5,502 research outputs found

    Conflicting Congestion Effects in Resource Allocation Games

    Full text link

    Efficiency analysis of load balancing games with and without activation costs

    Get PDF
    In this paper, we study two models of resource allocation games: the classical load-balancing game and its new variant involving resource activation costs. The resources we consider are identical and the social costs of the games are utilitarian, which are the average of all individual players' costs. Using the social costs we assess the quality of pure Nash equilibria in terms of the price of anarchy (PoA) and the price of stability (PoS). For each game problem, we identify suitable problem parameters and provide a parametric bound on the PoA and the PoS. In the case of the load-balancing game, the parametric bounds we provide are sharp and asymptotically tight

    Resource allocation games of various social objectives

    Get PDF
    In this paper, we study resource allocation games of two different cost components for individual game players and various social costs. The total cost of each individual player consists of the congestion cost, which is the same for all players sharing the same resource, and resource activation cost, which is proportional to the individual usage of the resource. The social costs we consider are, respectively, the total of costs of all players and the maximum congestion cost plus total resource activation cost. Using the social costs we assess the quality of Nash equilibria in terms of the price of anarchy (PoA) and the price of stability (PoS). For each problem, we identify one or two problem parameters and provide parametric bounds on the PoA and PoS. We show that they are unbounded in general if the parameter involved are not restricted

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Applications of Negotiation Theory to Water Issues

    Get PDF
    The purpose of the paper is to review the applications of non-cooperative bargaining theory to water related issues – which fall in the category of formal models of negotiation. The ultimate aim is that to, on the one hand, identify the conditions under which agreements are likely to emerge, and their characteristics; and, on the other hand, to support policy makers in devising the “rules of the game” that could help obtain a desired result. Despite the fact that allocation of natural resources, especially of trans-boundary nature, has all the characteristics of a negotiation problem, there are not many applications of formal negotiation theory to the issue. Therefore, this paper first discusses the non-cooperative bargaining models applied to water allocation problems found in the literature. Particular attention will be given to those directly modelling the process of negotiation, although some attempts at finding strategies to maintain the efficient allocation solution will also be illustrated. In addition, this paper will focus on Negotiation Support Systems (NSS), developed to support the process of negotiation. This field of research is still relatively new, however, and NSS have not yet found much use in real life negotiation. The paper will conclude by highlighting the key remaining gaps in the literature.Negotiation theory, Water, Agreeements, Stochasticity, Stakeholders

    Smoothed Efficient Algorithms and Reductions for Network Coordination Games

    Get PDF
    Worst-case hardness results for most equilibrium computation problems have raised the need for beyond-worst-case analysis. To this end, we study the smoothed complexity of finding pure Nash equilibria in Network Coordination Games, a PLS-complete problem in the worst case. This is a potential game where the sequential-better-response algorithm is known to converge to a pure NE, albeit in exponential time. First, we prove polynomial (resp. quasi-polynomial) smoothed complexity when the underlying game graph is a complete (resp. arbitrary) graph, and every player has constantly many strategies. We note that the complete graph case is reminiscent of perturbing all parameters, a common assumption in most known smoothed analysis results. Second, we define a notion of smoothness-preserving reduction among search problems, and obtain reductions from 22-strategy network coordination games to local-max-cut, and from kk-strategy games (with arbitrary kk) to local-max-cut up to two flips. The former together with the recent result of [BCC18] gives an alternate O(n8)O(n^8)-time smoothed algorithm for the 22-strategy case. This notion of reduction allows for the extension of smoothed efficient algorithms from one problem to another. For the first set of results, we develop techniques to bound the probability that an (adversarial) better-response sequence makes slow improvements on the potential. Our approach combines and generalizes the local-max-cut approaches of [ER14,ABPW17] to handle the multi-strategy case: it requires a careful definition of the matrix which captures the increase in potential, a tighter union bound on adversarial sequences, and balancing it with good enough rank bounds. We believe that the approach and notions developed herein could be of interest in addressing the smoothed complexity of other potential and/or congestion games
    • 

    corecore