55 research outputs found

    Confidence based active learning for vehicle classification in urban traffic

    Get PDF
    This paper presents a framework for confidence based active learning for vehicle classification in an urban traffic environment. Vehicles are automatically detected using an improved background subtraction algorithm using a Gaussian mixture model. A vehicle observation vector is constructed from measurement-based features and an intensity-based pyramid HOG. The output scores of a linear SVM classifier are accurately calibrated to probabilities using an interpolated dynamic bin width histogram. The confidence value of each sample is measured by its probabilities. Thus, only a small number of low confidence samples need to be identified and annotated according to their confidence. Compared to passive learning, the number of annotated samples needed for the training dataset can be reduced significantly, yielding a high accuracy classifier with low computational complexity and high efficiency. The detected vehicles are classified into four main categories: car, van, bus and motorcycle. Experimental results demonstrate the effectiveness and efficiency of our approach. The method is general enough so that it can be used in other classification problems and domains, e.g. pedestrian detection

    Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments

    Get PDF
    Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an efficient combination of confidence-based Active Learning and Self-Training with the aim of minimizing the need for human annotation for sound classification model training. The proposed method pre-processes the instances that are ready for labeling by calculating their classifier confidence scores, and then delivers the candidates with lower scores to human annotators, and those with high scores are automatically labeled by the machine. We demonstrate the feasibility and efficacy of this method in two practical scenarios: pool-based and stream-based processing. Extensive experimental results indicate that our approach requires significantly less labeled instances to reach the same performance in both scenarios compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved in both of the pool-based and stream-based scenarios on a sound classification task considering 16,930 sound instances

    Sampling with Confidence: Using k-NN Confidence Measures in Active Learning

    Get PDF
    Active learning is a process through which classifiers can be built from collections of unlabelled examples through the cooperation of a human oracle who can label a small number of examples selected as most informative. Typically the most informative examples are selected through uncertainty sampling based on classification scores. However, previous work has shown that, contrary to expectations, there is not a direct relationship between classification scores and classification confidence. Fortunately, there exists a collection of particularly effective techniques for building measures of classification confidence from the similarity information generated by k-NN classifiers. This paper investigates using these confidence measures in a new active learning sampling selection strategy, and shows how the performance of this strategy is better than one based on uncertainty sampling using classification scores
    corecore