230 research outputs found

    STEP-based Conceptual Framework for Measurement Planning Integration

    Get PDF
    AbstractMeasurement aims to check the product conformance or to control the manufacturing processes’ parameters. It needs to be planned in an integrated and interoperable manner with other manufacturing activities. Integration of measurement planning is based on the information provided by the design phase. This paper aims to assist the interoperability of the measurement plans through introducing the resource-independent measurement specifications (RIMS) concept. The paper presents a conceptual framework for representing a STEP-based measurement features from the coordinate metrology perspective. The proposed framework supports the direct formulation of the measurement process specifications in an operation-based manner and the realization the process control functionality of the measurement processes

    Automating Robot Planning Using Product and Manufacturing Information

    Get PDF
    AbstractAdvances in sensing, modeling, and control have made it possible to increase the accuracy of robots, and enable them to perform in dynamic environments. Often, performance deficiencies are not evident until late in the development of the manufacturing process, which delays the beginning of production and may cause damage to parts that have already undergone costly manufacturing steps. The goal of this research is to determine if a robot can meet manufacturing requirements, how to optimally plan robot activities, and to monitor robot processes to track performance. To achieve this, representations of product and manufacturing information and robot capabilities should be carried through the design, process planning, production, and analysis phases. Standards for the exchange of this information have been developed, such as ISO 10303 Part 242 for semantic product and manufacturing information and device kinematics, and the Robot Operating System Industrial specification for robot modeling, path planning, and execution. This paper surveys the relevant technologies and standards needed to enable automated deployment of robots in new application areas

    Efficiency improvement of product definition and verification through Product Lifecycle Management

    Get PDF
    The correct and complete geometrical definition of a product is nowadays a critical activity for most companies. To solve this problem, ISO has launched the GPS, Geometrical Product Specifications and Verification, with the goal of consistently and completely describe the geometric characteristics of the products. With this project, it is possible to define a language of communication between the various stages of the product lifecycle based on "operators": these are an ordered set of mathematical operations used for the definition of the products. However, these theoretical and mathematical concepts require a level of detail and completeness of the information hardly used in usual industrial activities. Consequently in industrial practice the definition and verification of products appears to be a slow process, error-prone and difficult to control. Product Lifecycle Management (PLM) is the activity of managing the company's products throughout their lifecycle in the most efficient way. PLM describes the engineering aspects of the products, ensuring the integrity of product definition, the automatic update of the product information and then aiding the product to fulfil with international standards. Despite all these benefits, the concepts of PLM are not yet fully understood in industry and they are difficult to implement for SME's. A first objective of this research is to develop a model to depict and understand processes. This representation is used as a tool during the application of a case study of a whole set of a GPS standards for one type of tolerance. This procedure allows the introduction of the GPS principles and facilitates its implementation within a PLM process. Until now, PLM is presented on isolated aspects without the necessary holistic approach. Furthermore, industry needs people able to operate in PLM context, professional profiles that are not common on the market. There is therefore an educational problem; besides the technical knowledge, the new profile of engineers must be also familiar with the PLM philosophy and instruments to work effectively in a team. With the aim of solving this problem, this thesis presents a PLM solution that gives the guidelines for a correct understanding of these topic

    Resource-Independent Computer Aided Inspection

    Get PDF

    Mallipohjaisen määrittelyn hyödyntäminen suunnittelu- ja valmistusprosesseissa

    Get PDF
    Model-based definition is a design method in which all the product and manufacturing information of a part is included in the 3D-model, instead of a conventional 2D-drawing. The objective of this thesis was to determine the possibility to implement model-based definition to the currently used systems of a target company. Another target was to determine how the data transfer between various organizations could be conducted without the 2D-drawings. In addition, the utilization of the 3D-models within manufacturing processes and the possible benefits within the entire process considering time savings and quality improvements were investigated. Several sources indicate that model-based definition offers various advantages over the conventional 2D-definitions. The benefits include time savings within design, reduction of misunderstandings in the design documents, and the extraction of tolerances and annotations of a 3D-model in the manufacturing processes. To verify the claimed benefits, several studies were conducted. The studies were related to the design processes, design items, manufacturing processes and implementation of model-based definition in two CAD-software. The CAD-software used in the target company is capable of generating fully defined 3D-models with no additional investments. Regarding the manufacturing processes investigated within this thesis, it can be stated that almost every manufacturer is capable of utilizing 3D-models. However, there are various software used among the manufacturers, for which so-called neutral formats need to be used. By using the neutral formats, parts of the intelligence within the models disappear and the reuse possibility of the model properties becomes more difficult. In conclusion, including all the product and manufacturing information to the 3D-model makes the product definition unambiguous and eliminates the possibility of differences between the 3D-model and the 2D-drawing. In addition, the geometry is generally easier to understand in a 3D-format. However, no time savings in the design phase could be achieved in the time studies conducted during the thesis. Certain time saving could most likely be achieved if the design tools of model-based definition were more sophisticated and more familiar to the designers. Due to several software among the manufacturers, further studies on how the fully defined 3D-models and neutral file formats can be utilized within the software, should be conducted. Hence, the utilization of model-based definition should be tested in a pilot project.Mallipohjainen määrittely tarkoittaa kappaleen tuote- ja valmistustietojen määrittelemistä 3D-mallissa perinteisen 2D-piirustuksen sijaan. Tämän diplomityön tarkoitus oli selvittää kuinka mallipohjainen määrittely voidaan toteuttaa kohdeyrityksen nykyisillä järjestelmillä, sekä miten tiedonsiirto käytännössä toteutettaisiin ilman 2D-piirustusta. Näiden lisäksi selvityksen alla olivat kuinka 3D-malleja voidaan hyödyntää nykyisissä valmistusympäristöissä ja voidaanko mallipohjaisen määrittelyn avulla saavuttaa etuja kokonaisprosessissa niin ajansäästön kuin laadunparannusten osalta. Mallipohjaisen määrittelyn eduiksi mainitaan tyypillisesti lyhentyneet suunnitteluajat, vähentyneet väärinkäsitykset suunnitteludokumenttien ymmärtämisessä sekä mallissa olevien mittojen ja toleranssien hyödyntäminen valmistusprosesseissa. Jotta kyseiset edut voitaisiin todentaa, toteutettiin työn aikana useita tutkimuksia. Tutkimukset liittyivät suunnitteluprosesseihin, suunniteltuihin osiin, valmistusprosesseihin sekä mallipohjaisen määrittelyn toteuttamistapoihin CAD-ohjelmistoissa. Yrityksessä käytössä olevalla suunnitteluohjelmalla pystytään luomaan täysin määriteltyjä 3D-malleja ilman ylimääräisiä investointeja. Tutkimuksissa selvitettyjen valmistusprosessien osalta voidaan todeta, että 3D-malleja pystytään myös hyödyntämään lähes jokaisen valmistajan prosesseissa. Prosesseissa käytetyt ohjelmistot kuitenkin vaihtelevat, minkä vuoksi tiedonsiirtoon joudutaan usein käyttämään niin sanottuja neutraaleja tiedostoformaatteja. Näitä käytettäessä osa mallissa olevista ominaisuuksista häviää ja mallissa olevien toleranssien ja muiden merkintöjen hyödyntäminen hankaloituu. Kaikkien tuote- ja valmistustietojen sisällyttäminen 3D-malliin tekee määrittelystä yksiselitteistä ja poistaa ristiriidan mahdollisuuden mallin ja piirustuksen väliltä. Lisäksi 3D-muodossa oleva tieto on helpompi ymmärtää. Työssä tehtyjen mittausten perusteella ajansäästöä ei kuitenkaan saavutettu suunnitteluvaiheessa. Ajansäästöjen saavuttaminen olisi kuitenkin todennäköistä, jos mallipohjaisen määrittelyn työkalut olisivat kehittyneempiä sekä tutumpia suunnittelijoille. Nykyisessä suunnittelu- ja valmistusympäristössä käytetään lukuisia eri järjestelmiä, mistä johtuen järjestelmien yhteensopivuus määriteltyjen 3D-mallien osalta on kokonaisuuden kannalta erityisen tärkeää. Järjestelmien yhteensopivuutta ja neutraalien formaattien hyödyntämistä tuleekin jatkossa selvittää lisää. Tämän vuoksi mallipohjaista määrittelyä tulisikin kokeilla pilottiprojektin muodossa

    Industry Foundation Processes (IFP): Theoretical and Practical Foundations for the Construction Industry

    Get PDF
    Industry foundation processes are formulated to improve capital project process conformance and interoperability. These processes are used to implement key elements of practices. Several research studies confirm that the implementation of best practices drives better engineering and construction project performance. Best practices are defined by the Construction Industry Institute (CII) as processes or methods that when executed effectively, lead to enhanced project performance. Particular organizations, such as the CII, the Construction Owners Association of Alberta (COAA), and the Project Management Institute (PMI), develop and promote best practices pertaining to various aspects of capital project delivery. However, the systematic and consistent implementation of such practices throughout the lifecycle of a construction project and from project to project remains a challenge. Research findings also reveal that improved adoption of best practices, through conformance with their processes, and improved interoperability, are correlated with substantial capital project performance improvements in terms of cost, schedule, and productivity. In many industry sectors, such as health care, manufacturing, and banking, process conformance has been radically improved through the automation of processes via workflow engines, and several efforts are being made to regulate standards to facilitate process interoperability. However, process conformance and interoperability in the construction industry are lagging behind. In the construction industry, a promising solution for facilitating effective and consistent conformance with best practices lies in the employment of workflow processes and workflow engines. The concept of Industry Foundation Processes (IFP) and the theory and framework for IFP development and implementation are established in this research. The objective is to integrate construction industry best practices into Electronic Product and Process Management (EPPM) systems, and improve process interoperability and conformance. EPPM systems, which are increasingly being used for managing mega capital projects, can be described as the meta- managers of other systems, such as document management systems (DMS), building information modeling (BIM), workflow management systems (WfMS), and advanced project management systems. Integration of best practices into EPPM systems facilitates more consistent and scalable adoption of best practices in large-scale construction projects, resulting improved project performance. IFPs are defined as standard workflows based on known best practices in the construction industry with certain features and characteristics to improves process conformance and facilitates process interoperability. The research methodology is comprised of four main phases: (1) developing methods and mechanisms that can be used to transform best practices into structured workflow process in such a way as to retain the essence of the best practices, (2) defining the IFP concept and establishing a framework and an ontology for inheritance and customization of IFPs for specific corporate and project circumstances, (3) customizing and implementing particular IFPs in an EPPM system, based on available records for specific construction projects, and investigating the applicability and effectiveness of the IFP concept, and (4) analyzing and validating the value of the IFP system through functional demonstration of the benefits, including process conformance and interoperability. The scope of the thesis is the theoretical development of IFP system, in addition to implementation studies for a limited number of IFP processes within the domain of industrial sector construction projects. The development and application of the IFP system is anticipated to result in more effective adoption of best practices and enhanced process conformance and interoperability, with the end-result of improved capital project performance

    Ontology-Driven Semantic Annotations for Multiple Engineering Viewpoints in Computer Aided Design

    Get PDF
    Engineering design involves a series of activities to handle data, including capturing and storing data, retrieval and manipulation of data. This also applies throughout the entire product lifecycle (PLC). Unfortunately, a closed loop of knowledge and information management system has not been implemented for the PLC. As part of product lifecycle management (PLM) approaches, computer-aided design (CAD) systems are extensively used from embodiment and detail design stages in mechanical engineering. However, current CAD systems lack the ability to handle semantically-rich information, thus to represent, manage and use knowledge among multidisciplinary engineers, and to integrate various tools/services with distributed data and knowledge. To address these challenges, a general-purpose semantic annotation approach based on CAD systems in the mechanical engineering domain is proposed, which contributes to knowledge management and reuse, data interoperability and tool integration. In present-day PLM systems, annotation approaches are currently embedded in software applications and use diverse data and anchor representations, making them static, inflexible and difficult to incorporate with external systems. This research will argue that it is possible to take a generalised approach to annotation with formal annotation content structures and anchoring mechanisms described using general-purpose ontologies. In this way viewpoint-oriented annotation may readily be captured, represented and incorporated into PLM systems together with existing annotations in a common framework, and the knowledge collected or generated from multiple engineering viewpoints may be reasoned with to derive additional knowledge to enable downstream processes. Therefore, knowledge can be propagated and evolved through the PLC. Within this framework, a knowledge modelling methodology has also been proposed for developing knowledge models in various situations. In addition, a prototype system has been designed and developed in order to evaluate the core contributions of this proposed concept. According to an evaluation plan, cost estimation and finite element analysis as case studies have been used to validate the usefulness, feasibility and generality of the proposed framework. Discussion has been carried out based on this evaluation. As a conclusion, the presented research work has met the original aim and objectives, and can be improved further. At the end, some research directions have been suggested.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Tekniset tuotemäärittelytiedot ja niiden liittäminen 3D-malliin

    Get PDF
    Käsite Product and Manufacturing Information eli PMI tarkoittaa kappaleen teknisiä tuotemäärittelytietoja ja näiden liittämistä 3D-malliin. PMI on keskeinen osa mallipohjaista tuotemäärittelyä eli MBD:tä, jonka tavoitteena on tuotemallin täydellinen määrittely pelkän 3D-mallin avulla ilman 2D-piirustusta. Mallipohjainen tuotemäärittely on vastike valmistavan teollisuuden vakiintuneelle käytännölle suunnitella 3D-malli ja tästä erillinen 2D-piirustus. Työssä tutkitaan kirjallisuuden avulla PMI:n määritelmää ja sisältöä sekä PMI:tä osana mallipohjaista tuotemäärittelyä. Mallipohjaisen tuotemäärittelyn osalta keskitytään erityisesti MBD-toimintatavan käyttöönottoon yrityksissä sekä sen hyötyihin suhteessa 2D-piirustusten käyttöön. Lisäksi tutkitaan PMI:n liittämistä suoraan 3D-malliin käytännössä. Tähän käytetään Siemens NX -suunnitteluohjelmistoa, jonka tärkeimmät PMI-toiminnot käydään läpi esimerkkien kanssa. Kirjallisuustutkimuksesta käy ilmi, että PMI:hin sisältyy esimerkiksi geometriset dimensiot, toleranssit, hitsausmerkit, muistiinpanot ja pintojen viimeistely -tiedot. PMI voidaan jakaa ihmisluettavaan ja koneluettavaan PMI:hin sen mukaan, onko se suoraan koneen tulkittavissa vai tarvitaanko sen tulkitsemiseen ihmistä. MBD-toimintatavalla pyritään ristiriidattomaan ja ajantasaiseen malliin kaikkialla, virheettömään ja mahdollisimman automaattiseen tiedonsiirtoon sekä ajansäästöön valmistus- ja suunnitteluprosessin eri vaiheissa. MBD:n ja PMI:n käyttöönotossa on haasteita, kuten uusien työkalujen ja taitojen opettelu, suuri pääomasijoitus ja vanhojen 2D-piirustusten muuttaminen 3D-muotoon. Työssä ilmeneekin, että MBD-toimintatapaan siirtyminen ei houkuttele kaikkia yrityksiä. Työn käytännönosuudesta selviää, kuinka NX:n PMI-työkaluja käytetään. NX:llä voidaan lisätä dimensioita, toleransseja, annotaatioita, muistiinpanoja, erikoismerkintöjä, turvallisuusmerkintöjä ja taulukoita suoraan 3D-malliin. PMI-tietoja varten pystyy luomaan useita mallinäkymiä, jotka sisältävät erityyppisiä tietoja. NX:ssä voi luoda PMI-objekteja 2D-piirustuksesta tai luoda 2D-piirustuksen PMI-tiedoista. Työn lopuksi selviää, kuinka malli viedään eri tiedostomuotoon ja avataan katseluohjelmalla
    corecore