
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 249847, 8 pages
http://dx.doi.org/10.1155/2013/249847

Research Article
Differential and Statistical Approach to Partial Model Matching

Kehua Guo, Yongling Liu, and Guihua Duan

School of Information Science and Engineering, Central South University, Changsha 410083, China

Correspondence should be addressed to Kehua Guo; guokehua@csu.edu.cn

Received 2 December 2012; Accepted 23 December 2012

Academic Editor: Sheng-Yong Chen

Copyright © 2013 Kehua Guo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Partialmodelmatching approaches are important to target recognition. In this paper, aiming at a 3Dmodel, a novel solutionutilizing
Gaussian curvature andmean curvature to represent the inherent structure of a spatial shape is proposed. Firstly, a Point-Pair Set is
constructed bymeans of filtrating points with a similar inherent characteristic in the partial surface. Secondly, a Triangle-Pair Set is
demonstrated after locating the spatial model by asymmetry triangle skeleton. Finally, after searching similar triangles in a Point-
Pair Set, optimal transformation is obtained by computing the scoring function in a Triangle-Pair Set, and optimal matching is
determined. Experiments show that this algorithm is suitable for partial model matching. Encouraging matching efficiency, speed,
and running time complexity to irregular models are indicated in the study.

1. Introduction

Partial model matching has important applications in many
cases such as the vision registration for automatic 3D models
[1–3], content-based image retrieval from image database [4],
assembly and restoration for fractured object [5], docking
of proteins in molecular biology [6], and other applications.
During the past decade, the problem of finding a partial
match between models attracted considerable attention. In
many cases, models may be only partially visible because the
occlusion or the sensor usually cannot scan all the data, so
the goal of partial model matching is to find a transformation
of the sample model to overlap a large portion of the object
model.

This paper focuses on the research of a 3D partial model
matching. In 3D space, the models can be represented as
3D surfaces. Therefore, finding a Euclidean geometry rigid
transformation of the sample surface to overlap a large
portion of the object surface is the goal of 3D partial model
matching. In recent years, there has been lots of research on
3D partial surface matching. The literature [7, 8] proposed
a scoring schema for 3D partial surface matching, but this
paper did not demonstrate a universal and high-efficiency
algorithm for the constructing of a scoring factor. The
literature [9] proposed an approach based on the Hausdorff
and Frehet distance for geometry structure matching. This

approach can be well applied in the matching of points and
line segments set, but it is unstable and cannot perform well
in the presence of noise, occlusion, and clutter. The literature
[10] proposed a scoring schema for matching algorithm
to a 3D incomplete object. The literature [11–13] proposed
some matching algorithm using differential geometry to 3D
partial surface matching. In addition, statistical descriptors
[14], probabilistic framework [15], and curve analysis [16]
were also applied to the recognition of 3D partial surface;
these approaches indicated encouraging matching results for
3D points, line segments set, and mesh model; however,
they would suffer from high computing complexity. It is
worth mentioning that partial model matching has been
successfully applied in video processing [17, 18].

Our work is motivated by the technique of scoring
schema and statistical approaches. This technique, which
uses the so-called scoring-function method, was originally
introduced for 3D partial surface and volumetric matching.
This idea has been applied in some pattern recognition
problem [19] and achieved good results. The work proposed
in this paper has been partly published in an international
conference [20]. Here is a brief sketch of our algorithm.

(1) Represent the inherent characteristic of points in
sample and object surface utilizing differential geom-
etry method.
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(2) Classify point pair with a similar inherent character-
istic form sample and object surface.

(3) Classify triangle pair with a similar shape feature
and inherent characteristic based on point pairs and
compute the geometry rigid transformation for every
triangle pair.

(4) Use scoring function to measure the goodness of
every transformation through applying it to other
triangle pairs.

(5) Determine the optimal transformation with score of
every transformation.

Experimental results show that our technique is most
successful for the matching of irregular object surface.
Encouraging matching efficiency, speed, and running time
complexity to irregular models are indicated.

2. Compute and Store the Curvature

2.1. Represent the Spatial Surface Using Gaussian and Mean
Curvature. According to differential geometry principle, cur-
vature is the inherent characteristic of a spatial surface.There-
fore, Gaussian curvature and mean curvature are employed
for the representation of spatial surface in this paper.

In 3DEuclidean space, given a parametric surface defined
as

𝑆 (𝑥, 𝑦) = [𝑥𝑦𝑓 (𝑥, 𝑦)]𝑇, (𝑥, 𝑦) ∈ 𝐷, (1)

where𝑋-𝑌 is the reference plane in 3D space,𝐷 is projection
region of the surface to𝑋-𝑌 plane, and𝑓(𝑥, 𝑦) represents the
distance from the surface to point (𝑥, 𝑦) in𝑋-𝑌 plane.

Gaussian curvature 𝐾 and mean curvature 𝐻 can be
computed according to the following formulas [18]:

𝐾 = 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓2𝑥𝑦
(1 + 𝑓2𝑥 + 𝑓2𝑦)2 ,

𝐻 = (1 + 𝑓2𝑥) 𝑓𝑦𝑦 + (1 + 𝑓2𝑦) 𝑓𝑥𝑥 − 2𝑓𝑥𝑓𝑦𝑓𝑥𝑦
2(1 + 𝑓2𝑥 + 𝑓2𝑦)3/2 .

(2)

For a digital range image surface, approximations can be
computed by a local polynomial fitting approach, and 𝑛 × 𝑛
operator is usually utilized to the convolution operation with
the original range image:

𝑓𝑥 = 𝐷𝑥 ∗ 𝑓, 𝑓𝑦 = 𝐷𝑦 ∗ 𝑓
𝑓𝑥𝑥 = 𝐷𝑥𝑥 ∗ 𝑓, 𝑓𝑥𝑦 = 𝐷𝑥𝑦 ∗ 𝑓, 𝑓𝑦𝑦 = 𝐷𝑦𝑦 ∗ 𝑓,

(3)

where 𝐷 is 𝑛 × 𝑛 operator. For 𝑛 = 7, the parameters can be
computed as follows:

𝐷𝑥 = 𝑑0𝑑𝑇1 , 𝐷𝑦 = 𝑑1𝑑𝑇0 ,
𝐷𝑥𝑥 = 𝑑0𝑑𝑇2 , 𝐷𝑦𝑦 = 𝑑2𝑑𝑇0 , 𝐷𝑥𝑦 = 𝑑1𝑑𝑇1
𝑑0 = 17[1 1 1 1 1 1 1]𝑇
𝑑1 = 128[−3 −2 −1 0 1 2 3]𝑇
𝑑2 = 184[5 0 −3 −4 −3 0 5]𝑇,

(4)

where 𝑑0, 𝑑1, and 𝑑2 are column vectors for window operator
computing.

2.2. Generate the Point-Pair Set. After presenting the acquisi-
tion of Gaussian curvature 𝐾 and mean curvature 𝐻, in our
algorithm, point pairs with similar curvature from sample
and object surface will be classified, and then the point pairs
will be stored into a Point-Pair Set. In order to measure
the similarity between two points from sample and object
surface, the definition of curvature distance is introduced as
follows:

Definition 1. ∀𝑝1𝑖 ∈ 𝑆1, 𝑝2𝑗 ∈ 𝑆2, curvature distance DC
between point 𝑝1𝑖 , 𝑝2𝑗 is
DC (𝑝1𝑖 , 𝑝2𝑗)

= 12 × ( 󵄨󵄨󵄨󵄨󵄨𝐾 (𝑝1𝑖 ) − 𝐾 (𝑝2𝑗)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐾 (𝑝1𝑖 )󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝐾 (𝑝2𝑗)󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨𝐻 (𝑝1𝑖 ) − 𝐻(𝑝2𝑗)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐻 (𝑝1𝑖 )󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝐻 (𝑝2𝑗)󵄨󵄨󵄨󵄨󵄨) .

(5)

However, in many cases, a lot of plane points, whose
Gaussian curvature and mean curvature are zero, can exist in
the surface. They cannot contribute to the matching but will
occupy large computing and reduce the matching efficiency,
even lead to an errormatching. So that these plane points will
be discarded before matching.

Definition 2. A Point-Pair Set named PS is a set defined as

PS = {(𝑝1𝑖 , 𝑝2𝑗) | 𝑝1𝑖 ∈ 𝑆1, 𝑝2𝑗 ∈ 𝑆2,
DC (𝑝1𝑖 , 𝑝2𝑗) ⟨𝜀𝑐, 󵄨󵄨󵄨󵄨󵄨𝐾 (𝑝1𝑖 )󵄨󵄨󵄨󵄨󵄨⟩ 𝜎}

𝜀𝑐 = max (DC (𝑝1𝑖 , 𝑝2𝑗)) +min (𝐷𝐶 (𝑝1𝑖 , 𝑝2𝑗))2
𝜎 = 1𝑛 ( 𝑛∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨𝐾 (𝑝1𝑖 )󵄨󵄨󵄨󵄨󵄨) .

(6)

Where 𝜀𝑐 is an average threshold to guarantee the similarity
of𝑝1𝑖 and𝑝2𝑗 ,𝜎 is to discard plane points, and𝑁 is the number
of the points.
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The cardinality of PS could be large in special cases. For
instance, cardinality of PS will be |𝑆1| × |𝑆2| when the sample
and object surface are congruent sphere surface. A large
Point-Pair Set will occupy a large amount of the storage space.
Considering the quantity of curvature categories cannot
exceed the quantity of pixel points in surface, a list can be
employed to store the set.

3. Match Algorithm

3.1. Measure Similarity for Spatial Triangles. In order to
perform the matching, the further work is to separately seek
two asymmetrical triangles with similar shape features from
the sample and object surface, and then we will design a
set named “Triangle-Pair Set” to store these triangle pairs. A
plane can be determined by three spatial points, so the asym-
metrical triangle can be employed as the skeleton to uniquely
confirm the location of a spatial surface. Therefore, we
arbitrarily select three points from the object surface to form
an asymmetrical triangle and then seek three corresponding
points from sample surface to form another asymmetrical
triangle, whose features of corresponding vertices and edges
are similar to the previous triangle. The similarity of space
triangles is measured by the definition as follows.

Definition 3. Consider ∀(𝑝11 , 𝑝21), (𝑝11 , 𝑝21), (𝑝11 , 𝑝21) ∈ PS,|𝑝𝑚1 𝑝𝑚2 | < |𝑝𝑚1 𝑝𝑚3 | < |𝑝𝑚2 𝑝𝑚3 |,𝑚 ∈ {1, 2}. The similar distance
between Δ𝑝11𝑝12𝑝13 and Δ𝑝21𝑝22𝑝23 is

DT = 13 × ∑
1≤𝑖<𝑗≤3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝1𝑖 𝑝1𝑗 󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨𝑝2𝑖 𝑝2𝑗 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝1𝑖 𝑝1𝑗 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑝2𝑖 𝑝2𝑗 󵄨󵄨󵄨󵄨󵄨 . (7)

The absolute distance between Δ𝑝11𝑝12𝑝13 and Δ𝑝21𝑝22𝑝23 is
DA = 2 × ∑3𝑖=1 󵄨󵄨󵄨󵄨󵄨𝑝1𝑖 𝑝2𝑖 󵄨󵄨󵄨󵄨󵄨∑31≤𝑖<𝑗≤3 (󵄨󵄨󵄨󵄨󵄨𝑝1𝑖 𝑝1𝑗 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑝2𝑖 𝑝2𝑗 󵄨󵄨󵄨󵄨󵄨) . (8)

3.2. Compute Geometry Rigid Transformation. Suppose thatΔ𝑝11𝑝12𝑝13 and Δ𝑝21𝑝22𝑝23 are two similar asymmetrical trian-
gles, (𝑝1𝑖 , 𝑝2𝑖 ), and 𝑖 ∈ {1, 2, 3} are corresponding points,
we represent the transformation 𝑇 between Δ𝑝11𝑝12𝑝13 andΔ𝑝21𝑝22𝑝23 into a translation transformation 𝑁 and a rotation
transformation 𝐴:

𝑇 (Δ𝑝1𝑝2𝑝3) = 𝐴 [𝑝1 𝑝2 𝑝3] + 𝑁, (9)

where 𝐴 = (𝑛1𝑛2𝑛3)𝑇 is a rotation matrix and 𝑁 is a
translation matrix.

We firstly shift the triangle centers to the origin of
coordinate, so the transformation 𝑇 satisfies

⌊𝑝21 𝑝22 𝑝23⌋ − 𝑁2 = 𝐴 (⌊𝑝11 𝑝12 𝑝13⌋ − 𝑁1) , (10)

where 𝑁1, 𝑁2 is the center location matrix of Δ𝑝11𝑝12𝑝13 andΔ𝑝21𝑝22𝑝23 .

Therefore, rotation matrix can be deduced as in the
following formula:

𝐴 = (⌊𝑝21 𝑝22 𝑝23⌋ − 𝑁2) (⌊𝑝11 𝑝12 𝑝13⌋ − 𝑁1)−1. (11)

3.3. Generate Triangle-Pair Set. Similar triangle pairs from
two surfaces will be stored in Triangle-Pair Set defined as
follows:

Definition 4. A Triangle-Pair Set named TS is a set

TS = {(Δ𝑝11𝑝12𝑝13 , Δ𝑝21𝑝22𝑝23 , 𝑇) | (𝑝1𝑖 𝑝2𝑖 ) ∈ PS,DT < 𝜀𝑡}
𝜀𝑡 = max (DT) +min (DT)2 ,

(12)

where 𝜀𝑡 is an average threshold to guarantee the similarity
of Δ𝑝11𝑝12𝑝13 and Δ𝑝21𝑝22𝑝23 . 𝑇 is the transformation fromΔ𝑝21𝑝22𝑝23 to Δ𝑝11𝑝12𝑝13 . So we can design the logic structure
of Triangle-Pair Set as Figure 1.

3.4. DetermineOptimal Transformation. Thevalidity of every
transformation will be tested through applying it to every
other triangle pair in TS. For a specified transformation 𝑇0
in PS, we define the scoring function as follows:

Score (𝑇0) = ∑𝑆 (Δ𝑝11𝑝12𝑝13 , 𝑝21𝑝22𝑝23 , 𝑇0) . (13)

Consider (Δ𝑝11𝑝12𝑝13 , Δ𝑝21𝑝22𝑝23) is an arbitrary similar
triangle pair in PS, and function 𝑆 is defined as follows:

𝑆 (Δ𝑝11𝑝12𝑝13 , Δ𝑝21𝑝22𝑝23 , 𝑇0)
= {1 DA (𝑇0 (Δ𝑝11𝑝12𝑝13) , Δ𝑝21𝑝22𝑝23) < 𝜀𝑎0 others

𝜀𝑎 = max (DA) +min (DA)2 ,
(14)

where 𝜀𝑎 is an average threshold to determine whetherΔ𝑝11𝑝12𝑝13 can be transformed to Δ𝑝21𝑝22𝑝23 by 𝑇0. An optimal
transformation𝑇𝑃 is the transformationwithmaximumscore
satisfying

Score (𝑇𝑃) = max (Score (𝑇)) , (15)

where 𝑇 is an arbitrary transformation in TS.

4. Experimental Results and
Complexity Analysis

4.1. Detect Partially Occluded Object. The goal of the first
experiment is to detect the partially occluded object from a
range image using the algorithm proposed in this paper. The
image data is established referred to [21].

In Figures 2(a) and 2(b), two original objects (Duck and
Venusm) in 3D space are demonstrated, and the surface is
formed by pixel points.
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Figure 1: Logic structure of the Triangle-Pair Set.

(a) Original object (b) 3D model of original object

(c) Duck is partially
occluded

(d) 3D model of the scene

Figure 2: Two 3D original and partially occluded models.
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(a) Optimal triangle in original
object

p2
1

p2
2

p2
3

(b) Optimal triangle in occluded
object

(c) Reconstruction
result to occluded
object

Figure 3: Detect partially occluded object.
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(a) Surface 1 (b) Surface 2

Figure 4: Two partially similar surfaces.

p1
1

p1
2

p1
3

(a) Optimal triangle in surface 1

P 2
3

p2
1

p2
2

(b) Optimal triangle in surface 2

(c) Matching and reconstruction result

Figure 5: Partial surface matching of two similar surfaces.

Table 1: Parameters and computing results.

Pixel point quantity Duck: 9253
Venusm: 27595

Triangle pair for optimal transformation
𝑝11(125, 23, −15)𝑝12(72, 4, −10)𝑝13(68, −71, −23)

𝑝21(132, 5, 98)𝑝22(83, −18, 108)𝑝23(76, −89, 82)
Transformation 𝐴 = [[

[
1.2984 −0.6040 −0.6944−0.6401 1.2802 −0.6401−0.6583 −0.6763 1.3345

]]
]
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Figure 6: Classification rate when Gaussian noise increases.

Table 2: Parameters and computing result.

Pixel point quantity Object 1: 1215
Object 2: 1452

Triangle pair for optimal transformation
𝑝11(10, −5, 87)𝑝12(8, −21, 42)𝑝13(29, −17, 32)

𝑝21(12, −69, 18)𝑝22(25, −31, 32)𝑝23(92, −43, 28)
Transformation 𝐴 = [[

[
0.1028 1.7571 −1.8599−0.2024 1.1216 −0.91910.0996 −2.8787 2.7791

]]
]

Table 3: Performance comparison of some algorithms.

Algorithm Running time (ms)
Sphere surface Surface in Figure 3

Algorithm in this paper 2635 758
Algorithm in [9] 1932 2575
Algorithm in [10] 2956 3548
Algorithm in [11] 1562 1652
Algorithm in [14] 1457 1238
Algorithm in [16] 3187 4572

In Figure 2(c), the Duck is partially occluded by the
Venusm. In order to find the location of the occluded object
(Duck) in the 3D scene, we must compute an optimal trans-
formation from the scene to the occluded object, then apply
the transformation to the occluded object and reconstruct it
in the 3D scene in Figure 2(d).

In this experimentation, the computing results are
demonstrated in Table 1.

Optimal triangle in original object is demonstrated in
Figure 3(a), and the optimal triangle in occluded object is
illustrated in Figure 3(b). According to the result in Table 1,
we apply the transformation to original object. The recon-
struction result is shown in Figure 3(c).

4.2. Partial Surface Matching for Two Similar Objects. The
second experimentation demonstrates our algorithm applied
in a universal case. The two surfaces are partially similar, and
the goal is to find a transformation to match the most similar
part of the two surfaces.

The two surfaces with missing data in Figures 4(a) and
4(b) are generated by a Matlab function. In order to match
the most similar part of the two surfaces, an optimal trans-
formation from surface 1 to surface 2 needs to be computed.

The computing results in this experimentation are
demonstrated in Table 2.

Optimal triangle in surface 1 is demonstrated in
Figure 5(a), and the optimal triangle in surface 2 is illustrated
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in Figure 5(b). According to the results shown in Table 2, the
transformation is applied to surface 1 and the matching and
reconstruction result is demonstrated in Figure 5(c).

4.3. Complexity Analysis. Suppose that the two input sets
have comparable sizes, we measure the computing complex-
ity of the algorithm as a function of 𝑁 (the cardinality of
the input sets); 𝑘 is the size of Point-Pair Set. Computing
the curvature of every point takes 𝑂(𝑁) time. Preparing the
Point-Pair Set can be executed with expected 𝑂(𝑁 log𝑁)
running time because we can sort the points based on
curvature. In addition, seeking triangle pairs, computing
and testing transformation based on Point-Pair Set will cost𝑂(𝑘3) running time. In total, the running time of the whole
algorithm is 𝑂(𝑁 + 𝑁 log𝑁 + 𝑘3).

Obviously, the computing efficiency ismainly determined
by the size of Point-Pair Set 𝑘. The quantity of point pairs
will be smaller when the surface processes many different
curvatures; in this case, our algorithm will cost less time at
this time. So our algorithm is very suitable for the matching
of irregular objects.

In order to explicitly describe the performance of our
algorithm, we perform experimentations for objects with
different shapes. Running times of some algorithms for 𝑁 =900 are demonstrated in Table 3 (CPU: PIV2.0GHZ, RAM:
1GB, Software: MATLAB 7.0).

We can see from Table 3 that our algorithm cannot indi-
cate an encouraging matching efficiency for regular objects
such as sphere surfaces.

4.4. Noise Robustness. The proposed work depends crucially
on the Gaussian curvature and means curvature compu-
tation, which is notoriously sensitive to noise and local
perturbation. In order to analyze the affection of noise to the
match results, we perform an experimentation to verify the
noise robustness of this algorithm. In this experimentation,
we generate 100 similar surfaces by Matlab function, and
Gaussian noise (𝑁(0, 𝜎)) is added to each image in the
database and 𝜎 changes from 0mm to 2.0mm. We design
the classification rate to represent the percentage of correct
matching quantity in the database; the classification rates are
shown in Figure 6 for various 𝜎 values.

The result shows that the algorithm in this paper does
not have good noisy robustness. At present, our approach
can get encouraging matching efficiency and running time
complexity in case of high signal to noise ratio.Therefore, the
future work will concentrate on this problem.

5. Conclusion

In this paper, an approach for solving the 3D partial model
matching is proposed. Firstly we utilize Gaussian curvature
and mean curvature to represent the two object surfaces.
Then curvature distance is defined to classify the point pair
with similar curvature, and Point-Pair Set is employed to
store point pairs. Secondly, we classify triangle pair with sim-
ilar shape features from the two surfaces based on Point-Pair
Set, similar distance is employed to measure the similarity

of two triangles, and then the Triangle-Pair Set is generated.
Finally, absolute distance and score function are proposed
for measuring the goodness of a given transformation in
Triangle-Pair Set, and a successful matching is determined
based on the score of optimal transformation between the
objects. Experimental results indicated our algorithm can be
suitable for the matching of natural objects.

However, the efficiency of this approach would be
reduced when the shape is regular and the robustness to
noise is not very good. In future work, we will plan to
explore several improvements of the algorithm, including the
improvement of noise robustness, design of better distance
definition, experimentationwith other scoring functions, and
further study of statistical approaches.
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