23,549 research outputs found

    Concurrent collaboration in research and development

    Get PDF
    Integration is the essence of current research and development (R&D) activity in many organizations. Integration can be established in various ways depending on the type, size and intricacy in organizational functions and products. Nevertheless, research and development (R&D) has become an inevitable function in most manufacturing companies in order to develop their own product niches for their survival in the prevailing highly completion market environment. Research and development functions are fundamental drivers of value creation in technology based enterprises. Of creating and maintaining a vibrant R&D environment, organizations individually or collectively need to incorporate virtual R&D team. A virtual R\&D team can introduce new product in less lead time than by conventional R\&D working. Therefore, how to increase the possibility of having more successful R\&D is a critical issue for enterprises. This paper examines the current approach of collaboration in R\&D issues from the perspective of their impact on virtual R\&D team in enterprises and compares the findings with the other concepts of concurrent collaboration. By reviewing literature and theories, the paper firstly presents the definition and characteristics of virtual R&D teams. A comparison of different types of virtual R&D teams along with the strengths and limitations of the preceding studies in this area are also presented. It is observed that most of the research activities encourage and support virtual R\&D teams applicable to enterprises. Distinctive benefits of establishing virtual R&D team have been enumerated and demand future attention has been indicated in the paper

    Introducing mobile edge computing capabilities through distributed 5G Cloud Enabled Small Cells

    Get PDF
    Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.Peer ReviewedPostprint (author's final draft

    A front-end system to support cloud-based manufacturing of customised products

    Get PDF
    In today’s global market, customized products are amongst an important means to address diverse customer demand and in achieving a unique competitive advantage. Key enablers of this approach are existing product configuration and supporting IT-based manufacturing systems. As a proposed advancement, it considered that the development of a front-end system with a next level of integration to a cloud-based manufacturing infrastructure is able to better support the specification and on-demand manufacture of customized products. In this paper, a new paradigm of Manufacturing-as-a-Service (MaaS) environment is introduced and highlights the current research challenges in the configuration of customizable products. Furthermore, the latest development of the front-end system is reported with a view towards further work in the research

    Web Services Support for Dynamic Business Process Outsourcing

    Get PDF
    Outsourcing of business processes is crucial for organizations to be effective, efficient and flexible. To meet fast-changing market conditions, dynamic outsourcing is required, in which business relationships are established and enacted on-the-fly in an adaptive, fine-grained way unrestricted by geographic distance. This requires automated means for both the establishment of outsourcing relationships and for the enactment of services performed in these relationships over electronic channels. Due to wide industry support and the underlying model of loose coupling of services, Web services increasingly become the mechanism of choice to connect organizations across organizational boundaries. This paper analyzes to which extent Web services support the dynamic process outsourcing paradigm. We discuss contract -based dynamic business process outsourcing to define requirements and then introduce the Web services framework. Based on this, we investigate the match between the two. We observe that the Web services framework requires further support for cross - organizational business processes and mechanisms for contracting, QoS management and process-based transaction support and suggest ways to fill those gaps

    Enterprise modelling : building a product lifecycle (PLM) model as a component of the integrated vision of the enterprise

    Get PDF
    Enterprise modelling has proved to be an efficient tool to study organisations structure and facilitate decision making. The enterprise is a complex system that is required to use its processes to generate value in a given environment (concurrent, market, suppliers and humanity). We focus on three management disciplines: Product Lifecycle Management (PLM), Supply Chain Management (SCM) and Customer Relationship Management (CRM). These business processes are so intertwined that the enterprise has to concentrate on the three to attain its economic objectives. To enhance the development of PLM, SCM and CRM models, the enterprise needs to capitalise the knowledge necessary to adapt and apply modelling techniques. Knowledge Management (KM) is a key factor to give a unified enterprise vision. Firstly, we propose an integrated enterprise model depicting the interactions between PLM, SCM, CRM and KM models. But a state of the art showed that PLM models are scarce. Most of the PLM models found depends strongly on the particular case studied and can not be used with other enterprises. After defining the most important components of the PLM vision, we propose to organise these components into a formalised way. The study of SCM and CRM models proved to be helpful to structure these components. Finally the validation methodology that is to be established in our coming research works is not only to be used with the PLM model presented in this paper but with SCM and CRM models also.Product Lifecycle Management (PLM), Enterprise modelling, Enterprise systems

    System architecture and deployment scenarios for SESAME: small cEllS coordinAtion for Multi-tenancy and Edge services

    Get PDF
    The surge of the Internet traffic with exabytes of data flowing over operators’ mobile networks has created the need to rethink the paradigms behind the design of the mobile network architecture. The inadequacy of the 4G UMTS Long term Evolution (LTE) and even of its advanced version LTE-A is evident, considering that the traffic will be extremely heterogeneous in the near future and ranging from 4K resolution TV to machine-type communications. To keep up with these changes, academia, industries and EU institutions have now engaged in the quest for new 5G technology. In this paper we present the innovative system design, concepts and visions developed by the 5G PPP H2020 project SESAME (Small cEllS coordinAtion for Multi-tenancy and Edge services). The innovation of SESAME is manifold: i) combine the key 5G small cells with cloud technology, ii) promote and develop the concept of Small Cells-as-a-Service (SCaaS), iii) bring computing and storage power at the mobile network edge through the development of non-x86 ARM technology enabled micro-servers, and iv) address a large number of scenarios and use cases applying mobile edge computing
    • 

    corecore