9,138 research outputs found

    Conductance Ratios and Cellular Identity

    Get PDF
    Recent experimental evidence suggests that coordinated expression of ion channels plays a role in constraining neuronal electrical activity. In particular, each neuronal cell type of the crustacean stomatogastric ganglion exhibits a unique set of positive linear correlations between ionic membrane conductances. These data suggest a causal relationship between expressed conductance correlations and features of cellular identity, namely electrical activity type. To test this idea, we used an existing database of conductance-based model neurons. We partitioned this database based on various measures of intrinsic activity, to approximate distinctions between biological cell types. We then tested individual conductance pairs for linear dependence to identify correlations. Contrary to experimental evidence, in which all conductance correlations are positive, 32% of correlations seen in this database were negative relationships. In addition, 80% of correlations seen here involved at least one calcium conductance, which have been difficult to measure experimentally. Similar to experimental results, each activity type investigated had a unique combination of correlated conductances. Finally, we found that populations of models that conform to a specific conductance correlation have a higher likelihood of exhibiting a particular feature of electrical activity. We conclude that regulating conductance ratios can support proper electrical activity of a wide range of cell types, particularly when the identity of the cell is well-defined by one or two features of its activity. Furthermore, we predict that previously unseen negative correlations and correlations involving calcium conductances are biologically plausible

    A genetic variant of the sperm-specific SLO3 K+ channel has altered pH and Ca2+ sensitivities

    Get PDF
    To fertilize an oocyte, sperm must first undergo capacitation in which the sperm plasma membrane becomes hyperpolarized via activation of potassium (K(+)) channels and resultant K(+) efflux. Sperm-specific SLO3 K(+) channels are responsible for these membrane potential changes critical for fertilization in mouse sperm, and they are only sensitive to pH i However, in human sperm, the major K(+) conductance is both Ca(2+)- and pH i -sensitive. It has been debated whether Ca(2+)-sensitive SLO1 channels substitute for human SLO3 (hSLO3) in human sperm or whether human SLO3 channels have acquired Ca(2+) sensitivity. Here we show that hSLO3 is rapidly evolving and reveal a natural structural variant with enhanced apparent Ca(2+) and pH sensitivities. This variant allele (C382R) alters an amino acid side chain at a principal interface between the intramembrane-gated pore and the cytoplasmic gating ring of the channel. Because the gating ring contains sensors to intracellular factors such as pH and Ca(2+), the effectiveness of transduction between the gating ring and the pore domain appears to be enhanced. Our results suggest that sperm-specific genes can evolve rapidly and that natural genetic variation may have led to a SLO3 variant that differs from wild type in both pH and intracellular Ca(2+) sensitivities. Whether this physiological variation confers differences in fertility among males remains to be established.info:eu-repo/semantics/publishe

    A modeling framework for contact, adhesion and mechano-transduction between excitable deformable cells

    Full text link
    Cardiac myocytes are the fundamental cells composing the heart muscle. The propagation of electric signals and chemical quantities through them is responsible for their nonlinear contraction and dilatation. In this study, a theoretical model and a finite element formulation are proposed for the simulation of adhesive contact interactions between myocytes across the so-called gap junctions. A multi-field interface constitutive law is proposed for their description, integrating the adhesive and contact mechanical response with their electrophysiological behavior. From the computational point of view, the initial and boundary value problem is formulated as a structure-structure interaction problem, which leads to a straightforward implementation amenable for parallel computations. Numerical tests are conducted on different couples of myocytes, characterized by different shapes related to their stages of growth, capturing the experimental response. The proposed framework is expected to have impact on the understanding how imperfect mechano-transduction could lead to emergent pathological responses.Comment: 31 pages, 17 figure

    Saturation-Dependence of Dispersion in Porous Media

    Get PDF
    In this study, we develop a saturation-dependent treatment of dispersion in porous media using concepts from critical path analysis, cluster statistics of percolation, and fractal scaling of percolation clusters. We calculate spatial solute distributions as a function of time and calculate arrival time distributions as a function of system size. Our previous results correctly predict the range of observed dispersivity values over ten orders of magnitude in experimental length scale, but that theory contains no explicit dependence on porosity or relative saturation. This omission complicates comparisons with experimental results for dispersion, which are often conducted at saturation less than 1. We now make specific comparisons of our predictions for the arrival time distribution with experiments on a single column over a range of saturations. This comparison suggests that the most important predictor of such distributions as a function of saturation is not the value of the saturation per se, but the applicability of either random or invasion percolation models, depending on experimental conditions

    Alternative translation initiation in rat brain yields K2P2.1 potassium channels permeable to sodium.

    Get PDF
    K(2P) channels mediate potassium background currents essential to central nervous system function, controlling excitability by stabilizing membrane potential below firing threshold and expediting repolarization. Here, we show that alternative translation initiation (ATI) regulates function of K(2P)2.1 (TREK-1) via an unexpected strategy. Full-length K(2P)2.1 and an isoform lacking the first 56 residues of the intracellular N terminus (K(2P)2.1Delta1-56) are produced differentially in a regional and developmental manner in the rat central nervous system, the latter passing sodium under physiological conditions leading to membrane depolarization. Control of ion selectivity via ATI is proposed to be a natural, epigenetic mechanism for spatial and temporal regulation of neuronal excitability
    corecore