42 research outputs found

    Generalisation : graphs and colourings

    Get PDF
    The interaction between practice and theory in mathematics is a central theme. Many mathematical structures and theories result from the formalisation of a real problem. Graph Theory is rich with such examples. The graph structure itself was formalised by Leonard Euler in the quest to solve the problem of the Bridges of Königsberg. Once a structure is formalised, and results are proven, the mathematician seeks to generalise. This can be considered as one of the main praxis in mathematics. The idea of generalisation will be illustrated through graph colouring. This idea also results from a classic problem, in which it was well known by topographers that four colours suffice to colour any map such that no countries sharing a border receive the same colour. The proof of this theorem eluded mathematicians for centuries and was proven in 1976. Generalisation of graphs to hypergraphs, and variations on the colouring theme will be discussed, as well as applications in other disciplines.peer-reviewe

    Conflict-free coloring of graphs

    Full text link
    We study the conflict-free chromatic number chi_{CF} of graphs from extremal and probabilistic point of view. We resolve a question of Pach and Tardos about the maximum conflict-free chromatic number an n-vertex graph can have. Our construction is randomized. In relation to this we study the evolution of the conflict-free chromatic number of the Erd\H{o}s-R\'enyi random graph G(n,p) and give the asymptotics for p=omega(1/n). We also show that for p \geq 1/2 the conflict-free chromatic number differs from the domination number by at most 3.Comment: 12 page

    Density of Range Capturing Hypergraphs

    Full text link
    For a finite set XX of points in the plane, a set SS in the plane, and a positive integer kk, we say that a kk-element subset YY of XX is captured by SS if there is a homothetic copy S′S' of SS such that X∩S′=YX\cap S' = Y, i.e., S′S' contains exactly kk elements from XX. A kk-uniform SS-capturing hypergraph H=H(X,S,k)H = H(X,S,k) has a vertex set XX and a hyperedge set consisting of all kk-element subsets of XX captured by SS. In case when k=2k=2 and SS is convex these graphs are planar graphs, known as convex distance function Delaunay graphs. In this paper we prove that for any k≥2k\geq 2, any XX, and any convex compact set SS, the number of hyperedges in H(X,S,k)H(X,S,k) is at most (2k−1)∣X∣−k2+1−∑i=1k−1ai(2k-1)|X| - k^2 + 1 - \sum_{i=1}^{k-1}a_i, where aia_i is the number of ii-element subsets of XX that can be separated from the rest of XX with a straight line. In particular, this bound is independent of SS and indeed the bound is tight for all "round" sets SS and point sets XX in general position with respect to SS. This refines a general result of Buzaglo, Pinchasi and Rote stating that every pseudodisc topological hypergraph with vertex set XX has O(k2∣X∣)O(k^2|X|) hyperedges of size kk or less.Comment: new version with a tight result and shorter proo
    corecore