312 research outputs found

    On Nonrigid Shape Similarity and Correspondence

    Full text link
    An important operation in geometry processing is finding the correspondences between pairs of shapes. The Gromov-Hausdorff distance, a measure of dissimilarity between metric spaces, has been found to be highly useful for nonrigid shape comparison. Here, we explore the applicability of related shape similarity measures to the problem of shape correspondence, adopting spectral type distances. We propose to evaluate the spectral kernel distance, the spectral embedding distance and the novel spectral quasi-conformal distance, comparing the manifolds from different viewpoints. By matching the shapes in the spectral domain, important attributes of surface structure are being aligned. For the purpose of testing our ideas, we introduce a fully automatic framework for finding intrinsic correspondence between two shapes. The proposed method achieves state-of-the-art results on the Princeton isometric shape matching protocol applied, as usual, to the TOSCA and SCAPE benchmarks

    New algorithmic developments in maximum consensus robust fitting

    Get PDF
    In many computer vision applications, the task of robustly estimating the set of parameters of a geometric model is a fundamental problem. Despite the longstanding research efforts on robust model fitting, there remains significant scope for investigation. For a large number of geometric estimation tasks in computer vision, maximum consensus is the most popular robust fitting criterion. This thesis makes several contributions in the algorithms for consensus maximization. Randomized hypothesize-and-verify algorithms are arguably the most widely used class of techniques for robust estimation thanks to their simplicity. Though efficient, these randomized heuristic methods do not guarantee finding good maximum consensus estimates. To improve the randomize algorithms, guided sampling approaches have been developed. These methods take advantage of additional domain information, such as descriptor matching scores, to guide the sampling process. Subsets of the data that are more likely to result in good estimates are prioritized for consideration. However, these guided sampling approaches are ineffective when good domain information is not available. This thesis tackles this shortcoming by proposing a new guided sampling algorithm, which is based on the class of LP-type problems and Monte Carlo Tree Search (MCTS). The proposed algorithm relies on a fundamental geometric arrangement of the data to guide the sampling process. Specifically, we take advantage of the underlying tree structure of the maximum consensus problem and apply MCTS to efficiently search the tree. Empirical results show that the new guided sampling strategy outperforms traditional randomized methods. Consensus maximization also plays a key role in robust point set registration. A special case is the registration of deformable shapes. If the surfaces have the same intrinsic shapes, their deformations can be described accurately by a conformal model. The uniformization theorem allows the shapes to be conformally mapped onto a canonical domain, wherein the shapes can be aligned using a M¨obius transformation. The problem of correspondence-free M¨obius alignment of two sets of noisy and partially overlapping point sets can be tackled as a maximum consensus problem. Solving for the M¨obius transformation can be approached by randomized voting-type methods which offers no guarantee of optimality. Local methods such as Iterative Closest Point can be applied, but with the assumption that a good initialization is given or these techniques may converge to a bad local minima. When a globally optimal solution is required, the literature has so far considered only brute-force search. This thesis contributes a new branch-and-bound algorithm that solves for the globally optimal M¨obius transformation much more efficiently. So far, the consensus maximization problems are approached mainly by randomized algorithms, which are efficient but offer no analytical convergence guarantee. On the other hand, there exist exact algorithms that can solve the problem up to global optimality. The global methods, however, are intractable in general due to the NP-hardness of the consensus maximization. To fill the gap between the two extremes, this thesis contributes two novel deterministic algorithms to approximately optimize the maximum consensus criterion. The first method is based on non-smooth penalization supported by a Frank-Wolfe-style optimization scheme, and another algorithm is based on Alternating Direction Method of Multipliers (ADMM). Both of the proposed methods are capable of handling the non-linear geometric residuals commonly used in computer vision. As will be demonstrated, our proposed methods consistently outperform other heuristics and approximate methods.Thesis (Ph.D.) (Research by Publication) -- University of Adelaide, School of Computer Science, 201

    Wide baseline stereo matching with convex bounded-distortion constraints

    Full text link
    Finding correspondences in wide baseline setups is a challenging problem. Existing approaches have focused largely on developing better feature descriptors for correspondence and on accurate recovery of epipolar line constraints. This paper focuses on the challenging problem of finding correspondences once approximate epipolar constraints are given. We introduce a novel method that integrates a deformation model. Specifically, we formulate the problem as finding the largest number of corresponding points related by a bounded distortion map that obeys the given epipolar constraints. We show that, while the set of bounded distortion maps is not convex, the subset of maps that obey the epipolar line constraints is convex, allowing us to introduce an efficient algorithm for matching. We further utilize a robust cost function for matching and employ majorization-minimization for its optimization. Our experiments indicate that our method finds significantly more accurate maps than existing approaches

    AN INCREMENTAL BASED APPROACH FOR 3D MULTI-ANGLE POINT CLOUD STITCHING USING ICP AND KNN

    Get PDF
    The basic principle of stitching is joining or merging any two materials or objects. 3D point cloud stitching is basically stitching two 3D point cloud together. 3D point cloud stitching is an emerging topic and there are multiple ways to achieve it. There are various methods for stitching which all have changes throughout the time. The existing methods do have shortcomings and have ignored the multiangle stitching of a same model or an object. This shortfall leads to many deficiencies in the ability of a stitching algorithm to maintain accuracy over the period. In this work I have introduced a new approach for an iterative based approach for 3d multi-angle point cloud stitching using ICP (Iterative closest point algorithm) and KNN (K-nearest neighbor). The design follows an incremental approach to achieve the results. This is a novel approach of stitching multiple 3D point clouds taken from multiple angles of a single bust. The framework is evaluated based on the stitching results provided by the algorithm capability of stitching multiple point cloud into a solid model

    Dense 3D Face Correspondence

    Full text link
    We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28mm on synthetic faces and detected 1414 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5% face recognition accuracy on the FRGCv2 and 98.6% on Bosphorus database. Our dense model is also able to generalize to unseen datasets.Comment: 24 Pages, 12 Figures, 6 Tables and 3 Algorithm

    Shape localization, quantification and correspondence using Region Matching Algorithm

    Get PDF
    We propose a method for local, region-based matching of planar shapes, especially as those shapes that change over time. This is a problem fundamental to medical imaging, specifically the comparison over time of mammograms. The method is based on the non-emergence and non-enhancement of maxima, as well as the causality principle of integral invariant scale space. The core idea of our Region Matching Algorithm (RMA) is to divide a shape into a number of “salient” regions and then to compare all such regions for local similarity in order to quantitatively identify new growths or partial/complete occlusions. The algorithm has several advantages over commonly used methods for shape comparison of segmented regions. First, it provides improved key-point alignment for optimal shape correspondence. Second, it identifies localized changes such as new growths as well as complete/partial occlusion in corresponding regions by dividing the segmented region into sub-regions based upon the extrema that persist over a sufficient range of scales. Third, the algorithm does not depend upon the spatial locations of mammographic features and eliminates the need for registration to identify salient changes over time. Finally, the algorithm is fast to compute and requires no human intervention. We apply the method to temporal pairs of mammograms in order to detect potentially important differences between them

    Differential and Statistical Approach to Partial Model Matching

    Get PDF
    Partial model matching approaches are important to target recognition. In this paper, aiming at a 3D model, a novel solution utilizing Gaussian curvature and mean curvature to represent the inherent structure of a spatial shape is proposed. Firstly, a Point-Pair Set is constructed by means of filtrating points with a similar inherent characteristic in the partial surface. Secondly, a Triangle-Pair Set is demonstrated after locating the spatial model by asymmetry triangle skeleton. Finally, after searching similar triangles in a Point-Pair Set, optimal transformation is obtained by computing the scoring function in a Triangle-Pair Set, and optimal matching is determined. Experiments show that this algorithm is suitable for partial model matching. Encouraging matching efficiency, speed, and running time complexity to irregular models are indicated in the study

    Multi-scale and multi-spectral shape analysis: from 2d to 3d

    Get PDF
    Shape analysis is a fundamental aspect of many problems in computer graphics and computer vision, including shape matching, shape registration, object recognition and classification. Since the SIFT achieves excellent matching results in 2D image domain, it inspires us to convert the 3D shape analysis to 2D image analysis using geometric maps. However, the major disadvantage of geometric maps is that it introduces inevitable, large distortions when mapping large, complex and topologically complicated surfaces to a canonical domain. It is demanded for the researchers to construct the scale space directly on the 3D shape. To address these research issues, in this dissertation, in order to find the multiscale processing for the 3D shape, we start with shape vector image diffusion framework using the geometric mapping. Subsequently, we investigate the shape spectrum field by introducing the implementation and application of Laplacian shape spectrum. In order to construct the scale space on 3D shape directly, we present a novel idea to solve the diffusion equation using the manifold harmonics in the spectral point of view. Not only confined on the mesh, by using the point-based manifold harmonics, we rigorously derive our solution from the diffusion equation which is the essential of the scale space processing on the manifold. Built upon the point-based manifold harmonics transform, we generalize the diffusion function directly on the point clouds to create the scale space. In virtue of the multiscale structure from the scale space, we can detect the feature points and construct the descriptor based on the local neighborhood. As a result, multiscale shape analysis directly on the 3D shape can be achieved
    • …
    corecore