We study the conflict-free chromatic number chi_{CF} of graphs from extremal
and probabilistic point of view. We resolve a question of Pach and Tardos about
the maximum conflict-free chromatic number an n-vertex graph can have. Our
construction is randomized. In relation to this we study the evolution of the
conflict-free chromatic number of the Erd\H{o}s-R\'enyi random graph G(n,p) and
give the asymptotics for p=omega(1/n). We also show that for p \geq 1/2 the
conflict-free chromatic number differs from the domination number by at most 3.Comment: 12 page