31,514 research outputs found

    Conflict Detection in Call Control using First-Order Logic Model Checking

    Get PDF
    Feature interaction detection methods, whether online or offline, depend on previous knowledge of conflicts between the actions executed by the features. This knowledge is usually assumed to be given in the application domain. A method is proposed for identifying potential conflicts in call control actions, based on analysis of their pre/post-conditions. First of all, pre/postconditions for call processing actions are defined. Then, conflicts among the pre/post-conditions are defined. Finally, action conflicts are identified as a result of these conflicts. These cover several possibilities where the actions could be simultaneous or sequential. A first-order logic model-checking tool is used for automated conflict detection. As a case study, the APPEL call control language is used to illustrate the approach, with the Alloy tool serving as the model checker for automated conflict detection. This case study focuses on pre/post-conditions describing call control state and media state. The results of the method are evaluated by a domain expert with pragmatic understanding of the system’s behavior. The method, although computationally expensive, is fairly general and can be used to study conflicts in other domains

    Static and Dynamic Detection of Behavioral Conflicts Between Aspects

    Get PDF
    Aspects have been successfully promoted as a means to improve the modularization of software in the presence of crosscutting concerns. The so-called aspect interference problem is considered to be one of the remaining challenges of aspect-oriented software development: aspects may interfere with the behavior of the base code or other aspects. Especially interference between aspects is difficult to prevent, as this may be caused solely by the composition of aspects that behave correctly in isolation. A typical situation where this may occur is when multiple advices are applied at a shared, join point.\ud In [1] we explained the problem of behavioral conflicts between aspects at shared join points. We presented an approach for the detection of behavioral conflicts. This approach is based on a novel abstraction model for representing the behavior of advice. This model allows the expression of both primitive and complex behavior in a simple manner. This supports automatic conflict detection. The presented approach employs a set of conflict detection rules, which can be used to detect generic, domain specific and application specific conflicts. The approach is implemented in Compose*, which is an implementation of Composition Filters. This application shows that a declarative advice language can be exploited for aiding automated conflict detection.\ud This paper discusses the need for a runtime extension to the described static approach. It also presents a possible implementation approach of such an extension in Compose*. This allows us to reason efficiently about the behavior of aspects. It also enables us to detect these conflicts with minimal overhead at runtime

    Using Event Calculus to Formalise Policy Specification and Analysis

    Get PDF
    As the interest in using policy-based approaches for systems management grows, it is becoming increasingly important to develop methods for performing analysis and refinement of policy specifications. Although this is an area that researchers have devoted some attention to, none of the proposed solutions address the issues of analysing specifications that combine authorisation and management policies; analysing policy specifications that contain constraints on the applicability of the policies; and performing a priori analysis of the specification that will both detect the presence of inconsistencies and explain the situations in which the conflict will occur. We present a method for transforming both policy and system behaviour specifications into a formal notation that is based on event calculus. Additionally it describes how this formalism can be used in conjunction with abductive reasoning techniques to perform a priori analysis of policy specifications for the various conflict types identified in the literature. Finally, it presents some initial thoughts on how this notation and analysis technique could be used to perform policy refinement

    Enhancing a Search Algorithm to Perform Intelligent Backtracking

    Full text link
    This paper illustrates how a Prolog program, using chronological backtracking to find a solution in some search space, can be enhanced to perform intelligent backtracking. The enhancement crucially relies on the impurity of Prolog that allows a program to store information when a dead end is reached. To illustrate the technique, a simple search program is enhanced. To appear in Theory and Practice of Logic Programming. Keywords: intelligent backtracking, dependency-directed backtracking, backjumping, conflict-directed backjumping, nogood sets, look-back.Comment: To appear in Theory and Practice of Logic Programmin

    Interacting via the Heap in the Presence of Recursion

    Full text link
    Almost all modern imperative programming languages include operations for dynamically manipulating the heap, for example by allocating and deallocating objects, and by updating reference fields. In the presence of recursive procedures and local variables the interactions of a program with the heap can become rather complex, as an unbounded number of objects can be allocated either on the call stack using local variables, or, anonymously, on the heap using reference fields. As such a static analysis is, in general, undecidable. In this paper we study the verification of recursive programs with unbounded allocation of objects, in a simple imperative language for heap manipulation. We present an improved semantics for this language, using an abstraction that is precise. For any program with a bounded visible heap, meaning that the number of objects reachable from variables at any point of execution is bounded, this abstraction is a finitary representation of its behaviour, even though an unbounded number of objects can appear in the state. As a consequence, for such programs model checking is decidable. Finally we introduce a specification language for temporal properties of the heap, and discuss model checking these properties against heap-manipulating programs.Comment: In Proceedings ICE 2012, arXiv:1212.345

    A graph-based aspect interference detection approach for UML-based aspect-oriented models

    Get PDF
    Aspect Oriented Modeling (AOM) techniques facilitate separate modeling of concerns and allow for a more flexible composition of these than traditional modeling technique. While this improves the understandability of each submodel, in order to reason about the behavior of the composed system and to detect conflicts among submodels, automated tool support is required. Current techniques for conflict detection among aspects generally have at least one of the following weaknesses. They require to manually model the abstract semantics for each system; or they derive the system semantics from code assuming one specific aspect-oriented language. Defining an extra semantics model for verification bears the risk of inconsistencies between the actual and the verified design; verifying only at implementation level hinders fixng errors in earlier phases. We propose a technique for fully automatic detection of conflicts between aspects at the model level; more specifically, our approach works on UML models with an extension for modeling pointcuts and advice. As back-end we use a graph-based model checker, for which we have defined an operational semantics of UML diagrams, pointcuts and advice. In order to simulate the system, we automatically derive a graph model from the diagrams. The result is another graph, which represents all possible program executions, and which can be verified against a declarative specification of invariants.\ud To demonstrate our approach, we discuss a UML-based AOM model of the "Crisis Management System" and a possible design and evolution scenario. The complexity of the system makes con°icts among composed aspects hard to detect: already in the case of two simulated aspects, the state space contains 623 di®erent states and 9 different execution paths. Nevertheless, in case the right pruning methods are used, the state-space only grows linearly with the number of aspects; therefore, the automatic analysis scales
    corecore