1,816 research outputs found

    Process mining for healthcare: Characteristics and challenges

    Get PDF
    Process mining techniques can be used to analyse business processes using the data logged during their execution. These techniques are leveraged in a wide range of domains, including healthcare, where it focuses mainly on the analysis of diagnostic, treatment, and organisational processes. Despite the huge amount of data generated in hospitals by staff and machinery involved in healthcare processes, there is no evidence of a systematic uptake of process mining beyond targeted case studies in a research context. When developing and using process mining in healthcare, distinguishing characteristics of healthcare processes such as their variability and patient-centred focus require targeted attention. Against this background, the Process-Oriented Data Science in Healthcare Alliance has been established to propagate the research and application of techniques targeting the data-driven improvement of healthcare processes. This paper, an initiative of the alliance, presents the distinguishing characteristics of the healthcare domain that need to be considered to successfully use process mining, as well as open challenges that need to be addressed by the community in the future.This work is partially supported by ANID FONDECYT 1220202, Dirección de Investigación de la Vicerrectoría de Investigación de la Pontificia Universidad Católica de Chile - PUENTE [Grant No. 026/ 2021]; and Agencia Nacional de Investigación y Desarrollo [Grant Nos. ANID-PFCHA/Doctorado Nacional/2019–21190116, ANID-PFCHA/ Doctorado Nacional/2020–21201411]. With regard to the co-author Hilda Klasky, this manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-accessplan).Peer ReviewedArticle signat per 55 autors/es: Jorge Munoz-Gama (a)* , Niels Martin (b,c)* , Carlos Fernandez-Llatas (d,g)* , Owen A. Johnson (e)* , Marcos Sepúlveda (a)* , Emmanuel Helm (f)* , Victor Galvez-Yanjari (a)* , Eric Rojas (a) , Antonio Martinez-Millana (d) , Davide Aloini (k) , Ilaria Angela Amantea (l,q,r) , Robert Andrews (ab), Michael Arias (z) , Iris Beerepoot (o) , Elisabetta Benevento (k) , Andrea Burattin (ai), Daniel Capurro (j) , Josep Carmona (s) , Marco Comuzzi (w), Benjamin Dalmas (aj,ak), Rene de la Fuente (a) , Chiara Di Francescomarino (h) , Claudio Di Ciccio (i) , Roberto Gatta (ad,ae), Chiara Ghidini (h) , Fernanda Gonzalez-Lopez (a) , Gema Ibanez-Sanchez (d) , Hilda B. Klasky (p) , Angelina Prima Kurniati (al), Xixi Lu (o) , Felix Mannhardt (m), Ronny Mans (af), Mar Marcos (v) , Renata Medeiros de Carvalho (m), Marco Pegoraro (x) , Simon K. Poon (ag), Luise Pufahl (u) , Hajo A. Reijers (m,o) , Simon Remy (y) , Stefanie Rinderle-Ma (ah), Lucia Sacchi (t) , Fernando Seoane (g,am,an), Minseok Song (aa), Alessandro Stefanini (k) , Emilio Sulis (l) , Arthur H. M. ter Hofstede (ab), Pieter J. Toussaint (ac), Vicente Traver (d) , Zoe Valero-Ramon (d) , Inge van de Weerd (o) , Wil M.P. van der Aalst (x) , Rob Vanwersch (m), Mathias Weske (y) , Moe Thandar Wynn (ab), Francesca Zerbato (n) // (a) Pontificia Universidad Catolica de Chile, Chile; (b) Hasselt University, Belgium; (c) Research Foundation Flanders (FWO), Belgium; (d) Universitat Politècnica de València, Spain; (e) University of Leeds, United Kingdom; (f) University of Applied Sciences Upper Austria, Austria; (g) Karolinska Institutet, Sweden; (h) Fondazione Bruno Kessler, Italy; (i) Sapienza University of Rome, Italy; (j) University of Melbourne, Australia; (k) University of Pisa, Italy; (l) University of Turin, Italy; (m) Eindhoven University of Technology, The Netherlands; (n) University of St. Gallen, Switzerland; (o) Utrecht University, The Netherlands; (p) Oak Ridge National Laboratory, United States; (q) University of Bologna, Italy; (r) University of Luxembourg, Luxembourg; (s) Universitat Politècnica de Catalunya, Spain; (t) University of Pavia, Italy; (u) Technische Universitaet Berlin, Germany; (v) Universitat Jaume I, Spain; (w) Ulsan National Institute of Science and Technology (UNIST), Republic of Korea; (x) RWTH Aachen University, Germany; (y) University of Potsdam, Germany; (z) Universidad de Costa Rica, Costa Rica; (aa) Pohang University of Science and Technology, Republic of Korea; (ab) Queensland University of Technology, Australia; (ac) Norwegian University of Science and Technology, Norway; (ad) Universita degli Studi di Brescia, Italy; (ae) Lausanne University Hospital (CHUV), Switzerland; (af) Philips Research, the Netherlands; (ag) The University of Sydney, Australia; (ah) Technical University of Munich, Germany; (ai) Technical University of Denmark, Denmark; (aj) Mines Saint-Etienne, France; (ak) Université Clermont Auvergne, France; (al) Telkom University, Indonesia; (am) Karolinska University Hospital, Sweden; (an) University of Borås, SwedenPostprint (published version

    Process mining for healthcare: Characteristics and challenges

    Full text link
    [EN] Process mining techniques can be used to analyse business processes using the data logged during their execution. These techniques are leveraged in a wide range of domains, including healthcare, where it focuses mainly on the analysis of diagnostic, treatment, and organisational processes. Despite the huge amount of data generated in hospitals by staff and machinery involved in healthcare processes, there is no evidence of a systematic uptake of process mining beyond targeted case studies in a research context. When developing and using process mining in healthcare, distinguishing characteristics of healthcare processes such as their variability and patient-centred focus require targeted attention. Against this background, the Process-Oriented Data Science in Healthcare Alliance has been established to propagate the research and application of techniques targeting the data-driven improvement of healthcare processes. This paper, an initiative of the alliance, presents the distinguishing characteristics of the healthcare domain that need to be considered to successfully use process mining, as well as open challenges that need to be addressed by the community in the future.This work is partially supported by ANID FONDECYT 1220202, Direccion de Investigacion de la Vicerrectoria de Investigacion de la Pontificia Universidad Catolica de Chile-PUENTE [Grant No. 026/2021] ; and Agencia Nacional de Investigacion y Desarrollo [Grant Nos. ANID-PFCHA/Doctorado Nacional/2019-21190116, ANID-PFCHA/Doctorado Nacional/2020-21201411] . With regard to the co-author Hilda Klasky, this manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE) . The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan)Munoz Gama, J.; Martin, N.; Fernández Llatas, C.; Johnson, OA.; Sepúlveda, M.; Helm, E.; Galvez-Yanjari, V.... (2022). Process mining for healthcare: Characteristics and challenges. Journal of Biomedical Informatics. 127:1-15. https://doi.org/10.1016/j.jbi.2022.10399411512

    Question-Driven Methodology for Analyzing Emergency Room Processes Using Process Mining

    Full text link
    [EN] In order to improve the efficiency and effectiveness of Emergency Rooms (ER), it is important to provide answers to frequently-posed questions regarding all relevant processes executed therein. Process mining provides different techniques and tools that help to obtain insights into the analyzed processes and help to answer these questions. However, ER experts require certain guidelines in order to carry out process mining effectively. This article proposes a number of solutions, including a classification of the frequently-posed questions about ER processes, a data reference model to guide the extraction of data from the information systems that support these processes and a question-driven methodology specific for ER. The applicability of the latter is illustrated by means of a case study of an ER service in Chile, in which ER experts were able to obtain a better understanding of how they were dealing with episodes related to specific pathologies, triage severity and patient discharge destinations.This project was partially funded by Fondecyt Grants 1150365 and 11130577 from the Chilean National Commission on Scientific and Technological Research (CONICYT), the Ph.D. Scholarship Program of CONICYT Chile (CONICYT-Doctorado Nacional/2014-63140180), the Ph.D. Scholarship Program of CONICIT Costa Rica and by Universidad de Costa Rica Professor Fellowships.Rojas, E.; Sepúlveda, M.; Munoz-Gama, J.; Capurro, D.; Traver Salcedo, V.; Fernández Llatas, C. (2017). Question-Driven Methodology for Analyzing Emergency Room Processes Using Process Mining. Applied Sciences. 7(3):1-29. https://doi.org/10.3390/app7030302S12973Welch, S. J., Asplin, B. R., Stone-Griffith, S., Davidson, S. J., Augustine, J., & Schuur, J. (2011). Emergency Department Operational Metrics, Measures and Definitions: Results of the Second Performance Measures and Benchmarking Summit. Annals of Emergency Medicine, 58(1), 33-40. doi:10.1016/j.annemergmed.2010.08.040Jansen-Vullers, M., & Reijers, H. (2005). Business Process Redesign in Healthcare: Towards a Structured Approach. INFOR: Information Systems and Operational Research, 43(4), 321-339. doi:10.1080/03155986.2005.11732733Grol, R., & Grimshaw, J. (1999). Evidence-Based Implementation of Evidence-Based Medicine. The Joint Commission Journal on Quality Improvement, 25(10), 503-513. doi:10.1016/s1070-3241(16)30464-3Fernández-Llatas, C., Meneu, T., Traver, V., & Benedi, J.-M. (2013). Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation. International Journal of Environmental Research and Public Health, 10(11), 5671-5682. doi:10.3390/ijerph10115671Radnor, Z. J., Holweg, M., & Waring, J. (2012). Lean in healthcare: The unfilled promise? Social Science & Medicine, 74(3), 364-371. doi:10.1016/j.socscimed.2011.02.011Rojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 61, 224-236. doi:10.1016/j.jbi.2016.04.007Neumuth, T., Jannin, P., Schlomberg, J., Meixensberger, J., Wiedemann, P., & Burgert, O. (2010). Analysis of surgical intervention populations using generic surgical process models. International Journal of Computer Assisted Radiology and Surgery, 6(1), 59-71. doi:10.1007/s11548-010-0475-yFernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Partington, A., Wynn, M., Suriadi, S., Ouyang, C., & Karnon, J. (2015). Process Mining for Clinical Processes. ACM Transactions on Management Information Systems, 5(4), 1-18. doi:10.1145/2629446Basole, R. C., Braunstein, M. L., Kumar, V., Park, H., Kahng, M., Chau, D. H. (Polo), … Thompson, M. (2015). Understanding variations in pediatric asthma care processes in the emergency department using visual analytics. Journal of the American Medical Informatics Association, 22(2), 318-323. doi:10.1093/jamia/ocu016Suriadi, S., Andrews, R., ter Hofstede, A. H. M., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs. Information Systems, 64, 132-150. doi:10.1016/j.is.2016.07.011De Medeiros, A. K. A., Weijters, A. J. M. M., & van der Aalst, W. M. P. (2007). Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery, 14(2), 245-304. doi:10.1007/s10618-006-0061-7Aalst, W. M. P. van der. (2005). Business alignment: using process mining as a tool for Delta analysis and conformance testing. Requirements Engineering, 10(3), 198-211. doi:10.1007/s00766-005-0001-xVan der Aalst, W., Adriansyah, A., & van Dongen, B. (2012). Replaying history on process models for conformance checking and performance analysis. WIREs Data Mining and Knowledge Discovery, 2(2), 182-192. doi:10.1002/widm.1045Song, M., & van der Aalst, W. M. P. (2008). Towards comprehensive support for organizational mining. Decision Support Systems, 46(1), 300-317. doi:10.1016/j.dss.2008.07.00

    Applying Process-Oriented Data Science to Dentistry

    Get PDF
    Background: Healthcare services now often follow evidence-based principles, so technologies such as process and data mining will help inform their drive towards optimal service delivery. Process mining (PM) can help the monitoring and reporting of this service delivery, measure compliance with guidelines, and assess effectiveness. In this research, PM extracts information about clinical activity recorded in dental electronic health records (EHRs) converts this into process-models providing stakeholders with unique insights to the dental treatment process. This thesis addresses a gap in prior research by demonstrating how process analytics can enhance our understanding of these processes and the effects of changes in strategy and policy over time. It also emphasises the importance of a rigorous and documented methodological approach often missing from the published literature. Aim: Apply the emerging technology of PM to an oral health dataset, illustrating the value of the data in the dental repository, and demonstrating how it can be presented in a useful and actionable manner to address public health questions. A subsidiary aim is to present the methodology used in this research in a way that provides useful guidance to future applications of dental PM. Objectives: Review dental and healthcare PM literature establishing state-of-the-art. Evaluate existing PM methods and their applicability to this research’s dataset. Extend existing PM methods achieving the aims of this research. Apply PM methods to the research dataset addressing public health questions. Document and present this research’s methodology. Apply data-mining, PM, and data-visualisation to provide insights into the variable pathways leading to different outcomes. Identify the data needed for PM of a dental EHR. Identify challenges to PM of dental EHR data. Methods: Extend existing PM methods to facilitate PM research in public health by detailing how data extracts from a dental EHR can be effectively managed, prepared, and used for PM. Use existing dental EHR and PM standards to generate a data reference model for effective PM. Develop a data-quality management framework. Results: Comparing the outputs of PM to established care-pathways showed that the dataset facilitated generation of high-level pathways but was less suitable for detailed guidelines. Used PM to identify the care pathway preceding a dental extraction under general anaesthetic and provided unique insights into this and the effects of policy decisions around school dental screenings. Conclusions: Research showed that PM and data-mining techniques can be applied to dental EHR data leading to fresh insights about dental treatment processes. This emerging technology along with established data mining techniques, should provide valuable insights to policy makers such as principal and chief dental officers to inform care pathways and policy decisions

    Process Mining Handbook

    Get PDF
    This is an open access book. This book comprises all the single courses given as part of the First Summer School on Process Mining, PMSS 2022, which was held in Aachen, Germany, during July 4-8, 2022. This volume contains 17 chapters organized into the following topical sections: Introduction; process discovery; conformance checking; data preprocessing; process enhancement and monitoring; assorted process mining topics; industrial perspective and applications; and closing

    Applying Process Mining Algorithms in the Context of Data Collection Scenarios

    Get PDF
    Despite the technological progress, paper-based questionnaires are still widely used to collect data in many application domains like education, healthcare or psychology. To facilitate the enormous amount of work involved in collecting, evaluating and analyzing this data, a system enabling process-driven data collection was developed. Based on generic tools, a process-driven approach for creating, processing and analyzing questionnaires was realized, in which a questionnaire is defined in terms of a process model. Due to this characteristic, process mining algorithms may be applied to event logs created during the execution of questionnaires. Moreover, new data that might not have been used in the context of questionnaires before may be collected and analyzed to provide new insights in regard to both the participant and the questionnaire. This thesis shows that process mining algorithms may be applied successfully to process-oriented questionnaires. Algorithms from the three process mining forms of process discovery, conformance checking and enhancement are applied and used for various analysis. The analysis of certain properties of discovered process models leads to new ways of generating information from questionnaires. Different techniques for conformance checking and their applicability in the context of questionnaires are evaluated. Furthermore, new data that cannot be collected from paper-based questionnaires is used to enhance questionnaires to reveal new and meaningful relationships
    corecore