35 research outputs found

    Effective segmentation of sclera, iris and pupil in noisy eye images

    Get PDF
    In today’s sensitive environment, for personal authentication, iris recognition is the most attentive technique among the various biometric technologies. One of the key steps in the iris recognition system is the accurate iris segmentation from its surrounding noises including pupil and sclera of a captured eye-image. In our proposed method, initially input image is preprocessed by using bilateral filtering. After the preprocessing of images contour based features such as, brightness, color and texture features are extracted. Then entropy is measured based on the extracted contour based features to effectively distinguishing the data in the images. Finally, the convolution neural network (CNN) is used for the effective sclera, iris and pupil parts segmentations based on the entropy measure. The proposed results are analyzed to demonstrate the better performance of the proposed segmentation method than the existing methods.

    Full interpretation of minimal images

    Get PDF
    The goal in this work is to model the process of ‘full interpretation’ of object images, which is the ability to identify and localize all semantic features and parts that are recognized by human observers. The task is approached by dividing the interpretation of the complete object to the interpretation of multiple reduced but interpretable local regions. In such reduced regions, interpretation is simpler, since the number of semantic components is small, and the variability of possible configurations is low. We model the interpretation process by identifying primitive components and relations that play a useful role in local interpretation by humans. To identify useful components and relations used in the interpretation process, we consider the interpretation of ‘minimal configurations’: these are reduced local regions, which are minimal in the sense that further reduction renders them unrecognizable and uninterpretable. We show that such minimal interpretable images have useful properties, which we use to identify informative features and relations used for full interpretation. We describe our interpretation model, and show results of detailed interpretations of minimal configurations, produced automatically by the model. Finally, we discuss implications of full interpretation to difficult visual tasks, such as recognizing human activities or interactions, which are beyond the scope of current models of visual recognition.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216

    Deep Adversarial Frameworks for Visually Explainable Periocular Recognition

    Get PDF
    Machine Learning (ML) models have pushed state­of­the­art performance closer to (and even beyond) human level. However, the core of such algorithms is usually latent and hardly understandable. Thus, the field of Explainability focuses on researching and adopting techniques that can explain the reasons that support a model’s predictions. Such explanations of the decision­making process would help to build trust between said model and the human(s) using it. An explainable system also allows for better debugging, during the training phase, and fixing, upon deployment. But why should a developer devote time and effort into refactoring or rethinking Artificial Intelligence (AI) systems, to make them more transparent? Don’t they work just fine? Despite the temptation to answer ”yes”, are we really considering the cases where these systems fail? Are we assuming that ”almost perfect” accuracy is good enough? What if, some of the cases where these systems get it right, were just a small margin away from a complete miss? Does that even matter? Considering the ever­growing presence of ML models in crucial areas like forensics, security and healthcare services, it clearly does. Motivating these concerns is the fact that powerful systems often operate as black­boxes, hiding the core reasoning underneath layers of abstraction [Gue]. In this scenario, there could be some seriously negative outcomes if opaque algorithms gamble on the presence of tumours in X­ray images or the way autonomous vehicles behave in traffic. It becomes clear, then, that incorporating explainability with AI is imperative. More recently, the politicians have addressed this urgency through the General Data Protection Regulation (GDPR) [Com18]. With this document, the European Union (EU) brings forward several important concepts, amongst which, the ”right to an explanation”. The definition and scope are still subject to debate [MF17], but these are definite strides to formally regulate the explainable depth of autonomous systems. Based on the preface above, this work describes a periocular recognition framework that not only performs biometric recognition but also provides clear representations of the features/regions that support a prediction. Being particularly designed to explain non­match (”impostors”) decisions, our solution uses adversarial generative techniques to synthesise a large set of ”genuine” image pairs, from where the most similar elements with respect to a query are retrieved. Then, assuming the alignment between the query/retrieved pairs, the element­wise differences between the query and a weighted average of the retrieved elements yields a visual explanation of the regions in the query pair that would have to be different to transform it into a ”genuine” pair. Our quantitative and qualitative experiments validate the proposed solution, yielding recognition rates that are similar to the state­of­the­art, while adding visually pleasing explanations

    Handbook of Vascular Biometrics

    Get PDF

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    Deep learning-based improvement for the outcomes of glaucoma clinical trials

    Get PDF
    Glaucoma is the leading cause of irreversible blindness worldwide. It is a progressive optic neuropathy in which retinal ganglion cell (RGC) axon loss, probably as a consequence of damage at the optic disc, causes a loss of vision, predominantly affecting the mid-peripheral visual field (VF). Glaucoma results in a decrease in vision-related quality of life and, therefore, early detection and evaluation of disease progression rates is crucial in order to assess the risk of functional impairment and to establish sound treatment strategies. The aim of my research is to improve glaucoma diagnosis by enhancing state of the art analyses of glaucoma clinical trial outcomes using advanced analytical methods. This knowledge would also help better design and analyse clinical trials, providing evidence for re-evaluating existing medications, facilitating diagnosis and suggesting novel disease management. To facilitate my objective methodology, this thesis provides the following contributions: (i) I developed deep learning-based super-resolution (SR) techniques for optical coherence tomography (OCT) image enhancement and demonstrated that using super-resolved images improves the statistical power of clinical trials, (ii) I developed a deep learning algorithm for segmentation of retinal OCT images, showing that the methodology consistently produces more accurate segmentations than state-of-the-art networks, (iii) I developed a deep learning framework for refining the relationship between structural and functional measurements and demonstrated that the mapping is significantly improved over previous techniques, iv) I developed a probabilistic method and demonstrated that glaucomatous disc haemorrhages are influenced by a possible systemic factor that makes both eyes bleed simultaneously. v) I recalculated VF slopes, using the retinal never fiber layer thickness (RNFLT) from the super-resolved OCT as a Bayesian prior and demonstrated that use of VF rates with the Bayesian prior as the outcome measure leads to a reduction in the sample size required to distinguish treatment arms in a clinical trial

    Data-centric Design and Training of Deep Neural Networks with Multiple Data Modalities for Vision-based Perception Systems

    Get PDF
    224 p.Los avances en visión artificial y aprendizaje automático han revolucionado la capacidad de construir sistemas que procesen e interpreten datos digitales, permitiéndoles imitar la percepción humana y abriendo el camino a un amplio rango de aplicaciones. En los últimos años, ambas disciplinas han logrado avances significativos,impulsadas por los progresos en las técnicas de aprendizaje profundo(deep learning). El aprendizaje profundo es una disciplina que utiliza redes neuronales profundas (DNNs, por sus siglas en inglés) para enseñar a las máquinas a reconocer patrones y hacer predicciones basadas en datos. Los sistemas de percepción basados en el aprendizaje profundo son cada vez más frecuentes en diversos campos, donde humanos y máquinas colaboran para combinar sus fortalezas.Estos campos incluyen la automoción, la industria o la medicina, donde mejorar la seguridad, apoyar el diagnóstico y automatizar tareas repetitivas son algunos de los objetivos perseguidos.Sin embargo, los datos son uno de los factores clave detrás del éxito de los algoritmos de aprendizaje profundo. La dependencia de datos limita fuertemente la creación y el éxito de nuevas DNN. La disponibilidad de datos de calidad para resolver un problema específico es esencial pero difícil de obtener, incluso impracticable,en la mayoría de los desarrollos. La inteligencia artificial centrada en datos enfatiza la importancia de usar datos de alta calidad que transmitan de manera efectiva lo que un modelo debe aprender. Motivada por los desafíos y la necesidad de los datos, esta tesis formula y valida cinco hipótesis sobre la adquisición y el impacto de los datos en el diseño y entrenamiento de las DNNs.Específicamente, investigamos y proponemos diferentes metodologías para obtener datos adecuados para entrenar DNNs en problemas con acceso limitado a fuentes de datos de gran escala. Exploramos dos posibles soluciones para la obtención de datos de entrenamiento, basadas en la generación de datos sintéticos. En primer lugar, investigamos la generación de datos sintéticos utilizando gráficos 3D y el impacto de diferentes opciones de diseño en la precisión de los DNN obtenidos. Además, proponemos una metodología para automatizar el proceso de generación de datos y producir datos anotados variados, mediante la replicación de un entorno 3D personalizado a partir de un archivo de configuración de entrada. En segundo lugar, proponemos una red neuronal generativa(GAN) que genera imágenes anotadas utilizando conjuntos de datos anotados limitados y datos sin anotaciones capturados en entornos no controlados

    DEEP LEARNING METHODS FOR BIOMETRIC RECOGNITION BASED ON EYE INFORMATION

    Get PDF
    The accuracy of ocular biometric systems is critically dependent on the image acquisition conditions and segmentation methods. To minimize recognition error robust segmentation algorithms are required. Among all ocular traits, iris got the most attention due to high recognition accuracy. New modalities such as sclera blood vessels and periocular region were also proposed as autonomous (or iris-complementary) modalities. In this work we tackle ocular segmentation and recognition problems using deep learning methods, which represent state-of-the-art in many computer vision related tasks. We individually evaluate three recognition pipelines based on different ocular modalities (sclera blood vessels, periocular region, iris). The pipelines are then fused into a single biometric system and its performance is evaluated. The main focus is sclera recognition in the scope of which we i) create a new dataset named SBVPI, ii) propose and evaluate segmentation approaches, which won the first place on SS(ER)BC competitions, and iii) develop and evaluate the rest of the sclera-based recognition pipeline. The next contribution of this work is multi-class eye segmentation technique, which gives promising results. We also propose and evaluate deep learning pipeline for periocular recognition. For iris recognition we use an existing pipeline and evaluate it on our dataset. With deep learning we achieve promising recognition results for each individual modality. We further improve recognition accuracy with multi-modal fusion of all three modalities
    corecore