72 research outputs found

    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016)

    Get PDF
    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016) Timisoara, Romania. February 8-11, 2016.The PhD Symposium was a very good opportunity for the young researchers to share information and knowledge, to present their current research, and to discuss topics with other students in order to look for synergies and common research topics. The idea was very successful and the assessment made by the PhD Student was very good. It also helped to achieve one of the major goals of the NESUS Action: to establish an open European research network targeting sustainable solutions for ultrascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management, training, contributing to glue disparate researchers working across different areas and provide a meeting ground for researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency, and resilience.European Cooperation in Science and Technology. COS

    Optimal Operation of Power Distribution Feeders with Smart Loads

    Get PDF
    Distribution systems have been going through significant changes in recent years, moving away from traditional systems with low-level control toward smart grids with high-level control, with improved technologies in communications, monitoring, computation, and real-time control. In the context of smart grids, Demand Response (DR) programs have been introduced so that customers are able to control and alter their energy consumption in consideration with distribution system operators, with benefits accruing to both customers and Local Distribution Companies (LDCs). This thesis focuses on the integration of DR with the intelligent operation of distribution system feeders. Thus, it proposes a mathematical model of an unbalanced three-phase distribution system power flow, including different kinds of loads and other components of distribution systems. In this context, an unbalanced three-phase Distribution Optimal Power Flow (DOPF) model is proposed, which includes the models of lines, transformers, voltage-based loads, smart loads, Load Tap Changers (LTCs), and Switched Capacitors (SCs), together with their respective operating limits, to determine the optimal switching decisions for LTCs, SCs, and control signals for smart loads, in particular, Energy Hub Management System loads and Peaksaver PLUS loads. Hence, Neural-Network-based models of controllable smart loads, which are integrated into the DOPF model are proposed, developed, and tested. Since the DOPF model has different discrete variables such as LTCs and SCs, the model is a Mixed-Integer Non-Linear Programming (MINLP) problem, which presents a considerable computational challenge. In order to solve this MINLP problem without approximations and ad-hoc heuristics, a Genetic Algorithm (GA) is used to determine the optimal control decisions of controllable feeder elements and loads. Since the number of control variables in a realistic distribution system is large, solving the DOPF for real-time applications using GA is computationally expensive. Hence, a decentralized system with parallel computing nodes based on a Smart Grid Communication Middleware (SGCM) system is proposed. Using a "MapReduce" model, the SGCM system executes the DOPF model, communicates between the master and the worker computing nodes, and sends/receives data amongst different parts of the parallel computing system. When large number of nodes are involved, the SGCM system has a fast performance, is reliable, and is able to handle different fault tolerance levels with the available computing resources. The proposed approaches are tested and validated on a practical feeder with the objective of minimizing energy losses and/or energy drawn from the substation. The results demonstrate the feasibility of the developed techniques for real-time distribution feeder control, highlighting the advantages of integration of smart loads in the operation of distribution systems by LDCs

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Libro de Actas JCC&BD 2018 : VI Jornadas de Cloud Computing & Big Data

    Get PDF
    Se recopilan las ponencias presentadas en las VI Jornadas de Cloud Computing & Big Data (JCC&BD), realizadas entre el 25 al 29 de junio de 2018 en la Facultad de Informática de la Universidad Nacional de La Plata.Universidad Nacional de La Plata (UNLP) - Facultad de Informátic

    Proceedings of the Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015) Krakow, Poland

    Get PDF
    Proceedings of: Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015). Krakow (Poland), September 10-11, 2015

    Energy Saving and Scavenging in Stand-alone and Large Scale Distributed Systems.

    Full text link
    This thesis focuses on energy management techniques for distributed systems such as hand-held mobile devices, sensor nodes, and data center servers. One of the major design problems in multiple application domains is the mismatch between workloads and resources. Sub-optimal assignment of workloads to resources can cause underloaded or overloaded resources, resulting in performance degradation or energy waste. This work specifically focuses on the heterogeneity in system hardware components and workloads. It includes energy management solutions for unregulated or batteryless embedded systems; and data center servers with heterogeneous workloads, machines, and processor wear states. This thesis describes four major contributions: (1) This thesis describes a battery test and energy delivery system design process to maintain battery life in embedded systems without voltage regulators. (2) In battery-less sensor nodes, this thesis demonstrates a routing protocol to maintain reliable transmission through the sensor network. (3) This thesis has characterized typical workloads and developed two models to capture the heterogeneity of data center tasks and machines: a task performance model and a machine resource utilization model. These models allow users to predict task finish time on individual machines. It then integrates these two models into a task scheduler based on the Hadoop framework for MapReduce tasks, and uses this scheduler for server energy minimization using task concentration. (4) In addition to saving server energy consumption, this thesis describes a method of reducing data center cooling energy by maintaining optimal server processor temperature setpoints through a task assignment algorithm. This algorithm considers the reliability impact of processor wear states. It records processor wear states through automatic timing slack tests on a cluster of machines with varying core temperatures, voltages, and frequencies. These optimal temperature setpoints are used in a task scheduling algorithm that saves both server and cooling energy.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116746/1/xjhe_1.pd
    • …
    corecore