8,544 research outputs found

    Marginal Fermi liquid analysis of 300 K reflectance of Bi2Sr2CaCu2O8+x

    Full text link
    We use 300 K reflectance data to investigate the normal-state electrodynamics of the high temperature superconductor Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} over a wide range of doping levels. The data show that at this temperature the free carriers are coupled to a continuous spectrum of fluctuations. Assuming the Marginal Fermi Liquid (MFL) form as a first approximation for the fluctuation spectrum, the doping-dependent coupling constant λ(p)\lambda (p) can be estimated directly from the slope of the reflectance spectrum. We find that λ(p)\lambda (p) decreases smoothly with the hole doping level, from underdoped samples with p=0.103 p=0.103 (Tc=67T_c = 67 K) where λ(p)=0.93\lambda (p)= 0.93 to overdoped samples with p=0.226p=0.226, (Tc=60T_c= 60 K) where λ(p)=0.53\lambda(p)= 0.53. An analysis of the intercept and curvature of the reflectance spectrum shows deviations from the MFL spectrum symmetrically placed at the optimal doping point p=0.16p=0.16. The Kubo formula for the conductivity gives a better fit to the experiments with the MFL spectrum up to 2000 cm1^{-1} and with an additional Drude component or an additional Lorentz component up to 7000 cm1^{-1}. By comparing three different model fits we conclude that the MFL channel is necessary for a good fit to the reflectance data. Finally, we note that the monotonic variation of the reflectance slope with doping provides us with an independent measure of the doping level for the Bi-2212 system.Comment: 11 pages, 11 figure

    History and results of the Riga dynamo experiments

    Get PDF
    On 11 November 1999, a self-exciting magnetic eigenfield was detected for the first time in the Riga liquid sodium dynamo experiment. We report on the long history leading to this event, and on the subsequent experimental campaigns which provided a wealth of data on the kinematic and the saturated regime of this dynamo. The present state of the theoretical understanding of both regimes is delineated, and some comparisons with other laboratory dynamo experiments are made.Comment: 8 pages, 5 figure, accepted for publication in Comptes Rendus Physiqu

    Direct observation of a Fermi liquid-like normal state in an iron-pnictide superconductor

    Get PDF
    There are two prerequisites for understanding high-temperature (high-Tc_c) superconductivity: identifying the pairing interaction and a correct description of the normal state from which superconductivity emerges. The nature of the normal state of iron-pnictide superconductors, and the role played by correlations arising from partially screened interactions, are still under debate. Here we show that the normal state of carefully annealed electron-doped BaFe2x_{2-x}Cox_{x}As2_2 at low temperatures has all the hallmark properties of a local Fermi liquid, with a more incoherent state emerging at elevated temperatures, an identification made possible using bulk-sensitive optical spectroscopy with high frequency and temperature resolution. The frequency dependent scattering rate extracted from the optical conductivity deviates from the expected scaling M2(ω,T)(ω)2+(pπkBT)2M_{2}(\omega,T)\propto(\hbar\omega)^{2}+(p\pi k_{B}T)^{2} with pp\approx 1.47 rather than pp = 2, indicative of the presence of residual elastic resonant scattering. Excellent agreement between the experimental results and theoretical modeling allows us to extract the characteristic Fermi liquid scale T0T_{0}\approx 1700 K. Our results show that the electron-doped iron-pnictides should be regarded as weakly correlated Fermi liquids with a weak mass enhancement resulting from residual electron-electron scattering from thermally excited quasi-particles.Comment: 6+9pages, 3+9 figures To be published in Scientific Report

    Three-dimensional MHD flow and heat transfer in a channel with internal obstacle

    Get PDF
    The magnetohydrodynamic flow and heat transfer of a liquid metal in a channel past a circular cylinder with walls of non-uniform conductivity were investigated. The applied magnetic field was transversal to the forced flow (x-direction) and coplanar with the obstacle, featuring non-null components in both the z- and y-directions. Moreover, the cylinder was displaced by the duct centreline toward the bottom wall and its surface was at uniform temperature, so that a ΔT was present between the obstacle and the fluid at the inlet. Non-uniform thickness for the duct-bounding walls is considered which leads to the promotion of jets close to the less-conductive surfaces. The flow features and heat transfer for this case were numerically investigated for different values of the Reynolds number (20 ≤ Re ≤ 80) and Hartmann number (0 ≤ Ha ≤ 100). Their effects on the flow features, pressure drop and heat transfer are analysed and discussed in detail in the present paper. The additional pressure drop introduced by the cylinder presence is found to be independent by Re and decreasing with Ha. Enhanced heat transfer is observed for an increasing Ha with NuMHD/Nu = 1.25. at Ha = 100 due to the augmented mass flow rate in the bottom sub-channel

    Log-periodic drift oscillations in self-similar billiards

    Full text link
    We study a particle moving at unit speed in a self-similar Lorentz billiard channel; the latter consists of an infinite sequence of cells which are identical in shape but growing exponentially in size, from left to right. We present numerical computation of the drift term in this system and establish the logarithmic periodicity of the corrections to the average drift

    Energy oscillations and a possible route to chaos in a modified Riga dynamo

    Full text link
    Starting from the present version of the Riga dynamo experiment with its rotating magnetic eigenfield dominated by a single frequency we ask for those modifications of this set-up that would allow for a non-trivial magnetic field behaviour in the saturation regime. Assuming an increased ratio of azimuthal to axial flow velocity, we obtain energy oscillations with a frequency below the eigenfrequency of the magnetic field. These new oscillations are identified as magneto-inertial waves that result from a slight imbalance of Lorentz and inertial forces. Increasing the azimuthal velocity further, or increasing the total magnetic Reynolds number, we find transitions to a chaotic behaviour of the dynamo.Comment: 8 pages, 8 figures, submitted to Astronomische Nachrichte

    Characterisation of HTSC ceramics from their resistive transition

    Full text link
    The resistivity vs. temperature relation in bulk ceramic HTSC under self-field conditions as well as in weak external magnetic fields is modelled by local Lorentz force induced fluxon motion with temperature dependent pinning. A pinning force density and two viscous drag coefficients in intergrain and intragrain regions, respectively, can be used as characteristic parameters describing the temperature, current, and external field dependences of the sample resistance.Comment: 12 pages, LaTeX2e, 6 figures (epsfig), to be published in Supercond. Sci. and Techno
    corecore