    Full text link
    We propose the first GPU algorithm for the 3D triangulation refinement problem. For an input of a piecewise linear complex G\mathcal{G} and a constant BB, it produces, by adding Steiner points, a constrained Delaunay triangulation conforming to G\mathcal{G} and containing tetrahedra mostly of radius-edge ratios smaller than BB. Our implementation of the algorithm shows that it can be an order of magnitude faster than the best CPU algorithm while using a similar amount of Steiner points to produce triangulations of comparable quality

    VoroCrust: Voronoi Meshing Without Clipping

    Full text link
    Polyhedral meshes are increasingly becoming an attractive option with particular advantages over traditional meshes for certain applications. What has been missing is a robust polyhedral meshing algorithm that can handle broad classes of domains exhibiting arbitrarily curved boundaries and sharp features. In addition, the power of primal-dual mesh pairs, exemplified by Voronoi-Delaunay meshes, has been recognized as an important ingredient in numerous formulations. The VoroCrust algorithm is the first provably-correct algorithm for conforming polyhedral Voronoi meshing for non-convex and non-manifold domains with guarantees on the quality of both surface and volume elements. A robust refinement process estimates a suitable sizing field that enables the careful placement of Voronoi seeds across the surface circumventing the need for clipping and avoiding its many drawbacks. The algorithm has the flexibility of filling the interior by either structured or random samples, while preserving all sharp features in the output mesh. We demonstrate the capabilities of the algorithm on a variety of models and compare against state-of-the-art polyhedral meshing methods based on clipped Voronoi cells establishing the clear advantage of VoroCrust output.Comment: 18 pages (including appendix), 18 figures. Version without compressed images available on https://www.dropbox.com/s/qc6sot1gaujundy/VoroCrust.pdf. Supplemental materials available on https://www.dropbox.com/s/6p72h1e2ivw6kj3/VoroCrust_supplemental_materials.pd

    An advancing front Delaunay triangulation algorithm designed for robustness

    Get PDF
    A new algorithm is described for generating an unstructured mesh about an arbitrary two-dimensional configuration. Mesh points are generated automatically by the algorithm in a manner which ensures a smooth variation of elements, and the resulting triangulation constitutes the Delaunay triangulation of these points. The algorithm combines the mathematical elegance and efficiency of Delaunay triangulation algorithms with the desirable point placement features, boundary integrity, and robustness traditionally associated with advancing-front-type mesh generation strategies. The method offers increased robustness over previous algorithms in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell size distribution throughout the flow-field

    3D boundary recovery by constrained Delaunay tetrahedralization

    Get PDF
    Three-dimensional boundary recovery is a fundamental problem in mesh generation. In this paper, we propose a practical algorithm for solving this problem. Our algorithm is based on the construction of a {\it constrained Delaunay tetrahedralization} (CDT) for a set of constraints (segments and facets). The algorithm adds additional points (so-called Steiner points) on segments only. The Steiner points are chosen in such a way that the resulting subsegments are Delaunay and their lengths are not unnecessarily short. It is theoretically guaranteed that the facets can be recovered without using Steiner points. The complexity of this algorithm is analyzed. The proposed algorithm has been implemented. Its performance is reported through various application examples
    corecore