6,448 research outputs found

    Confluence Detection for Transformations of Labelled Transition Systems

    Get PDF
    The development of complex component software systems can be made more manageable by first creating an abstract model and then incrementally adding details. Model transformation is an approach to add such details in a controlled way. In order for model transformation systems to be useful, it is crucial that they are confluent, i.e. that when applied on a given model, they will always produce a unique output model, independent of the order in which rules of the system are applied on the input. In this work, we consider Labelled Transition Systems (LTSs) to reason about the semantics of models, and LTS transformation systems to reason about model transformations. In related work, the problem of confluence detection has been investigated for general graph structures. We observe, however, that confluence can be detected more efficiently in special cases where the graphs have particular structural properties. In this paper, we present a number of observations to detect confluence of LTS transformation systems, and propose both a new confluence detection algorithm and a conflict resolution algorithm based on them.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    A Decidable Confluence Test for Cognitive Models in ACT-R

    Full text link
    Computational cognitive modeling investigates human cognition by building detailed computational models for cognitive processes. Adaptive Control of Thought - Rational (ACT-R) is a rule-based cognitive architecture that offers a widely employed framework to build such models. There is a sound and complete embedding of ACT-R in Constraint Handling Rules (CHR). Therefore analysis techniques from CHR can be used to reason about computational properties of ACT-R models. For example, confluence is the property that a program yields the same result for the same input regardless of the rules that are applied. In ACT-R models, there are often cognitive processes that should always yield the same result while others e.g. implement strategies to solve a problem that could yield different results. In this paper, a decidable confluence criterion for ACT-R is presented. It allows to identify ACT-R rules that are not confluent. Thereby, the modeler can check if his model has the desired behavior. The sound and complete translation of ACT-R to CHR from prior work is used to come up with a suitable invariant-based confluence criterion from the CHR literature. Proper invariants for translated ACT-R models are identified and proven to be decidable. The presented method coincides with confluence of the original ACT-R models.Comment: To appear in Stefania Costantini, Enrico Franconi, William Van Woensel, Roman Kontchakov, Fariba Sadri, and Dumitru Roman: "Proceedings of RuleML+RR 2017". Springer LNC

    Justifications in Constraint Handling Rules for Logical Retraction in Dynamic Algorithms

    Full text link
    We present a straightforward source-to-source transformation that introduces justifications for user-defined constraints into the CHR programming language. Then a scheme of two rules suffices to allow for logical retraction (deletion, removal) of constraints during computation. Without the need to recompute from scratch, these rules remove not only the constraint but also undo all consequences of the rule applications that involved the constraint. We prove a confluence result concerning the rule scheme and show its correctness. When algorithms are written in CHR, constraints represent both data and operations. CHR is already incremental by nature, i.e. constraints can be added at runtime. Logical retraction adds decrementality. Hence any algorithm written in CHR with justifications will become fully dynamic. Operations can be undone and data can be removed at any point in the computation without compromising the correctness of the result. We present two classical examples of dynamic algorithms, written in our prototype implementation of CHR with justifications that is available online: maintaining the minimum of a changing set of numbers and shortest paths in a graph whose edges change.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    CHR(PRISM)-based Probabilistic Logic Learning

    Full text link
    PRISM is an extension of Prolog with probabilistic predicates and built-in support for expectation-maximization learning. Constraint Handling Rules (CHR) is a high-level programming language based on multi-headed multiset rewrite rules. In this paper, we introduce a new probabilistic logic formalism, called CHRiSM, based on a combination of CHR and PRISM. It can be used for high-level rapid prototyping of complex statistical models by means of "chance rules". The underlying PRISM system can then be used for several probabilistic inference tasks, including probability computation and parameter learning. We define the CHRiSM language in terms of syntax and operational semantics, and illustrate it with examples. We define the notion of ambiguous programs and define a distribution semantics for unambiguous programs. Next, we describe an implementation of CHRiSM, based on CHR(PRISM). We discuss the relation between CHRiSM and other probabilistic logic programming languages, in particular PCHR. Finally we identify potential application domains

    Data-Structure Rewriting

    Full text link
    We tackle the problem of data-structure rewriting including pointer redirections. We propose two basic rewrite steps: (i) Local Redirection and Replacement steps the aim of which is redirecting specific pointers determined by means of a pattern, as well as adding new information to an existing data ; and (ii) Global Redirection steps which are aimed to redirect all pointers targeting a node towards another one. We define these two rewriting steps following the double pushout approach. We define first the category of graphs we consider and then define rewrite rules as pairs of graph homomorphisms of the form "L R". Unfortunately, inverse pushouts (complement pushouts) are not unique in our setting and pushouts do not always exist. Therefore, we define rewriting steps so that a rewrite rule can always be performed once a matching is found

    Conflict Detection for Edits on Extended Feature Models using Symbolic Graph Transformation

    Full text link
    Feature models are used to specify variability of user-configurable systems as appearing, e.g., in software product lines. Software product lines are supposed to be long-living and, therefore, have to continuously evolve over time to meet ever-changing requirements. Evolution imposes changes to feature models in terms of edit operations. Ensuring consistency of concurrent edits requires appropriate conflict detection techniques. However, recent approaches fail to handle crucial subtleties of extended feature models, namely constraints mixing feature-tree patterns with first-order logic formulas over non-Boolean feature attributes with potentially infinite value domains. In this paper, we propose a novel conflict detection approach based on symbolic graph transformation to facilitate concurrent edits on extended feature models. We describe extended feature models formally with symbolic graphs and edit operations with symbolic graph transformation rules combining graph patterns with first-order logic formulas. The approach is implemented by combining eMoflon with an SMT solver, and evaluated with respect to applicability.Comment: In Proceedings FMSPLE 2016, arXiv:1603.0857
    corecore