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To my Family

“Life’s battles don’t always go

To the stronger or faster man.

But soon or late the man who wins,

Is the man who thinks he can.”

R. Kipling





Abstract

The advances in computer vision and machine learning have revolutionized

the ability to build systems that process and interpret digital data, enabling

them to mimic human perception and paving the way for a wide range

of applications. In recent years, both disciplines have made significant

progress, fueled by advances in deep learning techniques. Deep learning

is a discipline that uses deep neural networks (DNNs) to teach machines

to recognize patterns and make predictions based on data. Deep learning-

based perception systems are increasingly prevalent in diverse fields, where

humans and machines collaborate to combine their strengths. These fields

include automotive, industry, or medicine, where enhancing safety, sup-

porting diagnosis, and automating repetitive tasks are some of the aimed

goals.

However, data are one of the key factors behind the success of deep learn-

ing algorithms. Data dependency strongly limits the creation and success

of a new DNN. The availability of quality data for solving a specific problem

is essential but hard to obtain, even impracticable, in most developments.

Data-centric artificial intelligence emphasizes the importance of using high-

quality data that effectively conveys what a model must learn. Motivated by

the challenges and necessity of data, this thesis formulates and validates

five hypotheses on the acquisition and impact of data in DNN design and

training.

Specifically, we investigate and propose different methodologies to obtain

suitable data for training DNNs in problems with limited access to large-

scale data sources. We explore two potential solutions for obtaining data,

which rely on synthetic data generation. Firstly, we investigate the process

of generating synthetic training data using 3D graphics-based models and



the impact of different design choices on the accuracy of obtained DNNs.

Beyond that, we propose a methodology to automate the data generation

process and generate varied annotated data by replicating a 3D custom

environment given an input configuration file. Secondly, we propose a gen-

erative adversarial network (GAN) that generates annotated images using

both limited annotated data and unannotated in-the-wild data. Typically,

limited annotated datasets have accurate annotations but lack realism and

variability, which can be compensated for by the in-the-wild data. We ana-

lyze the suitability of the data generated with our GAN-based method for

DNN training.

This thesis also presents a data-oriented DNN design, as data can present

very different properties depending on their source. We differentiate sources

based on the sensor modality used to obtain the data (e.g., camera, LiDAR)

or the data generation domain (e.g., real, synthetic). On the one hand, we

redesign an image-oriented object detection DNN architecture to process

point clouds from the LiDAR sensor and optionally incorporate informa-

tion from RGB images. On the other hand, we adapt a DNN to learn from

both real and synthetic images while minimizing the domain gap of learned

features from data.

We have validated our formulated hypotheses in various unresolved com-

puter vision problems that are critical for numerous real-world vision-based

systems. Our findings demonstrate that synthetic data generated using 3D

models and environments are suitable for DNN training. However, we also

highlight that the design choices during the generation process, such as

lighting and camera distortion, significantly affect the accuracy of the re-

sulting DNN. Additionally, we show that a simulation 3D environment can

assist in designing better sensor setups for a target task.

Furthermore, we demonstrate that GANs offer an alternative means of gen-

erating training data by exploiting labeled and existing unlabeled data to

generate new samples that are suitable for DNN training without a simula-

tion environment.



Finally, we show that adapting DNN design and training to data modality

and source can increase model accuracy. More specifically, we demonstrate

that modifying a predefined architecture designed for images to accommo-

date the peculiarities of point clouds results in state-of-the-art performance

in 3D object detection. The DNN can be designed to handle data from a

single modality or leverage data from different sources. Furthermore, when

training with real and synthetic data, considering their domain gap and

designing a DNN architecture accordingly improves model accuracy.





Resumen

Los avances en visión artificial y aprendizaje automático han revolucionado

la capacidad de construir sistemas que procesen e interpreten datos digi-

tales, permitiéndoles imitar la percepción humana y abriendo el camino a

un amplio rango de aplicaciones. En los últimos años, ambas disciplinas

han logrado avances significativos, impulsadas por los progresos en las téc-

nicas de aprendizaje profundo (deep learning). El aprendizaje profundo

es una disciplina que utiliza redes neuronales profundas (DNNs, por sus

siglas en inglés) para enseñar a las máquinas a reconocer patrones y hacer

predicciones basadas en datos. Los sistemas de percepción basados en el

aprendizaje profundo son cada vez más frecuentes en diversos campos,

donde humanos y máquinas colaboran para combinar sus fortalezas. Estos

campos incluyen la automoción, la industria o la medicina, donde mejo-

rar la seguridad, apoyar el diagnóstico y automatizar tareas repetitivas son

algunos de los objetivos perseguidos.

Sin embargo, los datos son uno de los factores clave detrás del éxito de los

algoritmos de aprendizaje profundo. La dependencia de datos limita fuerte-

mente la creación y el éxito de nuevas DNN. La disponibilidad de datos

de calidad para resolver un problema específico es esencial pero difícil

de obtener, incluso impracticable, en la mayoría de los desarrollos. La in-

teligencia artificial centrada en datos enfatiza la importancia de usar datos

de alta calidad que transmitan de manera efectiva lo que un modelo debe

aprender. Motivada por los desafíos y la necesidad de los datos, esta tesis

formula y valida cinco hipótesis sobre la adquisición y el impacto de los

datos en el diseño y entrenamiento de las DNNs.

Específicamente, investigamos y proponemos diferentes metodologías para

obtener datos adecuados para entrenar DNNs en problemas con acceso lim-

itado a fuentes de datos de gran escala. Exploramos dos posibles soluciones



para la obtención de datos de entrenamiento, basadas en la generación

de datos sintéticos. En primer lugar, investigamos la generación de datos

sintéticos utilizando gráficos 3D y el impacto de diferentes opciones de

diseño en la precisión de los DNN obtenidos. Además, proponemos una

metodología para automatizar el proceso de generación de datos y producir

datos anotados variados, mediante la replicación de un entorno 3D per-

sonalizado a partir de un archivo de configuración de entrada. En segundo

lugar, proponemos una red neuronal generativa (GAN) que genera imá-

genes anotadas utilizando conjuntos de datos anotados limitados y datos

sin anotaciones capturados en entornos no controlados. Por lo general, el

primer conjunto de datos suele tener anotaciones precisas pero carecen de

realismo y variabilidad, lo que compensamos con los datos de entornos no

controlados. Analizamos la idoneidad de los datos generados con nuestro

método para el entrenamiento de DNNs.

Esta tesis también presenta un diseño de DNNs orientado a datos, ya que

los datos pueden presentar propiedades muy diferentes dependiendo de su

fuente. Diferenciamos las fuentes según la modalidad de sensor utilizada

para obtener los datos (p. ej., cámara, LiDAR) o el dominio de generación

de datos (p. ej., real, sintético). Por un lado, rediseñamos una arquitec-

tura DNN orientada a imágenes para detección de objetos en nubes de

puntos del sensor LiDAR y, opcionalmente, incorporar información de imá-

genes RGB. Por otro lado, adaptamos una DNN para aprender de imágenes

reales y sintéticas mientras minimizamos la brecha de dominio que ambos

dominios presentan.

Hemos validado nuestras hipótesis formuladas en varios problemas de

visión artificial no resueltos, que son críticos para numerosos sistemas basa-

dos en visión del mundo real. Nuestros hallazgos demuestran que los datos

sintéticos generados utilizando modelos y entornos 3D son adecuados para

el entrenamiento de DNNs. Sin embargo, también destacamos que las elec-

ciones de diseño durante el proceso de generación, como la iluminación y

la distorsión de la cámara, afectan significativamente la precisión del DNN



final. Además, mostramos que un entorno de simulación 3D puede ayu-

dar a diseñar mejores configuraciones de sensores para una tarea objetivo.

Adicionalmente, demostramos que las GAN ofrecen un medio alternativo

para generar datos de entrenamiento mediante la explotación de datos

existentes, etiquetados y no etiquetados, para generar nuevas muestras

que sean adecuadas para el entrenamiento de DNNs, sin necesidad de un

entorno de simulación.

Finalmente, mostramos que adaptar el diseño y entrenamiento de DNNs

a la modalidad y fuente de datos puede aumentar la precisión del modelo.

Más específicamente, demostramos que la modificación de una arqui-

tectura predefinida diseñada para imágenes para adaptarse a las pecu-

liaridades de las nubes de puntos da como resultado un rendimiento de

vanguardia en la detección de objetos 3D. La DNN se puede diseñar para

procesar datos de una sola modalidad o aprovechar datos de diferentes

fuentes. También demostramos, que al entrenar con datos reales y sintéti-

cos, considerar su brecha de dominio, diseñando una arquitectura de DNN

acorde, mejora la precisión del modelo.
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The best way to predict the future

is to invent it.

Alan Kay

CHAPTER

1
Scope of the Research

1.1 Motivation

Computer vision is the field of computer science that focuses on developing digital sys-

tems capable of processing, analyzing, and interpreting visual data, such as images and

videos, in the same way that humans do. Computer vision-based systems “see” or sense

external stimuli through a sensor (e.g., camera) to get some target information so that it

can be used in other processes. The idea behind computer vision is to teach machines

to understand and interpret visual data in a manner that is similar to human percep-

tion. Computer vision involves using different techniques, such as machine learning

and image processing, to enable machines to perform tasks that require human visual

perception, such as object recognition, motion detection, and scene reconstruction.

Machine learning is a sub-field of Artificial Intelligence (AI). Machine learning is a

broad discipline that studies algorithms and statistical models to perform a predefined

task. Compared to computer vision, machine learning is not limited to visual data. The

idea behind machine learning is to enable computers to learn from data, recognize pat-

terns, and make predictions based on the data rather than using explicitly programmed

rules. The core mechanism to do this is to train a model. This training stage typically

involves using a dataset so that the model (algorithm) identifies patterns and relations

from data and refines its predictions from that experience. For that purpose, several

3



DATA-CENTRIC DESIGN AND TRAINING OF DEEP NEURAL NETWORKS WITH
MULTIPLE DATA MODALITIES FOR VISION-BASED PERCEPTION SYSTEMS

techniques exist, such as decision trees, support vector machines, clustering algorithms,

and deep learning.

Figure 1.1 shows that both computer vision and machine learning involve differ-

ent techniques but also interact with each other. Both fields share some common

techniques and are often combined in perception systems.

Figure 1.1: Computer vision and machine learning fields and some of their techniques.

Machine learning and computer vision often use deep learning to learn features

from data. Deep learning is a field of machine learning that uses deep neural networks

(DNNs) to learn relations and patterns from data. Deep learning has been outstand-

ing for the last decade, as it has quickly become a method of choice for most machine

learning problems. State-of-the-art results achieved by traditional algorithms have

been rapidly overcome [9, 10]. Consequently, deep learning today is part of most ma-

chine learning systems. Thanks to deep learning, the advances in computer vision

and machine learning tasks have expanded the possibilities to improve and create new

advanced perception systems [11, 12].

Using computer vision to perceive an environment involves different stages, which

include acquiring, processing, analyzing, and understanding the corresponding digital

data, as shown in Figure 1.2. Vision-based perception systems require sensors, comput-

ers, and, most frequently, machine learning and image processing algorithms for these

processes [13, 14]. The sensors mimic the eye function, and the algorithms mimic the

brain function in interpreting and classifying image content.

For example, a vision-based intrusion detection system may monitor a region of

interest to detect if any agent enters a restricted zone. The application receives the data

captured by a sensor or a group of sensors (e.g., a surveillance camera). The system uses

the developed computer vision algorithms to process the data in the chosen hardware,
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Figure 1.2: Overview of the different processes in computer vision-based systems.

for example, a server. It provides an alert if the corresponding algorithm detects an intru-

sion. These systems may be limited to perceiving the agents in a specific environment

(e.g., people detection) or may also interpret the scene or complete more complex tasks,

such as predicting the behavior of different actors. These systems have multiple fields of

applications, such as robotics, automotive, or surveillance [15, 16, 17]. Figure 1.3 shows

examples of different computer vision tasks, such as traffic sign recognition, driving

scene segmentation, or pose estimation.

Figure 1.3: Different computer vision task examples. From left to right and top to bottom:
traffic sign recognition, face and key points detection, scene segmentation, instance-based
segmentation, pose detection, and people detection and tracking.

Perception-based systems have improved many tasks we perform daily without even

realizing it. We find computer vision-based systems in our cars, in the Advanced Driving

Assistance Systems (ADAS) [18], that, for example, allow us to drive safer because they

"see" the road lines and ensure we drive correctly between them. Computer vision is
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also in our mobiles, in applications such as authentication, which uses the mobile cam-

era to rapidly verify if the person trying to unlock the mobile is the owner. Computer

vision is also present in many factories, where camera and computer vision-based appli-

cations automatically perform quality assessments to detect defective products. These

are only a few examples of the multiple computer vision applications we interact with

within different fields. Some potential advantages that these kinds of systems could pro-

vide us are the possibility to complete repetitive tasks faster and more efficiently, reduce

costs, improving security, and assist humans in complex tasks, among others. We are

still about to see the potential and the possibilities the latest advances will bring us.

However, the creation and success of a new deep learning-based perception system

involve a significant challenge: data dependence. The success of deep learning models

in solving specific tasks is closely related to the availability of appropriate and quality

data for the corresponding problem [19]. Obtaining and processing these data con-

sidering their properties is essential but not trivial for getting an accurate and robust

model. Correct model behavior is indispensable for the success of the system. Given

these challenges, in this thesis, we explore and propose different potential solutions to

alleviate the challenges, problems, and bottlenecks that data can pose when developing

vision-based perception systems. Figure 1.4 shows the overview of the opportunities

and problems that motivate the presented research.

Figure 1.4: Deep learning for vision-based perception systems opens up new opportunities,
but their success is hindered by data dependence. This thesis presents different potential
solutions to alleviate these challenges.

6



1. SCOPE OF THE RESEARCH

1.2 Deep Learning

Deep learning allows computational models composed of multiple processing layers to

learn representations of data with various levels of abstraction [9]. These computational

models are the DNNs. The term deep emphasizes the number of processing layers, or

depth, of the modern DNNs compared to classical artificial neural networks (ANNs).

The goal of a DNN is to find an approximated function f ∗ that maps an input x

to a category y . The network architecture defines a mapping y = f (x,θ), and during

the training, it learns the value of the parameters θ that results in the best function ap-

proximation. For example, if we work with images and want to classify each sample

depending on the object shown in the image, we would need to train a DNN to find

the function f ∗ that maps the input set of pixels of each image to an object category y .

Deep learning breaks this complex mapping into a sequence of simple nested mappings

done in the model’s different layers, as shown in the example in Figure 1.5.

Figure 1.5: Intuition of the hierarchical representations of the data that a DNN learns to
complete a task such as image classification.

Figure 1.5 represents a DNN that classifies the category an image belongs to, in this

case, bus, car, or van. The input to the network is formed by the image pixels fed to

the DNN in the input layer. Then, some hidden layers extract increasingly abstract and

complex features from the image. The images in each layer show the kind of features

represented by each hidden layer. The first layer extracts simple features, such as the

edges of the objects in the image. The second hidden layer looks for corners and some

contours based on the data from the previous layer. Given the information on the cor-

ners and contours of the image, the third hidden layer detects specific object parts,

which are formed by contours and corners. Depending on the object parts detected
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in the input data, the image is finally classified into a predefined category. Deep learn-

ing allows the DNN to learn complex concepts out of simpler concepts. It is the model

during the training phase that must determine which concepts are useful and should

be extracted in each hidden layer to explain the relationships in the data and solve a

specific task (e.g., image classification).

Deep learning has changed the way researchers work. As shown in Figure 1.6, in

traditional machine learning methods, the researcher is in charge of designing the fea-

tures that need to be extracted from data to solve a specific task (hand-crafted features),

while with deep learning, the models are capable of learning the features that should be

extracted from the given data (machine-learned features).

Figure 1.6: The change of paradigm from traditional machine learning to deep learning.
With deep learning features are no longer hand-crafted, they are automatically learned from
data.

1.3 Lifecycle of Model Development

Developing the core deep learning model for deploying a vision-based perception sys-

tem involves a lifecycle with different stages. Figure 1.7 presents the main stages. The

first step is defining the problem to be solved with a clear scope and understanding.

Then, the sensor setup in charge of data capturing must be designed. Data acquisition
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is necessary for training the corresponding DNN. The last step is deploying the model

in the real environment, but this is usually not the cycle’s end. It is common to keep im-

proving the machine learning model with the new data captured in the real scenario or

go back to a previous step to refine the model to ensure the system works as accurately

as desired.

Figure 1.7: Different stages in the development of a DNN-based perception system.

Machine Learning Operations (MLOps) might help in a model’s lifecycle. MLOps are

a set of tools and practices for automating and simplifying the management and deploy-

ment of machine learning models [20]. MLOps aims to improve the speed, quality, and

reliability of deploying machine learning models to production. For example, MLOps

include tools for data and model version controlling, testing, and monitoring.

The different stages in the lifecycle of model development are described below.

1.3.1 Problem Definition and Scope

The first step is understanding and defining the problem that the system should solve.

This stage is vital to the project’s success, as all the other tasks will depend on the de-

fined goal. The use cases the system should solve, the operative conditions (under

what circumstances do we want it to work?), the available resources, or the scope of the

system (e.g., target KPIs) should be clearly defined. Problem understanding is also im-

portant for the success of the following stages. Collecting the correct data or designing a

proper setup is difficult if the problem is poorly understood.
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1.3.2 Data Understanding and Sensor Setup Design

The second step is to understand what kind of data we need to solve the corresponding

task and what kind of sensors and setup provide that. Data can come from different

sensing devices. Cameras are one of the most common sensors for perceiving the world

by imitating the human eye and developing vision-based systems [21, 22]. However,

there are different possibilities among cameras depending on the problem we must

solve. RGB cameras are often used in perception systems, but thermal or depth cameras

may be more appropriate depending on the task to be solved. Other sensors, such as

LiDAR, could be more suitable for problems requiring an accurate 3D representation of

the surroundings [23]. Different sensor modalities and specifications must be consid-

ered for designing a proper setup for solving the target problem. It is also common to

have a setup that includes various sensor types. The setups that combine different data

sources (e.g., sensor types) or data types are known as multimodal [24]. It is essential to

understand the type of data each sensor provides, its advantages and drawbacks, and

the properties of the data they provide. For example, Figure 1.8 shows a driving scene

captured by an RGB camera (top) and a LiDAR sensor (bottom). The image and the

point cloud obtained from the signal captured by both sensors have different properties

that should be considered to make the best of their information. This is tightly related

to the goal of the system but also to the way the machine learning model processes the

data.

In addition to the sensor types, the system design also requires defining the number

of sensors, specifications, positions, and orientations. The decisions made in this stage

condition the machine learning models and algorithms, which will be developed in the

next stages, but can also limit the scope of the system or include redundant sensors

by mistake. The most effective way to design an appropriate and optimal setup and

maximize the potential of a data modality is an open question.

1.3.3 Data Acquisition

Once the sensor setup is designed and to train a deep learning model, data are required.

One of the main factors that have driven the DNNs revolution is the data. Large quanti-

ties of available data have been crucial for the DNNs’ training and success. However, not

only the amount is important but also the quality. Techniques, such as fine-tuning [25],
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Figure 1.8: Example of a driving scene captured by an RGB camera (top) and a LiDAR (bot-
tom) from the KITTI benchmark [1].

allow training DNNs with smaller datasets (e.g., thousands or hundreds of samples)

by taking advantage of the knowledge learned in previous trainings with big generalist

datasets, which may contain millions of samples. Quality is crucial for the success of

model training. Data quality includes different aspects, such as having representative

samples for the target domain, balanced data, or well-annotated data in the case of su-

pervised models. Having enough samples with enough quality is usually a significant

challenge. It is also important to consider that the data we collect or generate may lead

to undesired bias if we ignore the data distribution and may even lead to ethical prob-

lems. Public large-scale datasets are often used for DNNs training [26], but obtaining

training data is largely application specific. Another way to get the data is by generat-

ing them, capturing them, or generating them artificially, for example, using a virtual

environment (Figure 1.9).

Once we have enough data, there is an additional preparation step before the train-

ing. This step includes cleaning the data (e.g., noisy or irrelevant data), converting them

to a proper format, and preprocessing them if required. In order to train supervised

models, annotations are also required. Annotating the data is not a trivial task. It re-

quires a clear annotation protocol, appropriate annotation tools for the data modality
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(e.g., videos, LiDAR scans), and a big manual effort. In order to have good-quality data is

important to ensure that the annotations are defined consistently, data cover important

cases, and that there are enough samples.

Figure 1.9: Example of synthetic data and annotations generated with AirSim simulation
environment [2].

1.3.4 Model Design and Training

DNN design typically does not begin from scratch. It is common to use DNN archi-

tectures that have shown good accuracy for a specific task as the baseline for training

a model for a new target problem. In the last years, some DNNs have become popu-

lar because of their good performance in generalist benchmarks such as the ImageNet

one [26] (e.g., AlexNet [27], ResNet [28], EfficientNet [29]). Consequently, these models,

along with their pretrained weights, are often used as the baseline for training a new

model. The architecture is often not adapted even if the new data have different proper-

ties, which may not be the most optimal approach for different data modalities. These

common practices lead us to the following open questions: Can data from different

modalities be handled in the same manner? Is it enough to select and train a predefined

DNN architecture with the new task data? If we generate synthetic data for the DNN

training, is it appropriate to train with them just as with real data?

Once the DNN is designed or selected, model training requires a proper hyperparam-

eter setup and training strategy for model convergence. Model training and parameter

tuning is an iterative process that often requires model redesign and training dataset
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modifications. The training dataset, the training setup, the DNN architecture, or a com-

bination of these factors may cause low accuracy or poor generalization obtained by a

model. Error analysis is crucial for guiding the changes to real model improvements.

Error analysis can help identify the data type the model does poorly on. Model ex-

plainability techniques may be used to help to guide the required improvements. For

example, model explainability can consist of giving insights into the part of the image a

model relies on for a specific answer [30].

1.3.5 Model Deployment

Deploying the trained model in the target system may require additional steps, espe-

cially when the available hardware has limited resources. Different techniques exist

to optimize the model inference, such as model compression via pruning or quantiza-

tion [31]. Knowledge distillation [32] might be another choice for getting a smaller DNN

to transfer the knowledge from a bigger one when the resources are scarce. The tar-

get deploying environment may also require special inference pipelines. For example,

suppose the developed vision-based perception system uses an edge device to capture

sensitive data and has not enough processing capability. In that case, a possible infer-

ence strategy may be partitioning the DNN and distributing its computation between

the device and the cloud. These are some of the aspects that need to be considered

when deploying the model.

Once we deploy the system, its development lifecycle may not be over if we include

some monitoring functionalities to ensure its good performance, avoid deterioration of

performance over time (e.g., data drifting), or keep improving the vision-based model

with the new data captured while running in the real scenario (e.g., continual lifelong

learning [33]).

The rapid adoption of machine learning-based systems in the last years has pro-

moted the debate on how AI should be developed and regularized to address the

opportunities, challenges, and risks it entails. For example, the European Union AI

Act [34] is a European law on AI, defined to manage AI risk and prioritize human rights

in the development and deployment of AI.

Once we deploy the model for its correct usage and adoption, it is important to know

its possibilities and limitations. Model cards [35] can be included as documentation
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that describes the context in which models are intended to be used and promote trans-

parency in AI. Model cards include detailed performance evaluations and potentially

relevant information about the corresponding model. Machine Learning Technology

Readiness Levels (MLTRL) [3] can also be used to represent the maturity of a model,

data pipelines, software module, or composition thereof. MLTRLs assess the matu-

rity and readiness of the technology for commercialization. It is a way to evaluate the

progress of a machine learning system from its initial conception to its implementa-

tion. MLTRLs define ten different maturity levels shown in Figure 1.10. For example,

level 4 corresponds to a proof of concept (PoC) development. This stage is typically the

first touch-point to demonstrate the utility of specific technology in a real scenario, tak-

ing care to report assumptions and limitations of the solution. The MLTRL definition

helps better understand the maturity, scope, and limitations of developed algorithms or

systems.

Figure 1.10: Machine Learning Technology Readiness Levels (MLTRL) defines a range of
readiness levels, starting from research (red), continuing through prototyping (orange),
leading to productization (yellow), and finally ending with deployment (green) [3].

1.4 The Role and the Challenges of Data

Data are critical and necessary to build AI systems [19]. To train DNNs-based mod-

els, suitable training data are key to help DNNs learn appropriate pattern recognition

features, which means the success or failure of the model. Obtaining an appropriate
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training dataset is a challenge. In addition, note that data are present in all the lifecycle

of DNN-based system development in different ways and are the core of many uncer-

tainties about the best way to proceed (Section 1.3). Figure 1.11 shows some of these

uncertainties. However, it is common for researchers to concentrate on creating better

models rather than better datasets. This section presents some key challenges and use

cases that have not been solved yet and are the focus of the research presented in this

thesis project.

what data
does the task

need?

DATA

what are the
properties

of the data?

what is the
best way to
process the

data?

is the dataset
appropriate

for dnn
training?

does the data
represent
the target

domain?

can
different
modalities

be processed
by a dnn?

how can we
annotate the

data?

How can we
get the
data?

Figure 1.11: Different questions that arise around the data when developing a DNN-based
perception system.

Data-centric AI focuses on data instead of code. The goal is to work with qual-

ity data to ensure that the data clearly conveys what the model must learn [36]. Data

quality and excellence [37] are decisive for avoiding reduced accuracy when a model is

deployed in the real world and avoiding negative issues such as bias [38]. Compound-

ing events causing negative, downstream effects from data issues are also known as

data cascades [39]. Very often, the accuracy problems when deploying a model do not

come from the model but from the training data. Initiatives such as data cards [40] try
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to promote transparent and responsible AI.

Training dataset importance cannot be decoupled from the data-obtaining process

itself. The way to gather the data implies specific problems or challenges that might

arise during training or final model deployment. There are three common ways to ob-

tain the training data: collect data from the Internet (e.g., web scraping, large-scale

public datasets [41]), capture data, or generate data synthetically [42].

In the vast majority of cases, the data cannot be directly extracted from the Inter-

net since the new application tries to solve a particular problem in a specific scenario

with a specific sensor setup. Thus, custom datasets need to be created. Data capturing

implies the execution of several actions such as target data specification, sensor setup

installation, technical preparation, recording protocols, possibly even actors simulat-

ing precise guide notes, and finally, annotating the data. These are some of the reasons

that promote the alternative way of generating the data artificially. Artificial or synthetic

data generation is a possible choice to obtain training data for DNNs, but it also can

augment the accuracy drop when the model is deployed in the final target environment.

The reason is the domain gap or difference between the data distribution of the source

domain (virtual world) and the target domain (real world). This does not happen only

when training with synthetic data. The domain gap often happens because of discrep-

ancies between the training and target domain, even if both belong to the real world.

However, the gap when working with synthetic data is bigger, and it is of special rele-

vance due to the possibilities and current popularity of synthetic data for DNN training.

Despite the benefits of using synthetic data and being an increasingly used technique,

we identify the following uncertainties:

• Synthetic data generation design using 3D models. The use of synthetic data

may help in generating sufficient and balanced training data. However, models

trained with such data often present a domain gap when applied to real-world sce-

narios. Many studies focus on techniques such as domain adaptation to minimize

this gap, but little attention is paid to the data generation itself. Do the design

choices made during this process impact the DNNs’ accuracy? Is this impact

negligible? Are there any guidelines that should be followed?

• Simulated 3D environments for deep learning. We can generate synthetic data

following different strategies, such as compositing real data, relying on generative
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models, or using simulated environments. The latter has an additional advantage

when building multi-sensor systems, as it can also help design the sensor system

to cover the use cases in the targeted real scenario. This is particularly relevant

in scenarios not easily accessible for system designers and/or when the sensor

positions and characteristics are not predefined. In addition, the agents in the en-

vironment can interact with each other or with the environment itself. However,

there are no general simulated environments ready to solve the sensor setup and

data generation tasks for all kinds of scenarios and use cases. Typically, ’ad hoc’

environments are built. Would it be possible to have a solution with sufficient

generality for generating suitable training data for DNNs in different contexts?

Would data from a simulated environment help in DNN training?

• Synthetic data generation for deep learning using generative models. It is also

possible to use generative models to generate training data. The state-of-the-art

generative adversarial networks (GANs) can generate very realistic images with

no need for a 3D simulation environment. In addition, data realism might allevi-

ate the possible domain gap between synthetic and real data domains. In many

computer vision tasks, obtaining annotated data is a tedious and challenging task.

Would it be possible to use GANs to generate appropriate training data for DNNs?

Would it be better to use a 3D simulated environment?

Model-centric AI focuses on obtaining high accuracy working on the DNN archi-

tecture improvement rather than the data itself. Benchmark datasets [1, 26, 41] are the

point of reference to measure how good or bad a model is. Consequently, much of the

research continues to focus on improving the algorithmic aspect of the models to sur-

pass state-of-the-art models. These benchmarks have accelerated machine learning

development, even if questioning or analyzing the data has generally been left in the

background.

Most of the time, the success of an AI-based system cannot be limited to working on

the data or the model. Even if we use a promising state-of-the-art DNN for solving a task,

if training data properties are not considered, we might lose a lot of room for improve-

ment. Data properties include, for example, the domain of the data (e.g., real or virtual

world) or the modality of the data with its particularities (e.g., point clouds, images).

Regarding data modality, when a new task gains attention in machine learning research,
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it is common to try to adapt solutions that have already worked to the new problem. If

data are different, special care should be taken to adapt the techniques correctly. We

find an example of this situation in the automotive field, where it is common to have

multi-sensor setups and where new approaches emerge as machine learning and sen-

sors progress. When designing and training a DNN with different data modalities or

domains, we identify the following uncertainties:

• Data-oriented deep neural network design: data modality. Driven by the impor-

tance of 3D scene understanding in the automotive field and the adoption of the

latest LiDAR sensors, diverse works have emerged with different deep learning-

based proposals for 3D object detection. Advances have been made rapidly and

show promising results, but it is still an open question what the best way to pro-

cess point cloud data with DNNs is. Many works try to adapt mature networks

commonly used for camera images to this task [43, 44, 45], but they usually do

not consider the special properties of LiDAR point clouds. An object in a LiDAR

point cloud at a distance of 5 meters from the sensor and the same object at 40

meters do not have the same distribution and quantity of points. In addition,

point clouds are unstructured compared to images. Is it possible to adapt image-

oriented DNNs to the new data modality? In that case, how should it be done?

Do current proposals consider the data’s particularities? Can these DNNs handle

both data modalities successfully?

• Data-oriented deep neural network design and training: data domain. Adequate

and abundant data are crucial for DNNs to learn suitable pattern recognition fea-

tures and develop sufficient generalization abilities. Although synthetic data

might mitigate the burden of producing the corresponding data, there is typically

a domain gap between synthetic and real-world samples. Can the DNN archi-

tecture help to minimize this domain gap? Could considering the data source

domain during model design and training result in improved model performance?

1.5 Goals and Contributions

As described in previous sections, data are key in the process of developing a DNN-

based perception system. However, obtaining an appropriate training dataset for DNNs
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is hard. Researchers increasingly adopt synthetic data generation to alleviate the corre-

sponding difficulties. The way the synthetic data are generated might impact the final

accuracy of the system, but little attention is paid to the choices made in the data gener-

ation design. Simulated environments can help in synthetic data generation, but there

are no generalist solutions prepared for the custom problems faced by most real appli-

cations. Generative models are another possibility to generate data with no need for a

3D simulated environment. Even after obtaining the training data, special care should

be taken to process them correctly by the DNN, depending on their properties. The

properties of the data depend on their source (e.g., captured or simulated data) but also

on the sensor modality they come from (e.g., LiDAR, camera).

In order to bring some light to the uncertainties and challenges that data involves in

DNN training, this thesis aims to validate the following hypotheses:

1. Hypothesis 1: Artificially generated samples using 3D models and environ-

ments are valid for training DNNs. To validate if 3D graphics-based synthetic

data might help to train DNNs, we propose a methodology to generate synthetic

data to solve a computer vision task that lacks available data: people detection

in large spaces from omnidirectional cameras. We analyze the impact of differ-

ent design choices and the target setup properties in the final DNN accuracy. We

compare the results when using real and synthetic data. This work is presented in

Chapter 4.

2. Hypothesis 2: A simulated 3D environment can help define the required data

and sensor setup for vision-based perception systems and generate appropriate

data for DNN training with a high level of automation. To validate this hypothe-

sis, we define a methodology to build a 3D simulated environment for configuring

and training multi-sensor systems with sufficient generality to be usable in dif-

ferent surveillance contexts. We show a practical implementation of the method

in the context of digitized on-demand aircraft cabin readiness verification. We

generate synthetic data to train a DNN to identify when luggage are incorrectly

placed. This work is presented in Chapter 5.

3. Hypothesis 3: Artificially generated samples using generative models are valid

to train DNNs with no need for a simulation environment. We design and train
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a conditioned GAN for gaze estimation task to verify this hypothesis. This task

requires challenging data, and publicly available annotated data are very limited.

Chapter 6 presents our research on using GANs to exploit labeled and unlabeled

existing data and their impact when used in DNN training.

4. Hypothesis 4: Adapting the DNN architecture design to the data modalities im-

proves the results obtained by predefined and pretrained models. We adapt an

image-oriented DNN architecture to 3D object detection from point cloud data to

confirm this hypothesis. We train the proposed model with the new data modal-

ity and compare its accuracy to state-of-the-art methods when using only point

cloud data and also when including additional data from an RGB camera. This

work is presented in Chapter 7.

5. Hypothesis 5: Adapting the DNN architecture design to the data domains im-

proves the results obtained by predefined and pretrained models. To validate

this hypothesis, we propose a DNN design and training pipeline that handles real

and synthetic images in the context of aircraft cabin readiness verification with

a camera-based system. We analyze the impact of training a classification DNN

with domain adaptation and images’ redundancy reduction on the final model

accuracy. This work is presented in Chapter 8.

The current document is organized as follows. Chapter 1 presents the motivation,

introduction, and goals of this thesis. Chapter 2 introduces the reader to the fundamen-

tals of deep learning, and Chapter 3 is an in-detail study of relevant related work for this

thesis research. The remaining chapters present the research results. In Chapter 4, we

explore synthetic data generation design and propose a methodology to generate ap-

propriate training data for DNNs using 3D models. Chapter 5 presents a methodology

to build a simulated 3D environment to design adequate sensor setups and automatize

training data generation for DNNs. In Chapter 6, we investigate generative models for

generating DNN training data. This chapter shows the design and training of a GAN for

leveraging labeled and unlabeled existing data. Chapter 7 presents DNN architecture

adaptation to data modality (RGB images and LiDAR point clouds) and Chapter 8 to data

20



1. SCOPE OF THE RESEARCH

CHAPTER 1: Scope of the Research

CHAPTER 2: General Introduction to Deep Learning

CHAPTER 4: Synthetic Data
Generation for Deep Learning

(Hypothesis 1)

CHAPTER 5: Simulated
Environments for Deep Learning

(Hypothesis 2)

CHAPTER 8: Data-oriented Deep
Neural Network Design and Training:

data source (Hypothesis 5)

CHAPTER 6: Synthetic Data
Generation with Generative Models

(Hypothesis 3)

CHAPTER 7: Data-oriented Deep
Neural Network Design: data

modality (Hypothesis 4)

CHAPTER 3: Related work

CHAPTER 9: Conclusions
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Figure 1.12: Organization of chapters and connections between them and the formulated
research hypotheses in this thesis.

domain (real and synthetic domains). Finally, Chapter 9 summarizes the presented re-

search’s conclusions and future work. Figure 1.12 shows an overview of the organization

of the chapters and their connection with the formulated research hypotheses.

We have published the research results obtained in this thesis in several publica-

tions presented at international conferences and journals. We refer the reader to the

Appendix (Section A) to see an in-detail list of the papers published during this research.
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What is now proved was once only

imagined.

William Blake

CHAPTER

2
General Introduction to Deep

Learning

2.1 Artificial Neural Networks

2.1.1 The Origin of Deep Learning

Deep learning is a machine learning technique that uses artificial neural networks

(ANNs) to extract features and learn patterns from data to complete a specific task. The

origins of deep learning can be traced back to the mid-1950s. In the early days of AI,

researchers wanted to make computers learn and build an artificial electronic brain.

In 1958 psychologist Rosenblatt proposed the perceptron, a simplified mathematical

model of a neuron inspired in our brain neurons [46]. Figure 2.1 shows the analogy

between the artificial neuron (the perceptron) and the biological neuron.

A biological neuron receives electrical signals from other neurons through dendrites.

The neuron’s nucleus produces an output signal based on the signals provided by den-

drites. The neuron fires an output signal when the total strength of the input signals

exceeds a certain threshold. This output signal is carried away by the axon. In the artifi-

cial neuron model (the perceptron), the neuron takes a set of inputs, multiplicates each

of them by a weight value, and sums these weighted values. The sum is thresholded
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Figure 2.1: Analogy between the biological neuron (left) and the perceptron (right).

to output 1 or 0, depending on the value. A bias value is added to be able to offset the

summed value. Equation 2.1 defines the perceptron mathematically.

y = f (
∑

i
wi · xi + b) (2.1)

where xi are the input data, wi are the weights, b is a bias value, and f is the acti-

vation function that, in this case, outputs 1 if the input is bigger than 0 and 0 on the

contrary (step function). The specific values of the weights and the bias are defined

after an optimization process, where data are fed to the mathematical model, and the

optimal parameters are estimated for minimizing a predefined loss function. The way

that the perceptron learns the weights and the bias is one of the first supervised learn-

ing methods for neural networks. During this phase, some input values are fed to the

model, as well as some expected outputs. If the output of the model for a set of weights

and bias values does not result in the expected output, we adjust the values to minimize

the difference (error) iteratively. This stage is referred to as the training of the model.

The perceptron’s parameters (weights and bias) are learned in a supervised way be-

cause we use inputs and the expected outputs for each input. For each sample, we

know the category it should belong to, and we use this information to find the optimal

parameters.

The perceptron can be used as a binary linear classifier. Suppose we have a set of

data with positive and negative examples which are linearly separable (Figure 2.2 (left)).
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In that case, we could use a perceptron to find a separation hyperplane in the data. Once

we find the hyperplane, given any new sample, we can classify it into the corresponding

category. However, in the real world, most problems are not linearly separable (Figure

2.2 (right)). In order to solve non-linear problems, multi-layer perceptrons (MLP) and

non-linearity functions are introduced.

Figure 2.2: Linearly separable data (left) and non-linearly separable data (right).

2.1.2 The Multi-layer Perceptron

The inputs to a perceptron might be some input data or the output of another percep-

tron. Putting together different perceptrons, we build an MLP. The MLP is a group of

perceptrons stacked in several layers. Figure 2.3 shows an MLP with three layers. The

outputs of each perceptron in the first layer (input layer) are fed to all neurons in the

second layer (hidden layer). The hidden layer outputs are the input to the final layer

(output layer). Each signal from one perceptron to another is multiplied by different

weights w . In the MLP, the connections between nodes do not form a cycle, the infor-

mation moves in only one direction (forward) from the input nodes to the output nodes.

When a network meets this condition, it is called a feed-forward network.

The MLPs can have a different number of hidden layers, and each layer can have

a different number of perceptrons or neurons. The activation functions of each neu-

ron can be linear or not. Adding non-linearity functions to the model enables learning

non-linear relationships in data, which are often found in real-world data. There are

multiple possible non-linear activation functions. Some common functions are the

following ones.
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Figure 2.3: Multi-layer perceptron architecture.

Rectified Linear Unit (ReLU): The function ReLU provides the same value as the

input when it is positive and a value of zero for negative input values. The neuron is not

activated for negative values (Equation 2.2).

f (x) = max(0, x) (2.2)

The ReLU function cannot learn via gradient-based methods on examples for which

the activation is zero. The weights and biases for some neurons are not updated during

the optimization process. Therefore, different alternatives of the ReLU exist based on

using a non-zero slope for negative values.

Leaky Rectified Linear Unit (Leaky ReLU): Leaky ReLU is defined to address the

gradients problem for negative values in ReLU [47]. It returns small values instead of

zero for negative input values (Equation 2.3). In Leaky ReLU, α is fixed to a small value

like 0.01, but a variant of the Leaky ReLU, called parametric ReLU (PReLU), treats α as a

learnable parameter [48].

f (x) = max(αx, x) (2.3)

Sigmoid / logistic activation function: Before introducing the ReLU function, most

neural networks used the sigmoid or hyperbolic tangent activation function. The sig-

moid function takes a real value as input and outputs a value from 0 to 1 (Equation 2.4).

The output saturates across most of the function domain, and it is sensitive to the input

when it is near 0.
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f (x) = 1

(1+ex)
(2.4)

This function can transform a value into a probability from 0 to 1. The function is

differentiable, but the gradients of the function are only significant in the value around

zero, so bigger and smaller values will have very small gradients. The neural network

stops learning as the gradient approaches zero and suffers from the vanishing gradi-

ent problem. For this reason, using this function as an activation function is not very

common in modern feed-forward networks.

Hyperbolic tangent activation function (Tanh): Like the sigmoid, the Tanh func-

tion converts the input values to the range from -1 to 1 (Equation 2.5). However, the

Tanh activation is zero-centered and might lead to faster convergence.

f (x) = ex −e−x

ex +e−x
(2.5)

Softmax: The softmax function is usually used as the function in the output layer

but might also be used as the activation function in some hidden layers. The softmax

function converts a vector of n real numbers into a probability distribution of n possible

values. It is mathematically defined in Equation 2.6.

f (xi ) = exi∑n
j=1 ex j

f or i = 1,2, . . . ,n (2.6)

Many other activation functions are possible but are used less frequently.

If an MLP or neural network does not include activation functions or all of them are

linear, it will perform a linear transformation on the inputs using the weights and biases

no matter the number of hidden layers. The reason is that the composition of two linear

functions is linear. In the classic perceptron, the decision function is the step function

that gives a binary output. Still, other activation functions can be used to output real

values, for example, between 0 and 1 or between -1 and 1.

The three-layer MLP is a shallow neural network. The length of the network is called

the depth and is the reason behind the term deep learning. When the MLP has four

or more layers, it is a DNN. ANNs are composed of multiple processing layers, the in-

put layer, multiple hidden layers, and the output layer, as shown in Figure 2.4. In each

layer, there can be a different number of neurons. ANNs can be used as good function
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approximators. The universal approximation theorem [49] states that regardless of

what function we are trying to learn, there exists an MLP large enough able to represent

that function. However, this does not mean success in learning that function, as the

optimization might fail for different reasons.

Figure 2.4: Artificial neural network architecture.

2.1.3 Deep Learning Era

As described in the previous section, DNNs and deep learning are not new. The research

of ANNs has gone through different names, which reflect the influence of different

researchers, perspectives, and advances. There have been three main waves of de-

velopment of deep learning [50]: cybernetics (the 1940s–1960s), connectionism (the

1980s–1990s), and the current renaissance under the name deep learning, which started

in 2006. The interest in ANNs in previous waves was lost or diminished because of differ-

ent limitations, such as the constrained performance of the initial models, mathematical

difficulties, or the lack of computational resources.

The current wave of neural networks began in 2006 with the work that showed how a

kind of many-layered feed-forward network, called a deep belief network, could be effec-

tively trained using a strategy called greedy layer-wise pretraining [51]. The revolution

of deep learning exploded in 2012 when a convolutional neural network (a type of DNN)

proposed by [27] won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
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[26] by a large margin over previous methods. The image classification state-of-the-art

top-5 error decreased from 26.1% to 15.3%. In the following years, new neural networks

continue beating the record. By 2015, the best model had better-than-human accu-

racy [48]. DNNs started outperforming competing machine learning systems based on

other technologies in different competitions and impacting diverse fields in addition to

computer vision, such as speech recognition [52] or robotics [17].

The main reasons behind the resurge and success of the DNNs are the large-scale

data availability, the computational resources, and the improvements in the technique.

The increasing digitization of society has made it easier to centralize data and generate

appropriate datasets for machine learning applications. The age of Big Data has en-

abled it to generate datasets of millions of labeled samples [26, 41]. Another important

fact is that today we have the computational resources to work with much larger mod-

els. Regarding the number of neurons of ANNs, it has been small until quite recently

but has increased rapidly in the last few years. The increase in model size over time has

been possible thanks to faster CPUs, GPUs, and better software infrastructure. Faster

computers with larger memory and the availability of larger datasets drive the models’

growth.

Currently, the wave of popularity of deep learning continues. Many technology

companies such as Google, Microsoft, NVIDIA, or IBM use deep learning in their appli-

cations. Advances in deep learning also depend on the software libraries that support

its deployment and research, such as Tensorflow [53] or Pytorch [54].

2.2 How a Deep Neural Network Learns

Deep learning is learning relations and patterns from data with DNNs. This learning

process is called training. Training a DNN involves using an optimizer to find a set of

network parameters that maximizes or minimizes a predefined objective. This process

consists of having a training dataset, a designed DNN model, defining a cost function,

and implementing an optimization process to estimate the model’s optimal learnable

parameters (weights).

We must know how close or far we are from that objective to maximize or minimize

an objective. We measure how close or far we are with an objective or loss function. The

loss measures the error incurred from incorrect predictions of the model compared to
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Table 2.1: Common last-layer activation and loss functions for training DNNs for different
tasks.

Problem type Last-layer activation Loss function
Binary classification sigmoid binary cross-entropy
Multiclass, single-label classification softmax categorical cross-entropy
Multiclass, multilabel classification sigmoid binary cross-entropy
Regression to arbitrary values none mse
Regression to values between 0 and 1 sigmoid mse

what we expect. For example, the loss function can be the mean squared error (mse) be-

tween the model’s predictions when classifying some images and the output expected

for those inputs (the ground truth, the real categories of those images).

The choice of the loss function is tightly coupled with the selection of the output

unit of the model. To compute the difference between the predictions and the ground

truth in the final layer of the DNN, the output signal must be transformed into an appro-

priate format (e.g., from arbitrary numbers to class probabilities). This transformation

is done using an activation function, which depends on the target task and is also re-

lated to the loss function. Table 2.1 shows the most common last-layer activation and

loss functions for different problems.

Sigmoid and softmax functions (Section 2.1) transform values to 0 and 1 considering

two possible classes or n, respectively, so they are used to provide probabilistic outputs.

Regarding the loss functions, binary cross-entropy compares the predicted probabilities

to the expected output (0 or 1) and computes a penalization score based on the distance

from the expected value. The binary cross-entropy loss L for a sample x is defined in

Equation 2.7.

L(x) =−(y log(p)+ (1− y) log(1−p)) (2.7)

The ground truth label y is 0 or 1, while the predicted probability p for the specific

category ranges from 0 to 1. The categorical cross-entropy is the extension of binary

cross-entropy to multiple classes. Apart from the loss functions in Table 2.1, other

possible loss functions exist depending on the problem type.

The loss function measures how good or bad the model performs, which is used

in the optimization process to update the weights of the DNN towards a better set of

values for solving the target task. One of the most common algorithms for solving the
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optimization is stochastic gradient descent, where model weights are updated each it-

eration using the backpropagation of the model’s error in the corresponding iteration.

The backpropagation process [55] computes the gradient of an objective function with

respect to the weights of the model using the chain rule for derivatives. The gradient

or derivative of the objective for the input is computed by propagating the gradients

through all layers, starting from the output of the network to the input layer. The loss

for a batch of samples xi is computed during the training for a set of weights θ in the

called forward pass, then the gradients are computed in the backward pass, as shown in

Figure 2.5. The derivatives with respect to the weights are used to update the weights.

Figure 2.5: Training process of a DNN. In the forward pass the predictions of the model for
a sample xi and a set of weights θ are used to compute the loss. In the backward pass, the
gradients of the loss with respect to the weights of the model are computed using the chain
rule.

The weights for the next iteration wt+1 are updated based on the current values wt

and the computed gradients with respect to the weights to be updated (Equation 2.8).

wt+1 = wt −λ ∂L

∂wt
(2.8)

Note that the optimization process involves defining additional hyperparameters,

such as λ, which is the learning rate and defines how fast weights will be updated. There

are other hyperparameters, such as the number of iterations to train the model or the

batch size (number of samples processed in each forward pass before computing gradi-

ents). There also exist other gradient-based possible optimizers which present different

properties (e.g., Adaptive Gradient Descent [56]).
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Ideally, after we train the DNN, it must perform well on new previously unseen in-

puts, not just those included in the training dataset. The ability to perform well on

those new inputs is called generalization. There are two possible reasons why the model

converges but does not generalize. Overfitting happens when the gap between the train-

ing and test errors is too large because the model adjusts too much to the seen data.

The model memorizes the training data, but it cannot do correct estimations on the

new data. Underfitting happens when the model cannot get enough low error values,

not even on the training set. The model can neither model the training data nor gen-

eralize to new data. Figure 2.6 shows how a function looks like when it suffers from

underfitting (left), overfitting (middle), or has a good fitting to data (right).

Figure 2.6: Model with underfitting to data (left), overfitting (middle), and a right fitting to
data (right).

Different techniques can be used to handle these problems, for example, choosing a

more complex model to reduce underfitting or using regularization during the training

[57] to reduce overfitting. Reducing overfitting to the training data and ensuring the

model can generalize is one of the key challenges of deploying a good machine-learning

model. However, often the key is to have an appropriate dataset with enough samples,

variability, and problem representation.

2.3 Types of Deep Neural Networks

There are different kinds of DNNs depending on their structure and the data flow. If

the information flows forward from the input data to the output without feedback con-

nections or loops, it is classified as a feed-forward network. Otherwise, they are called

recurrent neural networks (RNNs). RNNs use sequential data as input or output and are

widely used in fields such as natural language processing (NLP). Among feed-forward
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networks, one of the most common types is the Convolutional Neural Network (CNN)

[58], used across different applications and domains. CNNs are especially established

in image and video processing tasks but are also well suited to other spatial or temporal

signals, such as sounds. Other architectures, such as Transformers [59], are also gaining

popularity in recent years. Even if the architectures of the possible DNNs are different,

they share some common layer types.

Linear layers. The linear layers of the DNNs contain almost all the learnable param-

eters of the network. A basic linear operation in a DNN looks like Equation 2.9.

xout =W · xi n +b (2.9)

where W and b are the learnable weights and biases, respectively.

Activation layers. Non-linear activation layers add nonlinearity to the DNNs. Com-

monly parameters of these layers are not learned, but they can be. Some common

activation functions are sigmoid, ReLU, or leaky ReLU (Section 2.1.2).

Normalization layers. Normalization layers modify the neurons’ values based on

the collective behavior of a group of neurons. For example, batch normalization stan-

dardizes feature maps with respect to the mean and variance over a batch of samples

[60]. Batch normalization can provide faster convergence of the DNNs.

Output layers. As explained in Section 2.2, output layers map a high-dimensional

vector of values to the desired output representation (e.g., class probabilities).

Among DNN types, CNNs show state-of-the-art accuracy in many tasks for different

fields [61, 62] and are the most used networks for visual perception tasks. Due to their

relevance for perception systems, we introduce them next.

2.4 Convolutional Neural Networks

The data has a special structure in different domains, and specific architecture designs

can help exploit that structure. CNNs are a neural network type designed for the struc-

ture in visual signals (e.g., images) or data with grid-like topology. Time-series data can

also be treated as a 1D grid taking samples at specific time intervals. If there is a possi-

bility to scan across the input signal, like a sliding window, then CNNs might be used.

CNNs are neural networks that have at least one convolutional layer.
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In the neural networks seen so far, each input is connected to each unit in the fol-

lowing layer. These types of layers are also known as fully connected layers. When

using these layers, as the model size increases, the number of weights to learn increases

quickly. In addition, the same features are learned for every position in an image.

Convolutional layers are motivated by both issues and have the following properties.

Sparse connectivity. CNNs have sparse interactions or connectivity, which means

that each neuron is not connected to all the units in the following layer. Considering

that all the weights applied to a neuron’s values are structured in a kernel, we obtain

sparse connectivity using a kernel smaller than the input dimension. When the con-

nectivity is not sparse (Figure 2.7, left), each unit interacts with all the units in the next

layer. When the connections are sparse (Figure 2.7, right), only some outputs are af-

fected by the input x, as units are locally connected. How many inputs affect a specific

neuron depends on the kernel size and defines the receptive field of that neuron for the

corresponding layer.

Figure 2.7: Difference in not sparse (left) and sparse (right) connectivity between neurons
of consecutive layers.

Parameter sharing. In convolutional layers, each member of a learned kernel is

used in every position of the input rather than learning a separate set of weights for

every position. We can think of it as a kernel that works as a sliding window over the

input data. This makes the model much more efficient regarding memory requirements

and efficiency. In addition, the parameter sharing causes the operation to be equivari-

ant to translation (not to scale or rotation). A function is equivariant if when the input

changes, the output changes in the same way.

The typical structure of a basic CNN is composed of an initial stage with stacked

convolution, non-linearity, and pooling layers, repeated n times, followed by some final

fully-connected layers, as shown in Figure 2.8.
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Figure 2.8: Basic CNN architecture scheme composed of convolution, non-linearity, pool-
ing (downsample), and fully-connected layers for image classification.

Convolutional layer. The operation in a convolutional layer can be defined as a

weighted sum of a kernel and a patch of the input data of the same size, as shown in

Figure 2.9. Note that the input and output data are represented as matrices, which is

closer to how the data are handled in practice, but they could also be visualized as in

Figure 2.7 (each value would be a neuron unit).

Figure 2.9: Example of the convolutional layer. The kernel is applied to the first patch of the
input data to generate an output value. The operation will be repeated, sliding the kernel
over the input data to get an output feature map.

Generally, convolutional layers apply a kernel group to a multi-channel input signal

to produce a multi-channel output signal. This is mathematically defined in Equation

2.10.

xoutk =
C∑

c=1
wk,c · xi nc +bk (2.10)

where xoutk is the output of channel k, which is called output feature map. xi nc is
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the channel c of the input data. The kernel bank comprises the multi-channel kernels

(also called filters) [w1, . . . , wk ]. Each filter applies a convolution operation per channel

c and sums the responses over the channels. The channels’ number C when we have

an RGB image is 3, but a different number if the input data are another type of data or

feature maps from a previous layer.

The output dimensions depend on the kernels’ size, the stride, and the padding. The

padding adds extra pixels of filler around the boundary of the input image, increasing

the effective size of the image and helping to preserve the input data’s dimensionality or

control the output dimensions. Regarding the stride, it defines the number of rows and

columns traversed per slide when sliding a kernel over the input data. Using a stride

bigger than one increases the computational efficiency and downsamples the data.

Note that the values of the kernels are the weights that should be learned during the

model training phase. Depending on their values, different features will be extracted

from the data. Figure 2.10 shows that, for example, depending on the values of the ker-

nels, different edges, such as horizontal or vertical ones, can be extracted. The output

images after applying the filters are the feature maps. During the training, the filter

values are optimized for estimating the most helpful features for solving a predefined

task.

Figure 2.10: Example of different features extracted from an image when kernels with differ-
ent values are applied. It can be seen that depending on the values, specific edges, such as
horizontal or vertical, stand out.
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Pooling layer. The pooling layer downsamples the data by dividing the data into

patches of a predefined shape (kernel size) and summarizing the information in each

patch using some statistics, such as the patch’s mean value (mean pooling) or the

maximum value (max pooling). Figure 2.11 shows this operation.

Figure 2.11: Example of mean-pooling and max-pooling operations applied to an input
feature map.

The pooling layer reduces the input feature map’s resolution and helps make the

representation invariant to small translations of the input. If we translate the input data

by a small amount, the values of most of the pooled outputs do not change.

Global pooling layers reduce to the extreme the input data by pooling over the entire

dimensions of the feature maps. The global pooling reduces an input feature map with

width W , height H , and C channels to a vector of length C .

Fully connected layer. In the fully connected layers, all the nodes from a layer

are connected to all the units in the following layer, as seen previously for the MLP.

These layers are generally at the end of the CNN to obtain the final outputs (e.g., image

classification).

CNN architectures have evolved from the baseline CNN presented here to improve

different aspects, such as higher accuracy or more efficiency [27, 28, 29]. Thanks to

these advances, big progress has been made in many tasks in computer vision, such

as face recognition [63] or pedestrian detection [64]. The progress in the last years,

thanks to CNNs and other network architectures, provides an opportunity of develop-

ing a wide range of new applications. The DNN is the key element in many vision-based

perception systems, but its development is not limited to the DNN architecture design.

It entails different stages, where each consecutive stage affects the rest of the flow. Each

stage involves different challenges and open questions crucial to the system’s success.
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If you only read the books that ev-

eryone else is reading, you can only

think what everyone else is think-

ing.

Haruki Murakami CHAPTER

3
Related Work

3.1 Overview

As explained in the previous chapter, deep learning models have made big progress in

many areas, fueled by the advancement of DNN architectures, powerful computation,

and access to big data. DNNs have been successfully applied to computer vision for

tasks such as object detection, classification, and tracking, thanks to the development

of CNNs [65, 66]. Training and testing a DNN involves a lifecycle, during which data

are a key element of the process (Chapter 1). Data can be obtained using different sen-

sor modalities and can include samples from the real world or synthetically generated

samples. Both possibilities involve challenges and advantages, currently open research

topics.

The sensor setups used for perception systems rely on different sensor modalities to

capture the required signals from the environment. Each sensor and the data obtained

from those signals have different properties that affect both the design of the sensor

setup and the DNN (Section 1.3.2).

This chapter presents an in-detail study of the different sensor devices to capture

information about an environment in vision-based perception systems. Additionally,

we present the various sources for obtaining data for deep learning: data capture,

large-scale datasets, and synthetic data generation.
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3.2 Multimodal Data for Perception Systems

A machine learning-based system’s final goal and requirements set the information that

must be captured from the environment and the possible sensors that provide that.

Most of the time, there is more than one possible sensor type for solving a task, but each

has different properties, advantages, and drawbacks. The automotive field is a represen-

tative case to see how multimodal setups are used to solve different or the same tasks

with various sensor types, making use of their advantages and properties to get a robust

representation of the environment (Section 1.3.2).

3.2.1 Automotive Use Case

In the last decade, self-driving vehicle research has gained large attention. Advances in

algorithms, along with improvements in sensor technology, are promoting the race to

develop driverless vehicles. Efforts are not only focused on achieving total autonomy.

Advanced Driver Assistance Systems (ADAS) have become part of most recent vehicles,

such as automatic parking assistance or traffic sign recognition [18]. They promote a

human-machine interaction environment that combines the complementary strengths

of humans and machines to achieve higher performance than each. Big progress in ma-

chine learning has played a key role in the uprising of both paradigms, most thanks to

high-level feature extraction based on deep learning, which has also attracted strong

investments and efforts in the sector. However, the promise of safer, more efficient,

and more comfortable vehicles has been in the mind of researchers for decades. By the

1960s, AI pioneers started imagining driverless cars, and many institutions worldwide

initiated projects to develop Intelligent Transport Systems (ITS). The idea of using dif-

ferent sensor modalities for driving, as well as ANNs, was already in the mind of some

scientists. In 1989, Pomerleau [67] proposed the first self-driving system based on a

3-layer ANN. The system was fed with images from a camera and a laser range and

was able to estimate the direction the vehicle should follow. Autonomous vehicle de-

velopment has continued over the years in an evolutionary rather than revolutionary

manner. ADAS have become part of most recent vehicles, such as automatic parking

assistance or traffic sign recognition. Backed and promoted by big advancements in
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machine learning and technology development, the space for possible achievements

has expanded.

Deep learning algorithms have quickly become a method of choice for most ma-

chine learning problems. Deep learning has been widely applied to the field of driving

in recent years, frequently to process data coming from a single sensor modality, most

of the times cameras [68], and in some cases to process data from various modalities,

for example, RGB and thermal cameras [69]. Even if some works have been recently de-

veloped for the last case, there is still a lot of uncertainty on how to process and combine

data from heterogeneous sensors in the best way.

3.2.2 Sensor Modalities for Driving

Intelligent vehicles understand their surrounding based on the information fed to their

computer system by processing signals from their external sensors. Various technolo-

gies are needed to have enough data to detect, predict and react to the surrounding

environment factors, such as other road users. The range of possible sensors is wide, as

shown in Figure 3.1, and each one presents specific strengths and limitations. Never-

theless, the combination of sensor modalities provides loads of both complementary

and redundant data, which favors their use in safety-critical environments. The most

common sensor types are depicted in Figure 3.1 and described in the sequel.

Figure 3.1: Frequent sensors self-driving research vehicles are equipped with.

Light Detection And Ranging (LiDAR): This laser-based system measures distances

to surrounding objects sending out high-speed pulses of laser light and calculating the

reflection time of the beams. The collision location between an object and the laser
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beam is represented as a point in a 3D point cloud. There are two main trends in models:

systems that use a rotating laser, or solid-state LiDARs, which have no moving parts.

They cover high distances accurately, usually more than 100 meters up to 200 meters

range. It is not affected by different lighting conditions. However, it is not able to per-

ceive color or textures. It can provide noisy measurements when suspended particles,

such as rain, fog, or snow, are present in the air. LiDARs allow an accurate 3D analysis

and are mainly used for mapping, obstacle avoidance, free space detection on the road,

and localization [70, 71].

Vision Cameras: Multiple cameras are often installed in vehicles to have a detailed

sight of the environment, covering the front or back view or even 360◦ around the

vehicle.

They cover a medium distance. Cameras preserve detailed semantic information

about the surrounding, making it possible to interpret objects like traffic signs. They are

sensitive to lighting conditions, do not work well at nighttime or in dazzling sunlight,

and often acquire poor-quality images under unfavorable weather conditions. Cameras

need to be calibrated to address 3D measurements. They are mainly used for object de-

tection, road guidance, and park assistance [68, 72]. Internal cameras are also common

for driver monitoring.

Thermal Cameras: Thermal cameras detect the heat from pedestrians, animals, and

objects and, consequently, the differences in temperatures emitted by living and inani-

mate objects. Although this sensor has been widely applied to different fields for years,

its use is not so widespread for self-driving research.

They cover a medium distance. These cameras are advantageous to help edge cases,

where some sensors might have difficulties, for example, differentiating between im-

ages of humans and real ones, as well as poor lighting scenes when vision cameras have

problems. They are mainly used for object detection [69].

Ultrasonic Sensors: Ultrasonic sensors send out sound waves at a high frequency

imperceptible by the human ear and measure the time it takes for the signal to return.

This way, the distance to an object can be calculated.

They cover short distances. Due to the sensing fundamentals, air temperature, hu-

midity, and wind can affect the sensor’s accuracy, as they affect the speed of sound in

the air. They are employed for short-distance applications at low speeds, such as park

assistance or close obstacle and blind spot detection [73].
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Radio Detection And Ranging (Radar): This sensor emits radio waves which are

reflected when they hit an obstacle, revealing the distance to the object and how fast it

is approaching. Radar can be categorized based on different operating distance ranges,

starting from 0.2m to more than 200m, in Short Range Radar (SRR), Medium Range

Radar (MRR), and Long Range Radar (LRR).

They are affected much less than other sensors by weather conditions, such as rain,

fog, dust, and snow. Nonetheless, they can be confused by small very reflective metal

objects. They do not provide any information about detected object types. They are

usually used for very close obstacle avoidance [74].

Global Navigation Satellite System (GNSS): It is a global localization system that

triangulates multi-constellation satellite signals to calculate the 3D position of the re-

ceiver (its latitude, longitude, and altitude). Currently, the considered GNSS providers

are GPS, GLONASS, and Galileo.

The absolute position provided by this technology is affected by several error sources,

such as lonosphere, multipath effect, or urban canyons. Therefore it is not enough to

achieve lane-level accuracy. The position is usually enhanced by either using Differ-

ential GPS or fusing its information with inertial sensors like Inertial Measurement

Units (IMUs) and accelerometers. It is used for localizing the ego vehicle and path

planning [75].

In addition to external sensors, internal vehicle parameters also provide a very

relevant information source for driving. These signals are available through the vehi-

cle’s Controller Area Network (CAN) bus and include parameters such as wheel speed,

acceleration, steering, and powertrain values.

In the last years, vehicle communication with the cloud has been included in the

intelligent driving scenario due to the possibility of sharing real-time map data and

anticipating different situations. Information exchange with other vehicles or infrastruc-

tures is also considered in cooperative systems [76] through the use of vehicle-to-vehicle

(V2V) and infrastructure-to-vehicle (I2V) communication.

Signal capturing and processing from the aforementioned sensor modalities is a

complex task, which requires addressing various aspects such as sensor capturing syn-

chronization. Some libraries and tools exist that help in this procedure, mainly in

capturing, recording, and managing sensor timestamps or integrating developed ap-

proaches. Among the most frequent ones, we find RTMaps [77], ADTF [78], and ROS [79].
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At the same time, some public datasets provide already captured multisensory data that

is ready to be used by researchers who want to start deploying their approaches.

3.3 Large-scale Datasets

Big amounts of data have been crucial for DNNs’ success. Large datasets have played

an important role in the advances and development of DNNs. Annotated data are in-

dispensable not only for developing and training deep learning models but also for

generating a quantitative evaluation of them. However, collecting large amounts of an-

notated data with quality is tedious and complex work, and it is often beyond the reach

of researchers. In an effort to alleviate these needs, some large datasets have been made

public.

ImageNet [26] is one of the most popular datasets for deep learning, with more than

14 million hand-annotated images. The ILSVRC uses a subset of the ImageNet dataset

and is the most popular benchmark for image classification algorithms. MS COCO [80]

is another large-scale generalist dataset focused on object detection, segmentation,

and captioning of objects in a natural context. OpenImages [41] contains 9 million

annotated images with a high variety of classes (more than 6000).

Apart from generalist datasets, there are also large-scale datasets focused on spe-

cific tasks. For example, for people detection, there are different available annotated

datasets (e.g., [81, 82, 83]). Most of these datasets provide images from a vehicle per-

spective [82] or tilted surveillance cameras [83]. However, when the application setup

differs remarkably, these data might not be useful. For example, frequent surveillance

setups include omnidirectional cameras, which provide a top-view perspective of peo-

ple. Data from omnidirectional cameras are scarce, and datasets for training people

detection CNNs from this perspective are sparsely available. Recently, some studies

have opened their datasets of fish eye images for people detection [84], but they only

cover setups with cameras installed at a very low height. If we would like to train a DNN

for this task, for example, to monitor people flow in big infrastructures such as airports,

we would face a data lack problem.

Other large-scale datasets are focused on specific fields, such as automotive. In this

case, the value of the datasets is not only related to the data quantity or quality and the
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Table 3.1: Sensor modalities in large-scale automotive datasets.

Dataset Relevant information
Vision
Camera

Thermal
Camera

LiDAR
GNSS/
IMU

Radar
Internal
parameters

KITTI [85]
6 hours of recordings,
multi task annotations

! ! !

CityScapes [86]
segmentation benchmarks,
coarse and accurate labels

!

TorontoCity [87]
multitask annotations.
various perspectives

! !

Paris-Lille [88]
point cloud segmentation
and classification

! !

RobotCar [89]
recorded in Oxford
through a year

! ! !

Comma.ai [90]
11 videos,
mostly on highway

! ! !

BDDV [91]
400 hours of HD video,
multitask annotations

! ! !

Mapillary [92]
segmentation annotations,
66 classes

!

KAIST [93]
multispectral, bounding
box annotations

! ! ! !

NuScenes [94] 3D bounding boxes (360° coverage) ! ! ! !

tasks and scenarios they include but also the sensor modalities they consider. It is com-

mon to use multimodal models for driving applications, which presents an additional

difficulty for data gathering. Many of the open datasets are focused on solving a specific

problem and do not include data from all desired sensor modalities. Table 3.1 summa-

rizes the most recent and relevant real-world datasets for the driving context within the

sensor modalities they include and the most relevant information. None of the datasets

contains data from the ultrasonic sensor.

However, generalist datasets do not cover all possible computer vision tasks for all

possible use cases. Smart video surveillance systems, for example, may need to cover

specific use cases or camera perspectives that are not available in any open dataset.

Training techniques that rely on pretrained DNN models, such as transfer learning,

fine-tuning, or BiT [95], can be used to benefit from models already trained with gener-

alist datasets and avoid collecting and annotating big amounts of data. Moreover, works

like [96, 97, 98] suggest that pretraining on domain-specific datasets improves accuracy

compared to generalist datasets.

Other techniques, such as few-shot learning [99], try to train DNNs using a lim-

ited number of samples per target category. However, this does not avoid the need for

data specific to the target task, which could be recorded by replicating the sensor setup

47



DATA-CENTRIC DESIGN AND TRAINING OF DEEP NEURAL NETWORKS WITH
MULTIPLE DATA MODALITIES FOR VISION-BASED PERCEPTION SYSTEMS

and the target scenarios. In these situations, usually, it is common to capture redun-

dant samples, for example, because the captured scene remains the same for some

time. Data with the same content add less additional information than data with new

content, but beyond this, they can be problematic during the DNN training. The redun-

dant data can lead to model overfitting during the training process. Data need to be

representative.

3.4 Synthetic Data for DNN Training

Capturing data typically involves collecting and manually annotating a large amount of

data for supervised learning. DNNs have achieved excellent results using large-scale

supervised learning approaches in which a large amount of labeled data sets are usually

required for training [28, 100]. Typically, the more data we have available, the better is

their performance. In this context, collecting such an amount of data can be challenging

specifically for two principal reasons.

First, we face compliance with privacy-related regulations in some countries, such

as the ’General Data Protection Regulation’ (GDPR) of the European Union. The data

collection process should put in place appropriate technical and organizational mea-

sures to implement the data protection principles, such as data protection or data

anonymization.

Second, the time and cost that we need to devote to the data collection process, con-

sidering that not only the quantity is important but also the variety and balance to cover

all possibilities during training appropriately. In most cases, the data cannot be directly

extracted from the Internet since we are trying to solve a particular problem in a specific

scenario with a specific camera setup. Thus, custom data sets need to be created. This

implies the execution of several actions such as data set specification, camera setup

installation, technical preparation, recording protocols, and even actors simulating pre-

cise guide notes. All these actions, together with the well-known problem of labeling

data [101] due to the lack of effective tools and/or the annotation complexity, make the

data set generation process more challenging.

In addition, some applications may involve capturing data in dangerous situations

to develop intelligent systems, for example, in the automotive industry.
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Even if all these difficulties are overcome, the need for labeled data involves an expen-

sive and time-consuming annotation process, which can make the dataset-gathering

process unaffordable. For all these reasons, synthetic data generation has gained in-

creasing popularity for training DNNs [102, 103, 104].

3.4.1 Synthetic Public Datasets

Currently, there exist different public synthetic datasets available to train DNNs. For

example, the Virtual KITTI dataset [102] includes different environmental conditions,

camera position, and instance-level segmentation ground truth for analyzing multi-

object tracking in driving scenes. The SUNCG [105] and the Matterport datasets [106]

are 3D model repositories for indoor scenes in perspective views focusing on depth,

physical-based rendering, and volumetric ground truth. The Synthia dataset [107],

based on a virtual city, includes automatically extracted pixel-level and instance-level

semantic annotations in both videos and independent snapshots. The THEODORE

dataset [6] is a large-scale top-view indoor dataset containing 100,000 fish eye images

with 16 classes, including people. Like real datasets, it is limited to small 3D virtual

environments (living rooms) and with a low-camera setup. The distortion of the im-

ages and the number of people differs notably from large spaces because of the camera

position and the small region captured. As with the datasets containing real data, the

mentioned datasets are limited to specific use cases and tasks. Developing a model for

a new custom application is prone to require generating new data.

3.4.2 Synthetic Data Generation Techniques

The techniques used to generate the previously mentioned datasets are widespread in

the literature. As stated in [42], synthetic data can be generated following different strate-

gies, such as compositing real data, relying on generative models, or using simulated

environments. Some techniques are oriented to the specific network that will make use

of them. These methods are task-aware since they generate hard examples that help

improve the target network performance. One of the main techniques in this class is

image composition. Some cut-and-paste approaches are those in [108] to synthesize

positive examples for object detection tasks. The advantage of these approaches comes
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from generating novel and diverse juxtapositions of foregrounds and backgrounds that

substantially increase the available training data. The approach in [108] was the first to

demonstrate boosts in performance through the cut-and-paste procedure.

In some other techniques, synthetic data generation is decoupled from training

the target model. They range from photo-realistic image rendering [109] and learning-

based image synthesis [110] to methods for data augmentation that automate the

process of generating new example images from an existing training set [111]. Tradi-

tional approaches to data augmentation have exploited image transformations that

preserve class labels [112] while recent studies [111] use a more general set of image

transformations, even including compositing images.

Simulated 3D environments. The recent survey on synthetic data for deep learn-

ing [42] shows that in the last years there has been a shift from static synthetic datasets

to interactive simulation environments, grouped in the following categories: (1) out-

door urban environments for learning to drive, (2) indoor environments and (3) robotic

and aerial navigation simulators. Current state-of-the-art environments have been

built upon Grand Theft Auto V (GTA V) [4], Unity3D [6, 113], Unreal Engine [5, 114],

CityEngine [115] or Blender [116], among others. Some of these simulators are shown in

Figure 3.2.

Figure 3.2: Different simulation 3D environments. From left to right: PreSIL [4], Vivid[5],
THEODORE [6].

GTA V is an action-adventure video game with realistic graphics of a large detailed

city and surrounding areas from which diverse data can be extracted, involving virtual

people, animals, cars, trucks, motorbikes, planes, etc. As stated in [113], the main draw-

back of video-game-based environments is the limited freedom for customization and

control over the scenes to be captured, which makes obtaining a large diversity and
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good balance of classes difficult, due to the rather complicated procedure required to

obtain ground-truth instance-level annotations.

On the contrary, [113] claims that their environment, built upon the game engine

Unity3D, can be set up by one person in one day. This is very little effort, consider-

ing that it allows access to a virtually unlimited number of annotated images with the

object classes of state-of-the-art real urban scene datasets. It captures synthetic im-

ages and instance-level semantic segmentation maps at the same time and in real time,

with no human intervention. While generating the data, it renders the original textures

and shaders of included 3D objects and other automatically created unique ones for

their corresponding instances. Unity3D is also the basis of the indoor environment

proposed by [6] for generating synthetic data for object detection from an omnidirec-

tional camera placed on the ceiling of a room. The 3D assets are generated using the

skinned multi-person linear model proposed in [117]. This work points out that Unity3D

only provides a camera model for perspective and orthographic projection. They over-

come this limitation by combining four perspective cameras following the procedure

proposed in [118].

[5] proposed a universal dataset and simulator of outdoor scenes such as pedestrian

detection, patrolling drones, forest fires, shooting, and more. It is powered by the Un-

real Engine and leverages the AirSim [114] plugin for hardware simulation. The TCP/IP

protocol is used to communicate with external deep learning libraries. As it is focused

on training dynamic systems relying on deep reinforcement learning [119], it prioritizes

the real-time interactivity of the virtual agents over photorealistic rendering. This dif-

fers from static systems for surveillance applications, like those that motivate this work,

in which, at least for the data generation process, achieving a better rendering quality is

more important than the real-time interactivity during training.

CityEngine is a program that allows the generation of 3D city-scale maps procedu-

rally from a set of grammar rules. It is used in [115] as part of their method to generate an

arbitrarily large, semantic segmentation dataset reflecting real-world features, includ-

ing varying depth, occlusion, rain, cloud, and puddle levels while minimizing required

effort.

Blender is an open-source 3D graphics software with Python APIs that facilitate

loading 3D models and automating scene rendering. It was used in [116] to generate a

dataset to train a DNN-based detector for recognizing objects inside a refrigerator. It
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used Cycles Render Engine available with Blender. This engine is a physically-based path

tracer that allows getting photorealistic results, which is beneficial for avoiding a big

domain gap between the feature distribution of synthetic and real data domains.

In self-driving and ADAS, simulation has an additional application besides getting

data to train models. Developed approaches must be evaluated during a vast number

of kilometers and varying conditions to ensure and demonstrate they are safe, which

could be impractical in its entirety. In addition, dangerous or uncommon driving situ-

ations must be evaluated. As a solution, various simulation environments have been

released, such as AirSim [120] or Carla [121]. They facilitate the user collecting data

from different sensors or integrating developed approaches to be tested.

There are no generalist simulation environments ready to solve any kind of sce-

nario or application, so it is common to develop custom environments for specific

problems in which obtaining data is challenging. For example, realistic eye image syn-

thesis has been extensively studied because of its importance in various applications

and the difficulty of getting annotated data. Graphics-based methods are used to pro-

duce high-resolution images based on a 3D model of the human eye region, which is

used in a rendering framework [122]. However, the use of artificial eye texture can make

the generated images appear unrealistic and widen the discrepancies between gener-

ated and target data. [123] combines real images and 3D eye region modeling, which is

fitted and rendered for a specific gaze direction.

Generative adversarial networks. In recent years, generative models have made big

progress in synthetic data generation. Recent advances in diffusion models are gaining

attention, and we are still about to see their possibilities [124]. Other models, such as

generative adversarial networks (GANs) [125], have seen significant advances in recent

years (e.g., improved architectures and evaluation metrics).

GANs are a type of deep generative model used for data generation and are com-

monly composed of two main components: a generator and a discriminator. The

generator creates synthetic samples, and the discriminator figures out if they are real

or fake. The generator and the discriminator are trained against each other in an ad-

versarial process until the generator is able to generate synthetic samples that are

indistinguishable from real data. The state-of-the-art GANs, such as BigGAN [126], and

StyleGAN3 [127], can generate very realistic images with no need for a 3D simulation

environment.
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GANs might be used to generate new unseen data or refine or edit already gener-

ated data for a specific task. The following works are related to the use of GANs in the

context of data generation for gaze estimation. Some works propose initially generating

data with 3D simulation environments and then mitigating the domain discrepancies

between real and generated data by improving synthetic data realism using GANs. In

these works, GANs are used to refine synthetic samples to look more realistic before

using them for DNN training. SimGAN [128] uses an adversarial network to refine syn-

thetic data so that they look more similar to target unlabeled real data. They introduce a

penalty for the pixel-level deviation between simulated images and their refined ver-

sions to preserve the gaze direction, but this limits the diversity of the resulting images.

GazeGAN [129] treats the problem as unpaired image-to-image translation. In this ap-

proach, an image from one domain is converted to the other and back to the original,

controlled using a cycle consistency loss [130]. These approaches involve generating

synthetic data from 3D models, which can be time-consuming due to the need for

3D asset design and rendering. Furthermore, these approaches require an additional

refinement step that is restricted to a cropped region around one of the eyes.

Given the existing but limited and hard-to-obtain gaze data, GANs might be conve-

nient to augment them. Many works have attempted to use GANs to achieve controllable

image generation and editing .This can be tackled by learning a model to manipulate

the latent space of a pre-trained GAN model [131, 132] or training a GAN with additional

supervision so that a more disentangled latent space is learned [7, 133]. These works

are often applied to facial data and focus on editing face attributes such as hair or skin.

Most of the generated images tend to look forward as it is the most common gaze di-

rection in typical GAN training datasets [134, 135]. GANs also have limitations, based

on what the GAN has seen during the training [136]. Consequently, the training data

domain influences the capabilities of the trained model to generate varied images.

Specific GAN studies focus on gaze correction or redirection. In [137], a cycle con-

sistency and perceptual loss are introduced to redirect the gaze of input eye crops.

InterpGaze [138] redirects the eye gaze given two gaze images to generate intermediate

results using an encoder, a controller, and a decoder. Some works additionally learn to

blend the eye crop into the face, such as DeepWarp [139] and GazeGAN [140] but are

constrained to gaze correction or limited eye movements.
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3.5 Deep Neural Network Design based on the Data Source

and Modality

For training a DNN, data might come from different sensors and might be captured

in a real scenario or artificially generated. The source of the data implies having spe-

cific data properties. Often, it is possible to select a generalist DNN architecture (e.g.,

EfficientNet [29]) and train it without further consideration of the data. In some cases,

adapting the DNN to the data specifications is necessary and might improve the model’s

accuracy. The following sections describe different proposals for adapting the DNNs to

multimodal setups or synthetic data.

3.5.1 Deep Neural Networks for Multimodal Data

Multimodal deep learning is about learning features over multiple modalities. In this

section, multisensory deep learning, popularly known as multimodal deep learning, is

presented for the automotive field, which, as mentioned in previous sections, is a repre-

sentative use case of setups composed of different sensor types for perception. There

are two major paradigms for automated driving: mediated perception approaches and

behavior reflex approaches.

Behavior reflex approaches build a direct mapping from sensory input to a driving

reaction, such as turning left or braking. Here belong the so-called end-to-end driving

approaches.

In 2016, [141] trained a CNN to map images directly from a single frontal-facing cam-

era to steering commands. 72 hours of driving were collected to train the model. In [142],

Xu et al. propose an FCN-LSTM architecture trained with large-scale crowd-sourced

data [91]. The input images are processed by a dilated FCN [143], and the segmented

images are concatenated with previous sensor information, such as speed and angular

velocity, to feed an LSTM and predict driver actions.

Point cloud data is also present in some multimodal approaches. The method pro-

posed in [144] fuses the depth and vision from LiDAR and camera to predict steering

commands. Features from RGB images and depth range images are extracted indepen-

dently through a series of convolutional operations, then combined to be transferred

to fully connected layers and finally predict the commands. The network was trained
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with some corrupted samples from one of the sensors to achieve robustness in case of

sensor failure. [145] also considers the handling of partial failure in the sensor set and

proposes a solution by introducing Sensor Dropout, which randomly drops sensor mod-

ules in the training stage. They consider a Deep Reinforcement Learning (DRL) setup

for their tests.

Mediated perception approaches [146] rely on the decomposition of autonomous

driving into multiple sub-components that are combined to obtain a comprehensive

understanding of the vehicle surroundings. This perception information is often used

to feed on-board world models such as Local Dynamic Maps (LDM) [76]. Various

tasks are included in which different sensor types are present, combined or alone. In

this diversity, vision-based systems are maturing within their limitations of the data

type [147, 148], while models that incorporate other data modalities are still emerging

with no standardized methodologies to follow.

For road segmentation, [71] trained a model that fuses camera and LiDAR data

through a hybrid Conditional Random Field (CRF). In the field of path prediction, [75]

proposes an LSTM architecture that estimates the future position of obstacles given a

sequence of their past trajectory data obtained from sensors like LiDAR and GPS. In [69],

multispectral pedestrian detection is proposed using a CNN that fuses color and ther-

mal images. They also explore results obtained by early, halfway, and late fusion of

images in the architecture.

Among the different tasks, object detection plays a key role in mediated percep-

tion approaches. It has advanced notably in the domain of 2D in the last years, but

self-driving vehicles also need 3D information. For this task, advantage of various sensor

modalities and their strengths can be taken.

3.5.1.1 3D Object Detection

When 3D object detection using DNNs and LiDAR started gaining attention, most focus

was still on 2D object detection for image data. Consequently, many methods converted

point clouds to image-like data so that state-of-the-art detectors could be used.

2D object detection DNN architectures are often divided into two main categories.

The first is a single-stage approach like YOLO [149], where anchor boxes are directly

related to output boxes. Two-stage methods like Faster R-CNN [150] first try to identify
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regions of interest (ROIs) that are likely to hold an object and then, in the second stage,

fit the bounding more tightly around the object and decide to which class the object be-

longs to. Generally, the single-stage models are faster, while the two-stage methods are

more accurate. Both categories are the base of many 3D object detection works [8, 151].

Point cloud to image conversion is required for applying one of the aforementioned

models to point clouds. In the literature, we find two main ways to convert from point

cloud to image. The first way is using a front view image in a polar coordinate repre-

sentation, which is the native representation of the LiDAR sensor. 3D points from the

LiDAR data are projected on a depth map to create a front view image [152]. The images

produced are similar to the images from a camera. These images have a dense pixel

representation. Consequently, there may be occlusions between the objects in the im-

age, and the objects’ size is related to the distance to the sensor. Different works use the

front view as the only or as a complementary representation [151].

The Bird’s Eye View (BEV) representation is the second way to represent the point

cloud in an image-like representation [153]. The BEV image represents the point cloud

from a top-view perspective. The point cloud is projected to a BEV representation (Fig-

ure 3.3), and then it can be used as input to a mature 2D CNN. Features that are encoded

in the BEV map vary but often include the height of points, reflectance intensity, or

the density of points [45, 151, 153]. When storing this information as 3 channels, a net-

work architecture for RGB images is directly applicable. Some works store points’ height

information in more than 3 channels to retain more information [151, 153], but the ar-

chitectures they use do not vary much from networks designed for image processing.

With the BEV-based approach, there might be a significant compression in the height

dimension. This could be a challenge for classes that are difficult to see from a top-view

perspective (e.g., pedestrians) because most of their information is in the height di-

mension. However, thanks to the top-view perspective, objects are clearly separated,

and there are no occlusions between them. Moreover, all objects of a specific class are

the same size, independent of the distance to the sensor, as the object dimensions are

proportional to the real ones.

The BEV representation has been the most used pre-processing step for 3D ob-

ject detection from the LiDAR data and is used by many methods [8, 153]. However,

most of them have not paid much attention to the different properties of LiDAR data

compared to image data. LiDAR point clouds are sparse and irregular and contain
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Figure 3.3: Point cloud to BEV conversion. The point cloud is discretized in a grid of
columns from a top-view perspective and for every cell, the selected features are encoded
in an image-like data format.

distance-dependent features. Not adapting the network designs properly to the pro-

cessed data nature may be one of the reasons for these methods to be lately surpassed

by works processing directly the raw point cloud.

DNNs are not limited to frontal or BEV representations and some methods combine

the benefits of both. Some of these networks do not only rely on LiDAR, but they also

add front camera data [154].

Multimodal DNNs propose fusing both images and point clouds to achieve better

results. In MV3D [151], Chen et al. propose an object detection model that fuses data

from images and LiDAR point clouds, which they project on a bird’s eye view and a

frontal view. They extend the image-based Region Proposal Network (RPN) of Faster

R-CNN [150] to 3D so that 3D proposals are created based on the bird’s eye view. The

features of these candidates in all views are then combined through a deep fusion to

produce the final result. AVOD [155] also feeds an RPN with the extracted features, but

in this case, not only from the bird’s eye view but also from the image, so that candi-

dates are generated and transferred to a second detection network, which estimates

the bounding box orientation, refines dimensions and classifies them. Wang et al. [156]

also focus on an image and point cloud-based feature fusion before the region proposal

stage through a new non-homogeneous pooling layer.

Point-based architectures have been introduced in recent years, which avoid con-

verting point clouds to images to generate a representation based on engineered features.

Some recent architectures for 3D object detection propose learning on the point cloud

data directly without the conversion to image-like data. One of the first methods that

applied this idea is VoxelNet [70]. They use a voxel feature encoding (VFE) layer to learn
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features from all the raw points in a particular voxel. Then, the output is connected

to an RPN. PointNet [157] goes a step further and can directly consume unstructured

point clouds by processing points without any voxelization or pre-processing. Although

the original paper is not applied to the driving field, it is the foundation for many other

methods [155, 158, 159, 160]. For example, PointPillars [159] extracts point features with

PointNet and then transforms them to a BEV representation to apply an FPN-inspired

backbone [161]. PointRCNN [160] extracts point-wise features for 3D proposals gener-

ation, which are later on refined by a second stage. Due to the improved accuracy of

these methods in benchmarks such as KITTI, little attention is paid now to the devel-

opment of better BEV-based methods. Most state-of-the-art networks are based on a

VoxelNet or PointNet-like approach. Handling the point cloud data directly involves

some extra challenges, such as the volume of data to be processed in real-time or the un-

structured form of the data. BEV-based methods are left behind without a clear answer

to the following questions: is it better to process point clouds directly? Is it possible to

achieve similar results with BEV-based methods?

3.5.2 Deep Neural Networks for Synthetic Data

The data discrepancies that data from different domains present is a challenge for train-

ing DNNs. Training a model with data from a source domain and then using it with

data from another domain often leads to poor accuracy. This problem is especially no-

ticeable when training a model with synthetic data and testing it with real data, known

as the domain gap. The domain gap happens when a model is trained on a source

distribution and then used in the context of a different (but related) target distribution.

Domain adaptation tries to minimize the domain gap to avoid an accuracy drop in

the final model performance. Domain adaptation can be defined as a type of transfer

learning where there are two domains with different data distributions. This problem

has been researched in computer vision using various strategies to reduce or deal with

the difference between the two domains.

The most basic method is to train on the synthetic domain first and then fine-tune

the model on the real domain [103]. An alternative method is to jointly train with both

domains’ images using mini-batches from source and target domains [79, 162]. These
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methods require having an adequate number of annotated real samples for optimal

accuracy.

Other works apply the domain randomization technique to reduce the domain gap’s

effects when training [163]. During the data simulation process, they use random pa-

rameters (e.g., random light, objects’ pose, or texture) to generate non-realistic images,

which force the model to learn the essential features of the objects of interest. Some

other works apply image augmentations to the generated samples instead of focus-

ing on the 3D scene generation and rendering step. [164] generate new augmented

synthetic samples using a semi-supervised errors-guide method to improve the DNN

accuracy on cross-domain datasets.

Another way to solve the domain differences is the image-to-image translation

method. Several works have emerged about GANs, which try to convert an image from

one domain to another different one [130]. These methods are making remarkable

advances, but they tend to have some difficulties accurately preserving the image’s

structure.

Rather than forcing the synthetic samples to look more like the real ones, another

research line focuses on extracting domain-invariant features [165] by modifying the

DNN architecture. These methods investigate how DNNs can better be trained with dif-

ferent domains’ data. These approaches commonly consist of two main steps: (i) learn

features that minimize the target task loss and (ii) make the features from both domains

as indistinguishable as possible to make models trained in one domain work correctly

in a target domain. For learning cross-domain features, Domain Adversarial Neural Net-

works (DANNs) include an adversarial domain classifier, whose loss is maximized using

a gradient reversal layer [166]. The idea is that the DANN is not able to correctly classify

the domain of the input images because it extracts domain-agnostic features.

These studies focus on the technical aspect of domain adaptation and lack an analy-

sis of the effort of adapting the data or the training versus creating more adequate data

in terms of overall performance.

3.6 Beyond the State of the Art

In this chapter, we have gone through the different sensing devices that can be used

to perceive an environment (e.g., LiDAR, camera) and the different ways or sources to

59



DATA-CENTRIC DESIGN AND TRAINING OF DEEP NEURAL NETWORKS WITH
MULTIPLE DATA MODALITIES FOR VISION-BASED PERCEPTION SYSTEMS

obtain the corresponding data to train a DNN.

The sensor types used in a vision-based perception system have specific advantages

and drawbacks, such as the robustness to different weather conditions or providing rich

information about object textures around the capturing sensor. The data type a sensor

provides also influences the DNN architecture design. The most common data modality

is images, but different works have emerged to process other modalities, such as point

clouds, or to combine modalities. However, the best way to process different kinds of

data or adapt more mature models (e.g., image-oriented DNNs) to other modalities is

an open question. Apart from the data modality, the data source significantly impacts

the final DNN accuracy.

There are various large-scale public datasets, corresponding to single-sensor or mul-

timodal setups, that alleviate the process of gathering data, but they frequently do not

cover the task at hand or are limited. Synthetic data is a promising alternative, but their

generation is not trivial. Some open simulated 3D environments might be used for data

generation. Still, as no generalist simulation environment exists, it is common to build

an ’ad hoc’ environments when working on a new model. Using state-of-the-art gen-

erative models to generate synthetic data does not require a 3D environment and can

generate realistic images. However, current works for generating data for a task such as

gaze estimation are very limited to be used for training data. The way synthetic data are

generated might also significantly impact the final model’s accuracy due to the domain

gap that is generated when source and target domains are different. Some works train

the model directly, combining real and synthetic samples, while others explore domain

adaptation techniques. Little attention is paid to the generation process itself.

Given the limitations and open questions in the current state of the art, the follow-

ing chapters present our research results in the context of the hypotheses formulated in

Chapter 1.
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Creativity is seeing what others see

and thinking what no one else ever

thought.

Albert Einstein

CHAPTER

4
Synthetic Data Generation for

Deep Learning

In order to validate Hypothesis 1 (Chapter 1), in this chapter, we explore the 3D

graphics-based synthetic data generation process applied to solve a real-world problem

that lacks available training data: people detection from omnidirectional cameras in

large spaces. This task has been widely investigated for typical surveillance cameras

with little or no distortion. However, omnidirectional cameras have a significant advan-

tage in monitoring large areas, such as train stations or airports. An omnidirectional

camera has a 360º-field-of-view in the horizontal plane or covers a hemisphere or al-

most the entire sphere [167]. Thanks to their field of view, a large area can be visualized

by a single sensor mounted at a particular height. We have not found any available

dataset, which takes advantage of this property and that could be used to train a people

detection model from omnidirectional cameras for large spaces. This chapter addresses

the process of generating a suitable synthetic dataset to meet this need and train a

state-of-the-art person detection DNN. We create a specific top-view dataset of people

in different environments, mainly large infrastructures such as airports or stations. In

addition, we evaluate the impact of different design choices, such as using different

lighting effects or generating photo-realistic scenes, on the final model accuracy.
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We have published the related research at Computers & Electrical Engineering

Journal [162].

4.1 Methodology

To understand which attributes of an image are most effective for training DNNs, we

follow the next steps, which are shown in Figure 4.1:

1. Study the different design possibilities that can be adopted when generating a

synthetic dataset for people detection from omnidirectional cameras (See Sec-

tion 4.1.1): analyze the distortion of the capturing sensor; apply a correction

algorithm if needed; select scene environment design technique; select lighting

and materials approach; include avatars and assets; model camera positioning;

combine the different design possibilities defined in Step 1 for generating datasets

with different features and degrees of complexity (Section 4.1.2).

2. Train an object detection CNN for people detection from omnidirectional cameras

with each generated dataset (See Section 4.1.3).

Finally, in order to evaluate the domain gap of a training dataset, the trained models’

accuracy is evaluated using a real-world dataset (Section 4.2).

In this way, estimating which variations applied to the image produce higher detec-

tion performance is possible. The generated scenes are mostly large spaces for common

use, such as stations and airports, where people detection systems are usually deployed.

They include variations in the distribution of materials and furnishings, but patterns of

social behavior are always repeated.

We use 3D modeling software that can develop a mathematical representation of ob-

jects’ three-dimensional surfaces to create scene images. Some of the most widely used

3D modeling frameworks are Blender, Maya, 3ds Max, Cinema 4D, Unity, and Unreal En-

gine. To produce the final images with the created scenes in the 3D modeling software,

3D rendering software is necessary. This software computes final pixels based on light

placement and material types. In our scenes, we use 3ds Max software with V-Ray as

the rendering engine for generating synthetic images and the 3ds Max Populate plugin

for creating the avatars. In addition, we collect a dataset of real-world images so that it
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Figure 4.1: General scheme of the proposed methodology for analyzing and identifying the
key features in synthetic data generation for DNN training.

is possible to compare the results achieved when training with synthetic samples with

those achieved with real samples.

In the first stage, we generate basic scenes, including animated people. Subse-

quently, we improve lighting accuracy, enrich the scene decoration, add more assets,

and include more complex relationships between the avatars.

The data used to train a DNN in a supervised way must be labeled. In our case,

we need the bounding boxes around the people in the images. To get these annota-

tions, we render masks that segment and instantiate the people in each image. For

each frame, two images are generated: the final rendered frame and another image

where only the people are rendered, and each person is assigned a single color using

the V-Ray post-processing technique Render ID. A unique ID is assigned to each object

in the scene. These people segmentation instances are used to compute the minimum

bounding box enclosing each person.
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4.1.1 Key Features in Synthetic Data Generation

In this section, we present the key features and parameters in generating synthetic

data. We consider these parameters for the generation of the databases, described in

Section 4.1.2.

4.1.1.1 Camera Lens Distortion: Rectification Algorithm

The cameras used to capture data introduce some artifacts into the image that are

unique to the sensor. Simulating a camera without considering this can contribute to a

larger domain shift between the synthetic and real data. In omnidirectional cameras,

the lens distortion varies the captured data notably.

The closest camera model in most 3D computer graphics software is similar to a fish

eye camera, which can be modeled in a simpler way than an omnidirectional one [167].

In addition, these virtual models are often simplified. This may not coincide with the

content captured by the camera in the real world.

To check the possible matching, we prepare a scene with two calibration patterns of

known dimensions and replicate the same patterns in 3ds Max with the same camera

parameters. Figure 4.2(a) shows the image captured by the real camera. Figure 4.2(b) is

the result of overlapping the simulated patterns and some person avatars on top of it.

It can be seen that the patterns do not match, as the rendered assets show a different

distortion.

Figure 4.2: a) Image of a real scene; b) The same scene virtually rendered on top of the real
image (patterns do not match); c) Virtual and real patterns match after the rectification
step.

We apply an image rectification algorithm (Algorithm 1) to solve this. The input for
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Algorithm 1: Distortion rectification algorithm

Input: Synthetic image Is , real image Ir , markers’ positions in real image mr ,
markers’ positions in synthetic image ms

Output: Rectified synthetic image IR

Cs ← Centre of Is (width of Is/2, height of Is/2)
rs = Cs - ms

Cr ← Centre of Ir (width of Ir /2, height of Ir /2)
rr = Cr - mr

a,b,c ← estimate coefficients for rr = ar 2
s +brs + c (least squares method)

for all pixels’ position P in Is do

ds =
√

(Px −Cx)2 + (Py −Cy )2

dr = ad 2
s +bds + c

P ′ =C +dr (P −C )/ds

IR (P ′) = Is(P )
end
Return IR

the algorithm are the real and synthetic images (Ir and Is respectively), as well as the

position in pixels of 10 random markers we place on the calibration patterns (mr and

ms). These markers represent the same spatial points, but their position in the images

do not coincide because of the different virtual and real distortions. As the cameras pro-

duce radial distortion, we compute the distance of the markers’ to the center of their

corresponding image. These distances (rr and rs) can be related by a second-degree

polynomial equation. Then, the rectified position can be computed for each pixel’s po-

sition in the synthetic image (P ′). We use it to remap each pixel’s value to the position it

should be in in the rectified output image (Ir (P ′)) based on the real image distortion.

This algorithm is applied to the virtual scene and overlapped again in the real one, as is

shown in Figure 4.2(c). It can be seen that the patterns now match.

This image rectification is applied to some of the generated synthetic datasets to

test its influence on the detector’s accuracy (Section 4.1.2).

4.1.1.2 Scene Generation

We perform various approach tests to create increasingly complex scenarios. We con-

sider three scene environment configurations: based on real background images, simple
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virtual scenarios and advanced virtual scenarios.

The fastest way to generate a synthetic dataset is to render the target objects (peo-

ple) over real background images. An easy way to do this is to eliminate people from the

background of a recording (real image) and add several avatars to it digitally. Another

option is to use random background images. Based on the domain randomization tech-

nique [168], it is possible to generate non-realistic images to force the model to learn

the essential features of the target object.

One step further is the creation of simple virtual 3D scenarios. The avatars are in-

tegrated into indoor synthetic scenarios with different decoration configurations and

minimal furniture. The simplified configuration of the scene reduces the rendering time

of each frame.

Finally, from these simple scenes, other advanced environments closer to reality can

be generated. Following this, we create some scenarios where decoration focuses on

different uses: commercial, transport, leisure, or private sector. Even if these images

are more expensive in rendering time, a large variety of samples is achieved. Figure 4.3

shows some examples of these scenarios.

Figure 4.3: Advanced generation of interior scenarios generated for rendering.

4.1.1.3 Lighting and Materials

One of the most wanted features when generating synthetic data is realism. The key

parameters to achieve this are scene lighting and materials, which can present differ-

ent degrees of complexity. As shown in Figure 4.4 we develop two configurations, one

more precise than the other. Both configurations include exterior lighting and artificial

interior lighting.
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Figure 4.4: Different approaches of illumination

First, we create basic lighted scenarios where illumination is functional but only par-

tially realistic. These scenes are illuminated with a direct light source, such as sunlight,

and area lights along the ceiling of the virtual infrastructures to simulate typical arti-

ficial lighting used in large public spaces (e.g., LED panels). Also, global illumination

methods are introduced to add more realism based on light-bouncing techniques. In

this case, the materials used are very basic, without reflections or transparencies.

In the second configuration, we generate environments with more accurate exterior

lighting in addition to the interior area lights. We introduce illumination changes in the

same scenario due to weather conditions and the time of day. To achieve this, a daylight

analytical model [169, 170] for sunlight and skylight prediction is added to the scene.

This model reproduces the real-life sun and sky environment of the Earth, and con-

sequently, different variants are introduced in the image, reflecting climatic and light

alterations. The direction of the light source and the sky change dynamically depending

on the position of the sun, as in real life. The sunlight intensity and color depend on

the angle with the horizon. To achieve this, we translate the sun into the scenes, cre-

ating an animation curve from sunrise to sunset. Thus, the different colors caused by

wavelengths add more naturalness and variety to the renders. Also, turbidity and ozone

effects are introduced for fine-tuning the scene, which affects the color of the sky.

Regarding materials, in this accurate lighting model, we introduce a wide variety of

elements with different characteristics in their composition, such as metals, porcelains,

glass, or wood, to achieve higher realism and variation.

It is necessary to find a balance between realistic lighting and materials and the ren-

dering time. Consequently, we reduce and simplify the quality of some materials to
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avoid render times that are too long. Likewise, the number of polygons of the objects in

the scene is simplified.

4.1.1.4 Avatars and Accessories

We use Autodesk’s Populate plugin to add a wide variety of people to the scene. Charac-

ters can walk along paths or stay inactive in idle areas. It is possible to choose between

men and women, although their age, complexion, and height are fixed for each gender.

We generate two main types of animations for the avatars. We create free-moving cor-

ridors, where avatars walk at different speeds, and idle areas, where groups of people

stand. In addition, we create some ad-hock animations for simulating queues of people

or crowds.

Finally, the variety and complexity of the scenes can be increased by adding sev-

eral accessories. We generate common objects such as handbags, backpacks, suitcases,

umbrellas, magazines, and hats.

4.1.1.5 Camera Position

We test two configurations of the camera; statically positioned and moving during the

sequence. When the camera is static, we place it where most scene action occurs. The

camera’s height in the different scenarios is varied between 5 and 7 meters since it is a

common height for surveillance cameras in large spaces.

Regarding the dynamic camera positioning, following the experiments in [6], a batch

of images is generated with random camera positions in the scene. The objective is to

cover the different areas of the scene while varying its position and height in a range

between 5 and 7 meters. Some results are shown in Figure 4.5. It can be seen that

sometimes the images show uninteresting areas for detection, like walls or empty areas,

but with much more enrichment in terms of pixel color distribution, sunlight, or scene

assets visualization.

4.1.2 Training Datasets

We conduct experiments with 7 datasets. All of them are composed of the same

number of images (5,600 images that are augmented to 28,000 samples). However,

the choices for data generation design are different. Complex rendered images take
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Figure 4.5: The same virtual scene captured from different positions during the sequence.

an average of 10 minutes. We use a render farm supported by 4 computers to gen-

erate the synthetic images. We use a Core i7 with 4 Core, 8 Threads, and 16GB

RAM. There is no need to use a powerful GPU. The generated sets are available at

https://datasets.vicomtech.org/v4-osd/OSD_download.zip.

Domain Randomization Dataset (DRD) The first dataset is based on the simplest

scenario generation method based on the usage of random background images, ex-

plained in Section 4.1.1.2. We generate non-realistic images rendering a group of people

walking along paths and standing on top of random backgrounds from [171], which

present different textures and patterns.

Simplified Synthetic Dataset (SSD) This dataset contains more realistic images than

the DRD. People follow the same movement patterns as in the DRD, but we simulate 3D

environment scenes (4.1.1.2). People are rendered in different basic 3D scenarios with

some common elements, such as chairs or columns.

Simplified Rectified Synthetic Dataset (SRSD) The images included in the DRD and

the SSD are rendered using the fish eye camera model of 3ds Max. As explained in Sec-

tion 4.1.1.1, these camera models’ distortion differs from that of real-world cameras.

The difference can negatively impact the detection accuracy in a real scenario. This

dataset contains the same images as the SSD, but they are rectified in a postprocess step

to mitigate the sensor differences and mimic better real-world data.

Advanced Synthetic Dataset (ASD) The generation of this dataset focuses on having

more realistic scenes. This idea is applied to the avatars, the scenarios, and the lighting.

People in real scenarios present a wide variety of appearances, not only because of their

physiognomic differences but also because of the accessories they can carry (e.g., hats,

bags). The avatars in this dataset include these kinds of accessories (Section 4.1.1.4). Re-

garding the light, we include realistic lighting (Section 4.1.1.3). Finally, more objects are

added to the scenarios to simulate typical objects and architectural elements that can
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be found in these kinds of places (e.g., specific furniture, stairs, booths) (Section 4.1.1.2).

Image distortion is rectified as a postprocess step (Section 4.1.1.1).

Dynamic Advanced Synthetic Dataset (DASD) This dataset contains the same

scenes as the ASD, but with a different camera position. Unlike the rest of the datasets,

the position of the camera in the DASD is randomly animated and changes through the

frame interval (Section 4.1.1.5).

Real Data Dataset (RDD) In order to compare the accuracy achieved when training

with real data with the results obtained with synthetic data, we generate the RDD. This

dataset contains 5,600 real-world images we have captured with an omnidirectional

camera.

Real and Synthetic Data Dataset (RSDD) This dataset combines synthetic and

real images. In order to have the same number of images as the other datasets and a

balanced quantity of real and synthetic samples, 50% of the images are randomly se-

lected from the RDD and the other 50% from the ASD. Image distortion is rectified as a

postprocess step (Section 4.1.1.1).

The features of the described datasets are summarized in Table 4.1, and some

example images of the corresponding datasets are shown in Figure 4.6.

Figure 4.6: Datasets samples (from left to right and from top to down): a) DRD, b) SSD, c)
SRSD, d) ASD, e) DASD, f) RDD.
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Dataset Real data Distortion
rectification

Camera
position

Virtual
scene

Virtual
lighting

Avatars Accessories

DRD Background - Static - - ✓ -
SSD - - Static Simple Simple ✓ -
SRSD - ✓ Static Simple Simple ✓ -
ASD - ✓ Static Complex Complex ✓ ✓
DASD - ✓ Dynamic Complex Complex ✓ ✓
RDD B&P* - Static - - - -
RSDD B&P* ✓ Static Complex Complex ✓ ✓

Table 4.1: Features of the generated datasets (*B&P: Background and People)

4.1.3 People Detection Model and Training

We train the single-stage YOLO-v3 [149] detector with different variants of the datasets.

The same CNN configuration is replicated to test the influence of different choices in the

dataset generation. Although different DNNs can be used, we use this model because it

is a representative state-of-the-art DNN architecture when the target application needs

a balance of accuracy and speed [65]. This is the case for intelligent systems that must

provide real-time detection results. The YOLO-v3 model provides a faster inference

speed than two-stage object detection networks.

The YOLO-v3 model splits the input image into a grid of cells. Each cell is responsi-

ble for detecting any object whose center falls within it. Compared to previous versions,

it includes skip connections and upsampling operations and makes object detections at

three scales. Therefore, it is better at detecting small objects. The DNN uses 9 anchor

boxes as box priors. Predicted bounding boxes are defined by their four coordinates, the

confidence score, and the class probability. The model uses the Non-Maximum Sup-

pression (NMS) method to select the best bounding box when multiple are estimated

for the same target.

We use an input resolution of 512x512 pixels for the network. Only one class is con-

sidered for the detection task (person). Regarding the anchors, we use the K-Means

clustering algorithm to estimate the most appropriate anchors in the ground truth

bounding boxes (3 anchors for each scale).

We apply different data augmentation techniques to the training images. The

augmentations contribute to a more varied dataset and help to enhance the DNN

robustness and generalization capability [172]. For each sample in the dataset, we gen-

erate 5 modified versions. We randomly combine geometrical transformations, image
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rotation, or flipping, with color space augmentations, more specifically: Gaussian noise

addition, brightness modification, Contrast Limited Adaptive Histogram Equalization

(CLAHE) or motion blurring addition. Figure 4.7 shows an example of an augmented

image.

Figure 4.7: Image augmentations applied to a rendered image sample. Color space aug-
mentations are combined with geometrical transformations to generate new augmented
samples.

All the models are trained on an NVIDIA Tesla P100 using the Darknet frame-

work [149]. We train the model using stochastic gradient descent for 40,000 iterations

with a learning rate of 0,001, a weight decay of 0,0005, and a momentum of 0,9. We set

the batch size to 64. We initialize all the network weights with pre-trained weights on

the MS COCO dataset [80]. We replicate the same training using each generated dataset

(Section 4.1.2). The performance of these models is then evaluated on the evaluation

data.

4.2 Experiments and Evaluation

To conduct the experiments, we train the people detection model with the same CNN

architecture and training configuration but with different datasets. In this way, we can

analyze the influence of the training data on detection accuracy. We evaluate these

models on real-world images. Due to the lack of omnidirectional imaging real datasets,

we make some recordings to generate a real-world evaluation dataset. To generate the

recordings, we place a camera at 5.5 meters high in a corridor through which groups

of people walk along, as shown in Figure 4.8. The evaluation set contains 625 images

with a resolution of 2048x2048 pixels. These images have been manually annotated to

provide the ground truth labels used for the evaluation. The annotation and evalua-

tion region has been constrained to the area inside a radius of 8 meters from the center
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of the image. This guarantees good annotation quality in the annotated area and is

enough to evaluate the detector’s accuracy. The scenario used for the recording differs

from the one used in the RDD. Using the same scenario could provide some distorted

results regarding the model’s generalization ability.

Figure 4.8: A sample from the captured real-world evaluation dataset.

In order to evaluate each model’s accuracy, we compute the Intersection over Union

(IoU) between the estimated and the ground truth bounding boxes. We consider a cor-

rect detection when the IoU is higher than 0.5. We use this to compute each model’s

precision-recall curve and the Average Precision (AP). We follow the PASCAL VOC evalu-

ation criteria presented in [173].

4.3 Results and Discussion

We show the precision-recall curves for the models trained with the different datasets in

Figure 4.9 and the resulting APs in Table 4.2.

As can be seen, the model based on the domain randomization technique (DRD)

gets the worst result. Adding random backgrounds to the simulated people does not
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Dataset Main feature Synthetic data Real data AP
DRD Random backgrounds ✓ − 20
SSD Sinple synthetic scenes ✓ − 37

SRSD Distortion rectification ✓ − 43
ASD Improved scenario, accessories ✓ − 57

DASD Dynamic camera ✓ − 35
RDD Real-world − ✓ 70

RSDD Real and synthetic world ✓ ✓ 82

Table 4.2: Results of the YOLO-v3 models trained with the generated datasets (28,000 im-
ages in each dataset), which follow different strategies. AP values on the evaluation samples.

Figure 4.9: Precision-recall curves for the YOLO-v3 models trained with the generated
datasets. Precision and recall values on the evaluation samples.

help the network learn the essential object features. The AP achieved in the real-world

samples shows this strategy did not help get a detector with enough generalization ca-

pability. Replacing the random backgrounds with 3D scenarios (SSD) improves the AP

from 13 to 37. The DRD includes randomness to generate non-realistic results but does

not consider lighting or physical rules. This is different in the SSD. Simulating and ren-

dering people in 3D scenarios adds some realism regarding the scene’s lights, shadows,
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and possible 3D assets, which seems to be an important feature.

The SRSD and the SSD only differ in the distortion rectification step. Adding this

postprocessing step boosts the AP from 37 to 43. Ensuring that the images’ distortion is

closer to reality improves the final accuracy.

The ASD goes further in the samples’ realism and improves the AP from 43 to 57. The

accessories, the lighting, and the 3D scene assets help in learning more robust features

with a smaller domain gap.

The DASD adds more variation to the ASD. The camera is moved through the scene,

from the center to the corners. Therefore, samples in this dataset are very different from

each other. However, the result is much worse (AP from 57 to 35). Even if the variation

between images increases, the number of people in the samples decreases. When the

camera is close to the corners of the scene, the perspective is different, and new ob-

jects in the scene are visible (e.g., plants, columns), but also fewer people are present in

those images. We believe this imbalance of positive samples in the dataset is the reason

behind the drop in AP.

The model trained with real data obtains an AP of 70, higher than the ASD (57). But

when combining half of this dataset with half of the ASD, the AP increases still to 82.

Training with half of the real images, but combining them with the synthetic samples,

results in a higher AP than training with all real data. This may be due to the domain

influence in the feature extraction learned by the DNN. Combining the real and best

synthetic samples encourages the model to learn valid features for both domains. The

more domain-invariant features the model extracts, the better it will perform in a new

scenario. This is not always achieved because the results can worsen when the differ-

ences between both domains are too big. In those situations, more advanced domain

adaptation techniques are needed. To validate that the results are not a coincidence, we

repeat the DNN training with two new versions of the RSDD, which contain different

random samples from the ASD and the RDD. The corresponding models obtain an AP

of 81 and 82. Therefore, the results validate that the model benefits from synthetic and

real domain training data.

Figure 4.10 shows some qualitative results of the model trained with the RSDD in

the evaluated region. The scene has some challenging glitters and elements that can

be mistaken for people. It can be observed that the model provides robust detections.
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A false positive is shown in the right image around a pole. This could be improved by

adding more scene elements to the synthetic scenarios.

Figure 4.10: Inference samples of the model trained with the RSDD applied to evaluate
real-world images. Inference is limited to the evaluated radio (8m).
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Coming together is a beginning.

Keeping together is progress. Work-

ing together is success.

Henry Ford

CHAPTER

5
Simulated Environments for

Deep Learning

In this chapter, we propose a methodology to build a simulated 3D environment

that aims to help define the required data and sensor setup for vision-based perception

systems and generate appropriate data for DNN training (Chapter 1, Hypothesis 2). This

work is motivated by the lack of general simulated environments ready to solve the cam-

era setup and data generation tasks for all kinds of scenarios and use cases (Chapter 3).

Typically, ’ad hoc’ environments are built, or 3D scenarios are manually designed and

set up each time a scene needs to be simulated. On the contrary, a generalist solution

should allow:

• Including the required scenario-related graphical assets in an easy manner.

• Configuring context- and use-case-based scenes with user-friendly parameters.

• Capturing images from virtual camera viewpoints quickly, considering that the

rendering time could be a significant bottleneck in this process. These images

should include camera-related effects, such as the geometric distortion intro-

duced by the lenses.
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• Generating a wide and balanced range of plausible situations of interest, ran-

domly applying suitable noise to the labeled data for the appropriate training of

DNNs.

This chapter presents a methodology to build synthetic simulated environments for

configuring and training multi-camera systems with sufficient generality to be usable in

different surveillance contexts with little effort. We focus on static systems, i.e., those in

which the cameras visualize the scene from specific positions. This means that applica-

tions involving dynamic systems (e.g., robots that interact with the environment while

patrolling areas of interest), are beyond this scope. We show a practical implementa-

tion example of this methodology in the context of digitalized on-demand aircraft cabin

readiness verification with a camera-based smart sensing system. We also compare it to

alternative state-of-the-art approaches, including the qualitative and quantitative analy-

sis of the data generation process and the required modifications to adapt it to another

surveillance context. To ensure the suitability of the generated data by our methodol-

ogy, we train a classification DNN and evaluate its accuracy when trained with real and

synthetic images.

We have published the related research on the Proceedings of the 16th International

Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and

Applications [174](nominated for best student paper award).

5.1 Methodology

Figure 5.1 shows the architecture of the proposed methodology for generating synthetic

data for training deep learning models. The input data of our approach are the 3D as-

sets of the scene and the scene’s description file. The outputs are the synthetic images

and the annotations for training DNNs. The principal modules in our approach are:

(i) the scene manager which is responsible to load the scene configuration; (ii) the en-

gine which sets up the 3D scene according to the provided configuration and generates

the training images by rendering different camera viewpoints and; (iii) the label gener-

ator which generates an output file containing the annotations corresponding to the

generated images.

Similar to the data-collecting process carried out in a real environment, the first

step is gathering all the necessary 3D graphical assets to reproduce the scene of interest.
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Figure 5.1: Software architecture of the proposed methodology for creating synthetic train-
ing data for vision-based systems.

Specifically, two different groups of graphical assets are required. The first type con-

tains those graphical assets representing the environment (i.e., the scenario in which

we should accomplish the recordings). We assume that such assets belonging to the en-

vironment are static since they represent the background. The second group contains

those graphical assets representing the dynamic objects of the scene. The combination

of the locations of these assets, their poses, sizes, and appearances, together with the

variations of the lighting sources and the camera properties, will provide a wide range

of variety for generating our custom training data.

For use cases in which some graphical assets are unavailable, the user should cre-

ate them using 3D modeling software applications. We use 3DS Max, but it is possible

to use other applications such as Autodesk Maya, Lightwave-3D, Vectary, Blender, etc.

Depending on the complexity, additional plugins such as Populate (for 3DS Max) can

alleviate the effort of designing the objects. Working with a very detailed 3D model can

become a challenge due to the vast amount of polygons and materials the render engine

has to process. This is directly related to the rendering time of the scene, and it could be
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a troublesome bottleneck in the data flow when a user tries to generate thousands of

samples. However, using very detailed 3D assets or more lightweight ones should be

considered based on the scope of the use case.

Once all the scene assets are designed, our method allows us to configure different

camera setups, place objects at multiple locations and poses, have multiple illumination

sources, or configure the rendering parameters by minimum user interaction. Further-

more, the user can easily define multiple combinations of parameters for generating

different training data samples in a single iteration.

Specifically, the user has to define a configuration file in which the parameteri-

zation of the scene is specified in a user-friendly way. Then, a loader interprets the

content related to the different entities according to the nature of the parameters (ob-

jects, cameras, illumination, rendering). Such information is received by the scene

manager, which interprets and handles these data to build the scene configuration for

the user-defined sequence. This configuration is used to replicate the target scenes in

the 3D synthetic environment, which implies loading the environment and dynamic

assets with the corresponding configurations, as well as setting all the cameras, lighting,

and rendering parameters to get the desired results. Then, the engine renders the im-

ages from the defined camera perspectives. We use Blender for this purpose, although

the same methodology could be applied using similar alternative programs.

The label generator is in charge of generating the corresponding annotations based

on generated segmented images. The user can choose different annotation types

depending on the target computer vision task (e.g., object detection or semantic seg-

mentation).

5.1.1 Scene Management

The synthetic scene is replicated based on the information provided by the user. The

user is in charge of the configuration through the description file. For this purpose, we

adopt the Video Content Description (VCD) structured JSON-schema file format [175].

VCD is an open-source metadata structure able to describe complex scenes, including

annotations and all the needed scene information, in a very flexible way. In addition, it

allows a very easy and fast user interaction for the files generation process. The VCD for-

mat is compatible with the OpenLABEL standard [176]. The configuration file contains
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information related to the cameras and lighting setup, the 3D assets in the scene and

the relation between them, and the rendering parameters. Modifying something in the

scene, such as the position of an object or the camera specifications, is simply done by

changing the corresponding field in the configuration file.

5.1.2 Camera Setup and Lighting Sources

The camera setup controls how the scenario and the objects are represented in the 2D

images. In order to obtain realistic training data, the virtual cameras should simulate

the same properties of the sensor and the lens that the expected cameras, which will

be installed in the real environment. One of the major benefits of using Blender as an

engine for creating and rendering the scene, in contrast with others such as Unity3D, is

the multiple choices of camera models. In particular, we can generate the image pro-

jection of the virtual camera by using an orthographic model, a perspective model, or

a panoramic model. These three models allow emulation of any combination of the

image sensor and lens type mounted in a real camera. Table 5.1 shows the parameters

that need to be added to the configuration file to add as many cameras as desired with

their corresponding parameters.

Table 5.1: Camera Parameters

Camera model
Camera model (different distortion
types).

Resolution Output image resolution (pixels).

Position
Sensor position (m) in X, Y and Z
axis.

Orientation
Sensor orientation (degrees) in X,
Y, and Z axis.

Size Sensor size (mm).
FOV FOV of the sensor (degrees).
Focal length Focal length of the sensor (mm).
Custom params Extra params defined by the user.

Another important factor affecting the projection of visual information from 3D to

2D is the lighting of the scene. Depending on the target scenario, the user may want to

add light coming from single points which emit light in all directions or from spots with

a single direction (e.g., indoor lamps) or outdoor lighting simulating the sun. Figure 5.2
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shows some examples of the mentioned lighting types. Table 5.2 shows the parameters

that should be defined in the configuration file to add as many different light sources as

desired to the 3D environment.

Table 5.2: Lighting Parameters

Light model Type (point, spot, sun).

Position
Light position (m) in X, Y and Z
axis.

Orientation
Light orientation (degrees) in X, Y
and Z axis.

The scene configuration is automatically replicated in the 3D environment from

the description file. During this step, the scene configuration is exported as a Blender

project for cases where the user wants to explore the camera setup interactively. This

way, it can be used as an interactive tool that helps to design a proper setup for a target

application. Parameters such as the intrinsic and extrinsic camera parameters, their

positions, or even the number of needed cameras can be modified by the user while

he/she visualizes the images that would be captured. Simulating a specific setup with

no need for physically deploying it can greatly help avoid wrong decisions that lead to a

not optimal or wrong setup.

This way, it may help define the appropriate number of cameras, locations, poses,

and viewpoints. Thus, the proposed methodology includes the following two bidirec-

tional features:

• VCD2Scene: The user defines the VCD description file, and the scene is repli-

cated in the 3D environment, including the 3D assets, camera configurations, and

lighting sources.

• Scene2VCD: The user loads a 3D scene, and after making the desired modifica-

tions, he/she exports the new setup to a VCD description file.

5.1.3 3D Assets in the Scene

Regarding the 3D assets’ configuration in the scene, it is also defined in the VCD file.

The user can add as many objects as desired to the scene in specific configurations.

These objects should belong to the available 3D asset types (e.g., humans, cars). Then
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Figure 5.2: Light sources for a 3D environment: lamp emitting light in all directions (top
left) and a single direction (top right), and lighting simulating the sun (bottom).

the 3D environment simulator interprets this information through the local relation

between the assets. The user should have previously defined the relations present in

the scene and interactively select the positions they would belong to. For example, if

the target application is about detecting abandoned objects in an airport, some local

relations that would be necessary could be "on" or "below". These relations would let

the user relate different assets for example, by describing that certain objects (e.g., a bag,

a suitcase) are on a desk or below the waiting seats. At the same time, the environment

simulator would relate these positions with the user-selected positions. In addition, the

user defines in the VCD file the time interval when each specific asset is present in the

scene in the described configuration. This method provides high flexibility for the user

to generate a wide variety of configurations in a very fast and user-friendly way.

In order to add a higher degree of variety to the generated data, when each asset is

placed in a specific position some random noise is added to slightly perturb its posi-

tion and orientation. In addition, the user can choose to apply random colors to the 3D

assets to include more diversity in the data or, on the contrary, maintain the original

textures.
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5.1.4 Rendering Parameters

The rendering step turns the 3D scene into the output 2D image. The configuration of

the rendering affects both the image quality and rendering time. The optimum con-

figuration is closely related to the target task requirements and the available hardware.

Therefore, our approach lets the user change the most influential parameters in the con-

figuration file. The parameters that can be modified are shown in Table 5.3. The user

can choose between the available rendering engines (in the case of Blender there are

three available engines), computing caustics or not, the rendering tile size, the device to

be used (CPU or GPU), and the maximum allowed light bounces. When the light hits

a surface, it bounces off the surface and hits another one, and then the process is re-

peated. This is very expensive in terms of rendering time. Decreasing the maximum

bounces implies limiting the number of times a ray can bounce before it is killed and,

therefore, decreasing the time spent computing rays. Depending on the scene and the

task, the user can adjust this parameter to get the desired output.

Table 5.3: Rendering Parameters

Device Device used for rendering (CPU/GPU).
Engine Engine type used for rendering.

Tile
Area of the image considered during
the rendering.

Bounces Maximum light bounces to be applied.
Caustics Caustics computation.

5.1.5 Labeled Data Generation

Training machine learning models in a supervised way implies not only collecting

the needed data but also the corresponding annotations. Annotating the data is an

expensive process for which synthetic data generation can be very helpful thanks to

automatic label generation. Our approach provides flexible annotations with different

levels of detail depending on the target computer vision task (object detection, object

segmentation, or visual relationship detection).

Getting the 3D assets’ world coordinates and projecting them to the image plane

would be a very efficient way to obtain the annotations automatically. However, it can
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be observed in Figure 5.3 (corresponding to a scene in the context explained in the

following section) that this could lead to wrong annotations because of occlusions. Dif-

ferent elements of the environment can occlude some objects, so if these occlusions

are not considered, we would obtain annotations for objects that are not visible in the

rendered images. An additional challenge is the camera distortion. Getting accurate

annotations implies considering and replicating the distortion algorithm used by the

chosen 3D graphics software’s camera model to obtain the final objects’ positions.

Figure 5.3: Object annotations based on 3D coordinates can result in some annotated ob-
jects occluded by the seats.

We opt for rendering accurate instance-level masks. Each asset in the simulated

scene is given a unique ID apart from the object class ID it belongs to. These instance

IDs are used to compute an alpha mask per object. These masks are combined in a

single segmentation mask. When the data generation starts, the synthetic images are

rendered simultaneously as the instance-level semantic segmentation maps.

The segmentation masks are used to generate the annotations, which are stored in

the output VCD file. This file contains both the input configuration data and the anno-

tations. By default, the masks are used to get the minimum bounding boxes containing

each object’s pixels, which are represented in the VCD file by each box’s corner coordi-

nates. These annotations can be used to train object detectors. However, our approach

can be configured to save the objects’ segmentation mask too. These data are already

in the instance-level masks and are stored as object contours, which are described as

polygons in the output file. In addition, the output VCD file contains the description
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of the relations between the assets in the scene. These data are complemented with

the objects’ bounding boxes. These annotations can be used to train visual relationship

detectors. The annotations need to be parsed to the required format depending on the

chosen deep learning framework (e.g., TensorFlow, PyTorch).

The annotations in the output VCD file are stored per object and framewise. Conse-

quently, each annotation is stored along with its corresponding image path.

5.2 Practical Case and Experiments

In order to validate the proposed methodology, we apply it to a real problem in the con-

text of digitalized on-demand aircraft cabin readiness verification with a camera-based

smart sensing system. Verifying Taxi, Take-off, and Landing (TTL) requirements in air-

craft cabins is manual. The cabin crew members must check that all the luggage is

correctly placed in each TTL phase. During these phases, the luggage should not be

situated in such a way that an emergency evacuation of the aircraft would be delayed or

hindered. Figure 5.4 shows the allowed and not allowed positions for the cabin luggage

during TTL. The verification done by the crew members could be automated with the

development of a vision-based system. This system would be beneficial in terms of op-

erational efficiency and safety. Developing a system capable of detecting the luggage

positions in the cabin entails two main challenges: the design of the camera setup and

the generation of suitable data for training the corresponding machine learning models.

As stated previously, a 3D environment simulator can be very helpful for these tasks.

Figure 5.4: Authorised positions for luggage during TTL.
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5.2.1 3D Assets for the Use Case

To address this problem, the first step of our methodology is the generation of the as-

sets. We first generate all the involved 3D assets for the scene of interest. In this case, we

model 22 different object types to simulate typical cabin luggage (e.g., backpacks, maga-

zines, laptops), a cabin model representing a Boeing 737 aircraft (with 19 seats), and a

group of human models with different poses and appearances for the seated passengers.

The generated 3D assets are shown in Figure 5.5.

Figure 5.5: Generated 3D assets for the use case: cabin luggage, passengers, and aircraft
cabin.

5.2.2 Cabin Camera Setup Design

For the camera setup task, our feature VCD2Scene allows loading the aircraft model

within some of the modeled 3D assets using an initial configuration file and visualizing

the 3D scene directly from the virtual camera viewpoints. The initial setup idea could

be placing some cameras on top of the seats to control the luggage in these areas (e.g.,

backpacks partially below the seats) and other cameras above the corridor to verify a
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clear exit. However, how many cameras should be installed? Where should they be to

guarantee the system can see every seat without occlusions? What lens parameters

should these cameras have?

Figure 5.6: Captured scene from different camera positions. The configuration shown in
the left images is discarded because of the occlusions in the front middle seat.

To answer these questions, we interactively change the virtual cameras’ extrinsic

and intrinsic parameters to check the results we would obtain with each configuration.

We move the camera positions and orientations to guarantee that the minimum number

of cameras captures all the regions of interest.

Figure 5.6 shows an example of accepted and discarded camera positions for captur-

ing the luggage in the seat areas. At first, we could think the cameras should be on top

of the middle seats to capture the status of 6 individual seats (left images). As it can be

observed, the passenger seated in the front middle generates an occlusion that does

not allow visualizing if he/she has some luggage incorrectly placed. To avoid this blind
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spot, we test moving the camera toward the windows to capture 4 individual seats (right

images). From this viewpoint, we can see no occlusion problems, so we opt for this con-

figuration. Then, we test setting some cameras in the corridors to verify that area and

the seats next to the corridor. Figure 5.7 shows the tested configurations. Even though

the corridor space is well visualized in both shown camera positions, the camera should

be aligned with the seats (right image) to guarantee the minimum possible occlusions

in the feet of the passengers for as many seats as possible. These tests resulted in a

setup design of 20 perspective cameras on top of the seats and 19 on top of the corridor.

To guarantee a good visualization of the target areas, we set the parameters of all the

cameras to a FOV of 118 degrees, a focal length of 2.13mm, and a sensor size of 4mm.

Figure 5.7: Captured scene from different camera positions. The configuration shown in
the left images is discarded because of more occlusions.
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Figure 5.8: Data generation pipeline example. The input VCD file describes the scene that
is replicated by the synthetic 3D environment generator, including present objects and their
relations. The tool outputs rendered images and corresponding annotations in VCD format,
corresponding to data from different camera perspectives.

5.2.3 Configuration Files Generation

Once we have the final cameras’ configuration, we export it to an updated VCD configu-

ration file with the Scene2VCD functionality. The file should also contain the 3D assets’

configuration so that our environment generator replicates the defined sequences.

The situations’ variety and the number of object instances of each class can be eas-

ily controlled but depends on our configuration file. Generating a balanced dataset is

important to guarantee that the trained model does not have a bias for the most com-

mon objects in the dataset. Consequently, we define the following requirements for

generating the VCD files:

1. An object sample from each object category should be placed at all the possible

configurations and places at least once.

2. All the object classes should be present in the generated sequences’ frames the

same number of times.

3. Samples should show a wide variety of object appearances.
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Following these criteria, we generate three VCD files. The first file describes a sequence

where each frame contains an object type placed in a specific configuration at all the

cabin places (e.g., backpacks on all the seats). The goal of this sequence is to generate

enough samples of each object type’s appearance in simple configurations (with no in-

teraction with other object types). The second file randomly combines all the objects

in all the possible configurations the same number of times. We define a sequence of

500 frames. Each of these frames contains different object configurations. The last file

follows the same strategy of random combinations, but it is focused on appearance

variations. In addition to the default random variations aggregated to the 3D assets’ po-

sition, it enables color randomization for objects (Section 5.1.3). Consequently, this file

extends the already-defined object combinations with new ones that contain objects

with a wide variety of random appearances. Providing a 3D asset with a random color

can make some objects look less realistic but increases the variety of samples and can

benefit the robustness of the trained models. The strategy used for generating the VCD

files is not limited to the current use case, it can be applied to other tasks and scenarios.

The defined sequences are summarized in Table 5.4.

Table 5.4: Summary of the generated data

Sequence VCD 1 VCD 2 VCD 3 Total

Description
Single object
class/frame

Random,
balanced

Random
appearances

-

Number of
frames

45 500 500 1,045

Number of
rendered images

1,755 19,500 19,500 40,755

Number of 3D
object instances

5,966 33,000 33,000 71,966

5.2.4 3D Scenes Generation

We use the VCD files to automatically replicate the 3D scenes described in them with no

manual intervention. The 3D environment is configured with all the data regarding the

cameras, lighting, rendering, and 3D assets to replicate the defined scenes in the cabin.

The environment is dynamically configured when the data generation starts.
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5.2.5 Generated Data

Each frame in the sequences is captured from all the defined cameras, so for each frame,

39 images are rendered from different camera viewpoints. An output VCD file is gen-

erated for each sequence containing the data already in the input file (e.g., camera

configurations, relations between objects) and the addition of the output data. The

output data include the paths to the generated images and the corresponding bound-

ing box annotations for each object or passenger. Figure 5.8 shows the data generation

process from the input VCD file to the synthetic output data. The left image shows an

example of the objects and their relations as defined in the VCD file. The 3D environ-

ment simulator processes this information to configure the 3D scene. It can be seen

that the example data (’magazine-4 is on Passenger-14’) is replicated in the synthetic 3D

world). This scene is captured from the defined cameras to produce the corresponding

rendered images and annotations. In the output synthetic images, it can be observed

that the same 3D assets can be observed from different cameras at the same time. The

right images of Figure 5.8 show an example of the output VCD file’s additional informa-

tion (objects’ bounding box coordinates in each rendered frame). This information can

be used not only for training object detectors but also for training visual relationship

detectors.

5.2.6 Analysis of the Proposed Approach

This section provides a qualitative and quantitative analysis of the proposed methodol-

ogy’s characteristics. Table 5.5 shows a qualitative comparison of some state-of-the-art

approaches to ours.

The environment and 3D assets involved in all the data generation methods are

manually modeled with the help of a 3D modeling software or gathered from public

repositories. [115] also uses data priors such as OpenStreetMap data to model different

city environments but still needs manual work to complete and adjust the scene data.

Once the 3D environment is prepared, if the user wants to change certain scene con-

figurations with our method, such as the light properties, the objects in the scene, or

the relation between these objects, he/she can define the modified scene in the config-

uration file using a user-friendly parameterization. Then the new 3D scenario will be

automatically replicated. Our approach is the only one that proposes to dynamically
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Feature [5] [6] [113] [116] [115] Our approach
Environment
modeling

Manual Manual Manual Manual Manual (data priors) Manual

Scene
modifications

Manual Manual Manual Manual Manual Automatic

Scene capture Single-sensor Single-sensor Single-sensor Multisensor Single-sensor Multisensor
3D assets
relations

Users’ interactions None None None None Spatial configuration

Annotations

Obj. detection,
sem. segmentation,
reinforcement
learning

Obj. detection,
sem. segmentation

Sem. segmentation Obj. detection
Sem. segmentation,
depth estimation

Obj. detection,
sem. segmentation,
visual relationship
detection

Generality Default scenarios Limited Driving scenarios Limited Driving scenarios Surveillance scenarios

Table 5.5: Comparison between state-of-the-art synthetic dataset generation methodolo-
gies and our approach.

configure the environment when the data generation process starts. Scene modifica-

tions can be done in the different approaches, but none of them provides a high-level

mechanism like ours to vary the environment. Related to the possible 3D assets rela-

tions, [5] allows adding some limited user interactions. Our approach allows for adding

spatial location relations between the 3D assets.

Regarding image capture, all the works propose a single source to capture the scene,

except for [116] and our approach, which allows capturing the same time interval from

cameras with different viewpoints.

The data generated by the presented works are oriented to the training of DNNs.

Typical output includes annotations for object detection or semantic segmentation

tasks, to which [5] adds reinforcement learning. Our approach also generates labels

suitable for training visual relationship detectors.

One of the main advantages of our approach over the others is its generality and

the possibility to adapt it with little effort to new scenarios and tasks in the surveillance

field. This feature is very limited to the predefined scenarios in state-of-the-art works.

Regarding the rendering time, it depends on different factors such as the rendering

engine, the scene’s complexity, the number of 3D assets included, the light configu-

ration, or the polygon number of the modeled objects. For the current aircraft use

case, we configure the rendering to be as fast as possible using the parameters in the

configuration file, maintaining a good output quality. We use the real-time viewport

shading rendering for the camera setup design (Section 5.2.2) so that we can see the

modifications’ effect interactively. We use the Cycles Rendering Engine for the data gen-

eration, which is slower but provides more photorealistic results. Table 5.6 shows the
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Max Bounces Caustics Tile Size
12 6 1 Yes No 16 32 64 128 256
11.9 11.7 9.5 9.5 9.4 16.3 10.8 9.3 9.4 9.5

Table 5.6: Rendering time in seconds based on different configuration parameters using an
Nvidia Tesla T4 GPU.

rendering time (s) computed in different tests to choose the optimum parameters to

render a 640x480 pixel image of the cabin environment, including 50 3D assets (e.g.,

suitcases, passengers) apart from the background ones, 16 point lights and outdoors

sunlight. We use an Nvidia Tesla T4 GPU. It can be seen that by reducing the maxi-

mum light bounces from 12 to 1 we need 2.4 seconds less without noticeable changes

in the output image so we adopt only 1 light bounce. Disabling caustics effects neither

change the scene appearance and we save an additional 0.1 seconds. These times are

based on using a tile size of 128, but the optimum tile size for our hardware setup is

64. These parameter changes allow us to move from a rendering time of 11.9 seconds

to 9.3 seconds. More than 2 seconds per sample in a process where we need to gener-

ate thousands of images is a remarkable time-saving. Regarding the rendering time of

related state-of-the-art approaches, some works based on game engines claim to ren-

der in real-time [6, 115]. As stated in [115], a simplified lighting model allows real-time

rendering of massive amounts of geometry with limited realism. The Cycles Rendering

Engine, as a physically-based path tracer, allows for generating good quality results in

a reasonable time. Domain adaptation techniques are important to solve the domain

gap that DNNs trained with synthetic data can present. Generating data with a certain

degree of realism minimizes the problem to be solved by those techniques. However,

Blender also has a real-time rendering engine (Eevee) that can be used in tasks where

the rendering time is considered to be a bigger priority than the data quality.

We apply our methodology to the aircraft use case, but adapting it to another surveil-

lance scenario requires little effort from the user. Once the user collects all the 3D assets

of the new environment, the flexibility of the method allows for building a new scene.

The user interactively designs a suitable camera setup, along with the selection of target

places. Then he/she can start gathering variate training data for the considered task

based on the configuration files.
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5.2.6.1 Deep Neural Network Training

In order to see how a DNN would perform with the generated synthetic data and real

data, we train the model EfficientNet-B0 [29] to classify whether an image contains a

correct or incorrect situation (e.g., cabin luggage correctly or incorrectly placed). We

define an ROI for each seat, which will then be classified as correct or incorrect. We

replicate the cabin mock-up for also capturing real images from the camera over the

seats. Some examples of both real and synthetic ROI images are shown in Figure 5.9.

Figure 5.9: Real (top) and synthetic (bottom) ROI samples for training a classification DNN
with correct and incorrect situations.

We do two tests to see the contribution of our synthetic images to the DNN accuracy.

First, we train the DNN only with real data and test it on a separate subset of real im-

ages. Then, we repeat the training but incorporate the same number of samples from

our generated synthetic dataset and test it again on the real test images. We capture and

annotate 1,600 real images.

We initialize the DNN with pretrained weights on the ImageNet dataset [177] and

fine-tune it with our datasets. We train each DNN for 50 epochs with a batch size of 40

and the RMSprop optimizer [178]. The model trained only with real images achieves

88.52% accuracy when classifying the real test samples, while the model, which also

includes synthetic samples, achieves 94.26% accuracy on the same images. Conse-

quently, the positive contribution of the generated synthetic data in the model accuracy

confirms the suitability of the generated images for DNNs training.
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Many of life’s failures are people

who did not realize how close they

were to success when they gave up.

Thomas A. Edison

CHAPTER

6
Synthetic Data Generation with

Generative Models

In this chapter, we explore the use of synthetic data generation for deep learning

using generative models (Chapter 1, Hypothesis 3). We work on the generation of syn-

thetic data in the context of gaze estimation. Gaze estimation is an essential task in

computer vision for many applications. For example, the valuable information pro-

vided through gaze estimation can be used to create more natural ways to interact with

computers, design more immersive experiences in virtual worlds, and improve driving

safety by detecting driver fatigue or distraction.

Despite the abundance of facial images through the Internet and open large-scale

datasets [134], obtaining gaze-annotated images for training DNNs remains a signifi-

cant challenge. The process of capturing gaze-annotated data is labor-intensive. This

process typically requires specialized equipment and long capturing sessions, where a

volunteer is asked to progressively direct their gaze to various points [179].

Given the high value of each captured sample, it is crucial to explore alternative

methods for obtaining such data. Synthetic data generation and augmentation through

the use of generative models might be a promising alternative.
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In this chapter, we propose a Gaze-aware Compositional GAN learned from lim-

ited annotations and study the suitability of generated data for DNN training and other

potential applications.

The research presented in this chapter is submitted and under revision to be pre-

sented at the 32nd International Joint Conference on Artificial Intelligence (IJCAI).

6.1 Methodology

In a typical GAN, a generator model is trained to map a noise vector z (usually from a

standard normal distribution) to an image x. Our proposed method learns to generate

an eyes’ region image x and a corresponding segmentation mask y given a vector z and

a target gaze direction θ, as defined below:

G : (z,θ) −→ (x, y) (6.1)

where y ∈ {0,1}H xW xK , being H and W the image dimensions, and K the number of

segmented face components.

6.1.1 Gaze-aware Compositional GAN

We have the following three observations: (1) Some facial components are related to the

gaze (e.g., iris), while others are not (e.g., nose). (2) Our facial image generator needs to

be compositional, as we need the gaze-related facial components to remain the same

during the gaze-invariant data augmentation for the gaze estimation task and to be

changed alone during the gaze redirection editing task. (3) Our discriminator needs to

penalize the sample if it doesn’t match the conditioned gaze direction in addition to

being not realistic. Thus, we designed the following model components.

6.1.2 Gaze-aware Facial Image Generation

Realistic eye image synthesis has been extensively studied because of its importance in

various applications. There are two main approaches to synthesizing eye images: 3D

modeling of the eye and image generation using generative models.
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MLP Fusion

(b) Gaze-aware Discriminator

real/fake

Real Images

(a) Gaze-aware Compositional Generator

Fake Images

Gaze

Noise

Figure 6.1: The proposed Gaze-aware Compositional GAN model (GC-GAN). Building upon
the SemanticStyleGAN [7], we first group facial components into gaze-related {w1, . . . , wi }
and gaze-unrelated {wi+1, . . . , wK }. Then we extend (a) the Local Generators ({g g

j }i
1) in the

generator and the discriminator Dg to condition on the input gaze θ.

6.1.3 Framework: Gaze-aware SemanticStyleGAN

To ensure the composability of our GAN, we adopt the state-of-the-art SemanticStyle-

GAN model [7]. As illustrated in Figure 6.1, our Gaze-aware Compositional GAN model

(GC-GAN) is divided into three main components: noise to latent vectors mapping,

Gaze-aware Compositional Generator for image generation, and Gaze-aware Discrim-

inator for discriminating images during training. The input vector z is mapped to an

intermediate latent code w ∼ W using an 8-layer MLP to better model the non-linearity

of the data distribution, similar to [135]. To obtain a disentangled latent space for dif-

ferent components of the face, the latent code w is divided into K local latent codes

and an additional base latent code wbase , common for all the face components. The

gaze-aware compositional generator processes these latent codes. This module has K

generators, each responsible for generating feature maps for a specific face component

given a local latent code wk . All the output feature maps are fused and fed to the final

generator, which generates the synthetic images and their corresponding segmentation

masks. During the training, the generated images and masks are fed to the discrim-

inator and real samples from the training dataset. Gaze vectors are also input to the

discriminator when available.

The main modules of the model are detailed as follows.
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6.1.4 Gaze-aware Compositional Generator

As the Render Net is gaze agnostic, we only need to condition the gaze direction for

the Local Generators of gaze-related facial components, {g g
j }i

1. We condition the Local

Generators with the gaze direction feature for gaze-related features. We refer to these

generators as gaze-aware local generators (GLG). Figure 6.2 shows the architecture of a

Gaze-aware Local Generator (GLG) for a specific facial component k. The GLG is formed

by modulated 1x1 convolution layers with latent code-conditioned weights and input

Fourier features fp for position encoding. The input latent codes for each Local Gen-

erator are the base latent code wbase and the face component-specific wk . The latent

code wk is divided into shape and texture latent vectors, w k
s and w k

t . The target gaze

direction θ is also input to the GLG to control the gaze of generated samples. The in-

put gaze θ is defined as yaw and pitch angles (ϕy , ϕp ) and is fed to a fully connected

layer for mapping it to an adequate 64-dimensional space before fusion. The output of

this layer is concatenated to the component-specific latent vectors, and the extended

latent vectors, w k+
s and w k+

t , are fed to a series of modulated 1x1 convolutions and fi-

nal fully connected layers. The output of the GLG is a 1-channel pseudo-depth dk and

512-channel feature map fk . The hidden layers have 64 channels.

1x1
conv

concat

Linear
layer

Figure 6.2: Architecture of our Gaze-aware Local Generator (GLG). The red lines are addi-
tions compared to Shi et al. [7].

The local generators unrelated to gaze follow the same architecture except for the

gaze branch, which we discard.
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6.1.5 Gaze-aware Discriminator

Our generated samples should be discriminated based on the joint distribution of the

image, the mask, and the gaze. As shown in Figure 6.3, for the image and mask, the dis-

criminator has two convolution branches composed of residual blocks whose outputs

are summed up. The mini-batch standard deviation of the resulting feature maps is

concatenated, and 3x3 kernel convolution is applied before adding the data from the

gaze. The gaze is included as a third input to the discriminator. A linear layer processes

the gaze to map it to a 64-dimensional space before being concatenated to the feature

maps from the dual branch. The concatenated maps are processed by the final linear

layer, which classifies the input data as real or fake.

Figure 6.3: Architecture of the discriminator in the first training stage. Outputs from resid-
ual blocks are summed, while features from gaze direction are concatenated.

6.1.6 Two-stage Training

We first train the GC-GAN model on the labeled data and then transfer the facial appear-

ance from the unlabeled data with the domain adaptation approach (Figure 6.4).

6.1.7 Stage 1: Training on Labeled Data

During the training of the first stage, the following loss function is minimized.

Ls1 =λl Ll +λr Lr +λp Lp +λmLm +λsLs (6.2)

where Ll is non-saturating logistic loss [180], Lr is R1 regularization loss [181], Lp is

path length regularization loss [135], Lm and Ls are mask and segmentation regulariza-

tion loss [7]. Each loss is weighted with the corresponding λ hyperparameter. However,
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Transfer weights

Stage 1: Training on labeled data Stage 2: Adaptation to unlabeled data

Figure 6.4: Overview of the two-stage training: (1) training on limited annotated data, (2)
adaptation to unlabeled data.

due to the limited amount of labeled data, it is hard for such a trained model to general-

ize well to new images acquired in the wild that are challenging to have accurate gaze

annotations.

6.1.8 Stage 2: Adaptation to Unlabeled Data

To adapt GANs to the target domain, it is a common practice to freeze the lower-level

layers of the generator module [182]. The challenge here is to find out which module to

freeze. Moreover, in our case, the target domain lacks the label information that is used

in the source domain, which requires the modification of the discriminator model.

Freezing Gaze-aware Compositional Generator. To transfer the model to the ap-

pearance distribution from a new image domain, we rely on the hypothesis that samples

with the same segmentation mask share the same gaze direction. A specific latent vec-

tor w and input gaze direction θ, fed to the gaze-aware generators module, results in a

fused coarse feature map and mask, which are then refined in the Render Net. Our goal

is that the same latent vector generates images in both dataset domains that share the

same gaze direction and coarse features (e.g., pose), but domain-specific appearances.

For that purpose, we initialize the model with the pretrained weights from the first stage,

freeze the GLG and the first block of the rendering generator, and fine-tune the rest of

the model. Random input gaze directions are fed to the generator.

Modifying Gaze-aware Discriminator. There are no available gaze annotations to

use as input along with real images and masks, so we constrain the gaze requirement by

using the segmentation mask. The discriminator has the same architecture as in Sec-

tion 6.1.1 without the input gaze branch. The discriminator receives real pairs of RGB
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copy
mask

Figure 6.5: Stage 2: Adaptation to unlabeled data. The generated image is combined with
the mask generated by the pretrained stage-1 model given the same latent and gaze vectors.

images and the corresponding segmentation masks, and the same with synthetic pairs.

In the synthetic pairs, we use the synthetic image generated by the generator given a

latent vector w and a target gaze direction θ, but an expected segmentation mask for

that latent vector instead of the generated one. The expected mask is generated by the

previously pretrained model, as shown in Figure 6.5. The model trained in the first stage

has already learned how to model the relation between the latent code and the gaze in

the generated images. Consequently, using it to generate the masks for the discrimina-

tor’s input pairs forces the learning GAN to generate images that fit the given masks and

consequently the input gaze direction.

We also add a mask loss Lg , which is minimized together with the same losses as the

first stage. This loss helps to preserve the same generated mask for the same latent vec-

tor and consequently the same gaze direction. The new mask loss measures the mean

squared error between the generated mask with the updated weights and the mask gen-

erated using the pretrained weights given the same latent and gaze vector. The final loss

of the second stage is defined as follows:

Ls2 = Ls1 +λg Lg (6.3)

where Ls1 are the losses defined in Eqn. 6.2 and Lg is the mask loss for gaze preservation.
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6.1.9 Applications

6.1.10 Gaze-aware Facial Image Synthesis

The composition-based architecture promotes a disentangled and interpretable latent

space for image editing. After model training, we can generate a synthetic sample given

an intermediate latent vector w , and a target gaze θ. We can redirect the gaze of the gen-

erated sample by modifying the input gaze direction θ. Regarding the semantic facial

components, we can modify the specific kth component by varying the corresponding

local latent vector ws
k or wt

k . We use cubic spline interpolation to smoothly move from a

local latent vector to a different one.

6.1.11 Data Augmentation for Gaze Estimation

Figure 6.6 shows examples of the different ways for generating data we propose: data

generation in different domains using the same latent and gaze vector, redirecting the

gaze, and modifying specific facial components.

...

...

... ...

...

Image generation in 2 domains Input gaze direction modification Input local latent modification

Figure 6.6: Design choices for data augmentation with the trained GC-GAN model.

6.1.12 Gaze-aware Facial Image Editing

To edit the gaze direction of the input facial image, we need to map the image to the

learned latent space. This can be done by inverting each image. Image inversion can

be approached as an optimization process that finds the latent vector that results in
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the closest possible image to the target one when input to the generative model. In this

optimization, we use the losses defined in Equation 6.4.

Li nv =λp Lp +λd Ld +λmLm , (6.4)

where the perceptual loss Lp measures the high-level similarity between the generated

image and the target image computing the L2 distance between intermediate image fea-

tures extracted with an ImageNet-pretrained VGG19 network [183]. The Ld computes

the pixel-wise MSE loss between both images. Finally, the Lm computes the difference

between the evaluated latent vector and a mean latent vector, so that the result does not

deviate too much from it. The mean latent vector is computed by averaging multiple

latent vectors from random z vectors. All losses are weighted with the corresponding λ

hyperparameter.

6.1.13 Implementation Details

We first train the composition-based GAN with the ETH-XGaze subset and then transfer

the model in the second stage to the CelebAMask-HQ dataset. We define the iris and

sclera as the conditioned facial components. Random input gaze angles are fed to the

model during training, sampled from the real gaze range of the labeled dataset. We set a

dimensionality of 512 for z and w , and the image size is 256x256. Similar to StyleGAN2,

we use style mixing regularization [135] and leaky ReLU activations. We empirically set

the first stage’s λ hyperparameters to λl = 1, λr = 10, λp = 2, λm = 100, and λs = 500. In

the second stage, the additional λg is set to 100. We use the ADAM optimizer [184] with

the hyperparameters β1 = 0, β2 = 0.99, and 8 as the minibatch. We implement our frame-

work using PyTorch 1.7. All the experiments are done using an Nvidia GPU GeForce RTX

3090.

6.2 Experiments

We present a thorough examination of our proposed framework by implementing both

qualitative and quantitative experiments. We aim to demonstrate the efficacy of the

framework in generating both within-domain and cross-domain data augmentations, as
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well as gaze-controlled images. For further implementation specifics, we direct readers

to the appendix.

6.2.1 Datasets

We use the ETH-XGaze dataset [179] as the primary source of gaze-labeled data. It

contains facial images of 110 subjects captured from 18 cameras in a controlled envi-

ronment. We randomly select a subset of 8 subjects for training (14,464 images) and

2 for testing (3,920 images) for the four most frontal cameras. While the ETH-XGaze

dataset features a wide and balanced gaze range, the variety and naturalness of individ-

uals captured in controlled environments may be limited. To address this limitation, we

use the CelebAMask-HQ dataset [134] as the unlabeled dataset, which contains 30,000

in-the-wild images of celebrities.

Eyes' region image
crop and

segmentation

Face image
normalization,

landmarks detection
Original image

Figure 6.7: Preprocessing of a sample from the CelebAMask-HQ dataset: face and face land-
marks are detected for image normalization and eyes’ region image crop and segmentation.

Both datasets were preprocessed to generate 256×256 sized eyes’ region images. It

is common to use image crops containing one or both eyes for gaze estimation DNNs

[128, 185, 186, 187]. We use the eyes’ region crop for our experiments. Individual eyes

can be cropped after synthetic image generation if needed. For models using the entire

face, our approach could be extended to the face. We preprocess the images to get a nor-

malized 256×256 eyes’ region image crop and the corresponding segmentation mask.

We use the face detector in [? ] to detect the faces in images, and we detect the face

landmarks with [? ]. The image normalization includes rotating the images to eliminate

any roll angle due to the head pose, centering the images based on the face center, and
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Table 6.1: Error (degrees) in the test set when trained with different kinds of augmentations.

Augmentation Error↓
No Aug 4.54
Color Aug 4.47
Color+Geometry Aug 4.52
Ours (in-domain) 4.22
Ours (in- and cross-domain) 3.86

scaling them to have 1.7 times the eyes’ region width considering the furthest eye cor-

ners horizontally. We define the face center as the average point considering the average

of the eyes’ coordinates and the average of the mouth’s coordinates. The eyes’ region is

the facial image’s upper half. We use the face landmarks to generate the correspond-

ing segmentation mask, which includes the following categories: background, face, iris,

sclera, eyebrows, and nose. Figure 6.7 shows an example of image preprocessing for a

sample in the CelebAMask-HQ dataset.

6.2.2 Data Augmentation for Gaze Estimation

To assess the effectiveness of our proposed method for data augmentation, we train a

DNN for gaze estimation with and without the use of augmented data, respectively. We

train a baseline gaze estimation DNN using an off-the-shelf ResNet-50 network [28] as

in [179]. The DNN takes 224×224 eyes’ region images and estimates the gaze direction

as yaw and pitch angles.

We build four configurations for the augmentations: (1) a baseline configuration

with augmentations with geometric and color modifications (e.g., CLAHE, shift and scale

perturbations), (2) a variation of the baseline configuration that only employs color mod-

ifications (e.g., brightness variations), (3) GAN-based within-domain augmentations,

and (4) GAN-based within and cross-domain augmentations.

For GAN-generated augmented samples, we first embed the ETH-XGaze subset

samples into the closest latent vectors. New samples are then generated through itera-

tive modification of unconditioned face components and redirecting the gaze vector

of some of the samples (Section 6.1.9). We generate 8,000 synthetic images for the

within-domain augmentations and further augment the training set by an additional 5%
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with the cross-domain augmentations. We use the same inverted images’ latent vectors

to generate the synthetic images in the CelebAMask-HQ dataset domain.

Table 6.1 shows the error obtained by the DNN in the test set when trained with

the different augmented sample configurations, as well as when trained without any

augmentations (4.54 degrees). While all augmentations lead to an error drop, the error

reduction is significantly higher when utilizing GAN-based augmentations. Addition-

ally, we observe that even though the cross-domain augmentations belong to a different

domain, they still help to improve the model’s generalization capability.

Figure 6.8 illustrates qualitative results of the different augmentations, as evaluated

in Table 6.1. The first row shows examples of images that have undergone geometry and

color modifications, as used in the baseline augmentations configuration. The second

row displays within-domain augmentations for the same subject, including the original

image and modification of the nose, eyebrows, and gaze direction. The images in the

last row depict pairs of synthetic images in the ETH-XGaze and CelebAMask-HQ data

domains, generated using the same latent vector for each pair. It can be observed that

despite the domain-specific appearance of the images in each pair, they maintain the

same gaze direction.

Figure 6.8: Different augmentations evaluated for DNN training. Top to bottom rows: color
and geometric augmentations, within-domain augmentations, and cross-domain augmen-
tations.
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6.2.3 Gaze-aware Facial Image Generation

6.2.4 Facial Image Synthesis

The quality of image synthesis in generative models is evaluated using metrics such

as the Fréchet Inception Distance (FID) [188] and the Inception Score (IS) [189]. Our

models obtain a mean FID of 15.3 and a mean IS of 1.92. As far as we know, there are no

generative models with input latent vector and gaze to compare with. Consequently,

we compare these metrics to the state-of-the-art methods for in-the-wild images’ gaze

editing. Table 6.2 shows that while both DeepWarp and GazeGAN achieve a higher IS,

they also present a much higher FID. This suggests that our method is able to generate

more realistic synthetic images. In addition, existing methods for gaze redirection are

typically limited to frontal gaze or between two images, lacking fine-grained control.

Table 6.2: Image quality comparison with state-of-the-art methods for in-the-wild images’
gaze redirection.

Method FID ↓ IS↓
DeepWarp 106.53 2.89
GazeGAN 30.21 3.10
Ours 15.3 1.92

In Figure 6.9, we present some qualitative results of synthetic images generated with

our method in the CelebAMask-HQ and ETH-XGaze data domains (top and bottom

rows, respectively). We use randomly generated input latent and gaze vectors. We ob-

serve that the synthetic images look realistic and preserve the diversity of both training

datasets.

Figure 6.9: Synthetic images generated with random latent vectors for the ETH-XGaze and
CelebAMask-HQ data domains.
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6.2.5 Facial Image Editing

In Figure 6.10, we see an example of two synthetic images generated with the models

trained in the first and second stage, given the same latent vector w and gaze direction

θ.

Figure 6.10: Synthetic images generated by models of stage 1 and stage 2 given the same
latent vector w and gaze direction θ.

Next, we generate new augmented samples by editing a local latent vector wk or

the input gaze direction θ. Figure 6.11 shows some examples generated by the model

trained in the first stage.

Figure 6.11: Synthetic image augmentations by input latent or gaze vectors’ modification
(ETH-XGaze data domain).

We generate the images in the first row by modifying the latent vector of the eye-

brows. We observe that augmented samples vary on the eyebrows but preserve the other

face components unaltered, including the gaze direction. We generate the second-row

images’ by sampling new local latent vectors for the nose generator and leaving the rest

of the inputs the same as in Figure 6.10. The third row shows examples of face shape
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modifications. The images in the last row are generated by modifying the input gaze

direction θ. Figure 6.12 shows examples of the same kinds of augmentations generated

with the model trained in the second stage (CelebAMask-HQ data domain).

Figure 6.12: Synthetic image augmentations by input latent or gaze vectors’ modification
(CelebAMask-HQ data domain).

As shown in Figure 6.11 and Figure 6.12, the proposed GC-GAN model allows for

fine-grained control image editing. In addition to image editing, it is also crucial when

generating training data for DNNs. Training datasets for DNNs should have enough sam-

ples and be varied and balanced. Having control over the data generation is, therefore,

essential.

6.2.6 Ablation Studies

This section presents different ablation studies regarding data generation for gaze

estimation DNN training and generative model training.

6.2.7 Data Augmentation: in-domain synthesis

We evaluate the influence of a different number of generated GAN-based augmenta-

tions in the performance of the gaze estimation DNN. For that purpose, we repeat the

experiment in Section 6.2.2, varying the number of synthetic samples in the training set.

113



DATA-CENTRIC DESIGN AND TRAINING OF DEEP NEURAL NETWORKS WITH
MULTIPLE DATA MODALITIES FOR VISION-BASED PERCEPTION SYSTEMS

Figure 6.13 shows the obtained mean error in the estimated gaze vector (in degrees) for

the different training sets when adding within-domain augmentations.
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Figure 6.13: The mean error in the test set when using a gaze estimation DNN trained with
a different number of synthetic samples from the ETH-XGaze dataset distribution.

When training with no synthetic samples, the DNN obtains an error of 4.53 degrees

in the test set. When we add some synthetic samples to the training set, the test error is

quite similar (4.52 degrees), but as we increase the number of synthetic samples (more

than 5,000 images), the error decreases from 4.52 to 3.90 degrees. The error drop shows

that the augmentations are helpful and the gaze is accurately preserved.

6.2.8 Data Augmentation: cross-domain synthesis

We increase each training set a 5% by selecting the images with the highest confidence.

We compute this confidence score based on the MSE between the generated masks in

both dataset domains. We repeat the DNN training with different sets of augmented

data. Figure 6.14 shows the obtained results in the test set when adding within-dataset

and cross-dataset augmentations to the training set. It can be seen that adding cross-

dataset augmentations helps in reducing the error. Adding images from a new domain

increases the accuracy of the DNN, but adding an excessive amount of images does

not seem to necessarily lead to further improvement (the minimum test error is 3.86

degrees, and it is achieved with 9,000 synthetic images).
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Figure 6.14: The mean error in the test set when using a gaze estimation DNN trained with
a different number of synthetic samples from the ETH-XGaze and CelebAMask-HQ dataset
distribution.

6.2.9 Stage 2: Modules to Freeze in the Gaze-aware Compositional Gen-

erator

There are several combinations of modules in the generator to be frozen for the second

stage. We train the model after freezing different parts. Then, we qualitatively ana-

lyze the gaze preservation in each one by generating multiple pairs of images in both

domains given a latent vector.

In Table 6.3, we observe that freezing only the shape-oriented layers in the GLG is

not enough, the weights of the whole GLG need to be preserved. The Render Net R also

contains some information related to the gaze direction, as it is required to freeze the 2

initial residual blocks to transfer the gaze. It is also possible freezing an additional block,

but the image quality is much worse. Regarding the segmentation mask constraint

(Section 6.1.6), it is a necessary but not sufficient condition.

6.2.10 Gaze Conditioning

The proposed GC-GAN design groups gaze-related and gaze-unrelated facial compo-

nents’ generators. This differentiation is possible thanks to the composition-based

architecture. The motivation behind this design is the possibility of controlling different

facial components independently and having a disentangled latent space for them and

the gaze direction. We rely on the hypothesis that if some facial components, such as
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Table 6.3: Gaze preservation between domains when different components are frozen,
Gaze-aware Local Generator (GLG) or Render Net (R), and whether mask constraint is ap-
plied.

ID GLG R M askc Gaze preservation
1 shape only ✗ ✓ No
2 ✓ ✗ ✓ No
3 ✓ 1 ✓ No
4 ✓ 2 ✓ Yes
5 ✓ 3 ✓ Yes
6 ✓ 2 ✗ No

the nose, are independent of the gaze direction, their generator should learn without

any gaze conditioning. To demonstrate whether grouping the gaze-related and unre-

lated generators helps, we retrain the GC-GAN with the ETH-XGaze dataset but modify

the Local Generators so that all are gaze-conditioned and have the same architecture as

a GLG.

Table 6.4: Pixel-wise mean absolute error between images generated given the same latent
vector but different gaze directions. Errors per sample are averaged from images corre-
sponding to 32 gaze directions.

Sample
ID

All generators
conditioned

Gaze-related
generators

conditioned
1 1.32 0.83
2 1.24 0.86
3 1.45 1.15
4 1.24 0.99
5 1.37 0.81

Mean 1.33 0.93

We generate random images with the initially proposed and totally conditioned

models. Then we vary the input gaze direction of each sample to generate new images

with 32 different gazes and analyze how the images change. Ideally, only the eyes should

change due to the gaze, and the rest of the image should be maintained unaltered.

Therefore, the differences between images should be minor. We measure the image

differences when varying the gaze by computing the mean absolute error pixel-wise

between the initially generated image and the image with the redirected gaze. We calcu-
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late the mean error of the 32 gaze variations per sample and compare the error obtained

by both models. Table 6.4 summarizes the results.

As can be seen, the error is lower when we group the generators into gaze-related

and unrelated. This difference is also noticeable in the generated images. Figure 6.15

shows some examples of a sample when varying the gaze. Images in the top row are

generated using the model with all Local Generators conditioned. It is noticeable that

the gaze is entangled with the pose. When the gaze changes, the pose in some im-

ages changes too. Even the face texture changes in the last image. On the contrary, the

images generated with grouped generators (bottom row) show a more disentangled be-

havior. The eyes’ appearance changes when the gaze varies, but the rest of the image

remains unaltered.

Figure 6.15: Synthetic images generated by varying the input gaze when all Local Gen-
erators are gaze-conditioned (top row) and when generators are grouped as in GC-GAN
(bottom row).
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I am always doing what I cannot do

yet, in order to learn how to do it.

Vincent Van Gogh

CHAPTER

7
Data-oriented Deep Neural

Network Design: data modality

This chapter presents our research on adapting the DNN architecture design to the

data modality (Chapter 1, Hypothesis 4). We work with point clouds from the LiDAR

sensor for the automotive field. Over the last years, object detection has attracted much

research attention in computer vision. 2D object detection has increasingly improved

through advances in deep learning. However, many applications, such as advanced driv-

ing, need 3D object detection. 3D object detection is a less mature problem compared

to 2D detection, but it is fundamental for perception systems in the automotive field. In

the last years, the rapid progress of DNNs and the emergence of the LiDAR sensor for

the automotive have promoted research in 3D object detection from LiDAR data.

Data captured by the LiDAR sensor are used to construct 3D point clouds. Different

strategies have been explored to adequate these point clouds for object detection algo-

rithms, including the conversion to image-like representations and processing point

clouds directly. Handling point cloud data directly involves extra challenges like data

volume and unstructured form. Image-based methods are left behind without a clear

answer to the following questions: is it better to process point clouds directly? Is it pos-

sible to appropriately adapt 2D object detection architectures to the point cloud data to

achieve similar results?
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The research presented in this chapter has been published at the 13th International

Joint Conference on Computational Intelligence (IJCCI) [190]. The publication was

selected as the best student paper.

7.1 Methodology

We propose a DNN that takes as input the BEV representation of a point cloud and out-

puts the 2D oriented bounding boxes corresponding to the detected objects. The heights

of the 3D boxes are estimated based on the highest point inside each box. Figure 7.1

shows the entire pipeline.

Figure 7.1: Proposed 3D object detection pipeline from LiDAR point cloud data.

7.1.1 Point Cloud to BEV Representation

Our approach first converts the point clouds to BEV images. Different works use vary-

ing configurations, resolutions, and amount of height channels for this step. We opt for

keeping the height of the highest points in every voxel as in [191].

We consider a resolution of 0.1m for discretizing the point cloud in a grid of columns

from a top-view perspective. We keep the height information in 3 channels to have an

RGB-like data structure. Each column is divided into three voxels. Each voxel is of size

0.1m ×0.1m ×1m, which results in a 700×700×3 image (we consider a maximum dis-

tance of 70m in the longitudinal direction and 35m in both sides in the lateral direction).

For every pixel, there will be three voxels. From all the points in each voxel, we only keep

the highest point’s height information and discard the rest. This process compresses

the data but leaves enough information to detect objects.

7.1.2 Baseline Architecture

We base our network on Faster R-CNN [150] with a ResNet50 [28] backbone with some

modifications related to the BEV representations used as the input data. The BEV images

used in our research contain small objects that are challenging to detect. In addition,
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we want to detect oriented bounding boxes rather than axis-aligned detections as done

in [150]. Next, we describe the proposed changes.

Our first modification is using a Feature Pyramid Network-like architecture [161]

to detect objects at the higher-resolution feature maps and not just at the final output

maps of the ResNet.

Secondly, we adjust the stride of the third ResNet blocks from 2 to 1. This prevents

the feature maps from being downsampled too quickly, which would cause a loss of

detailed spatial information.

Thirdly, we remove the last ResNet block since we empirically found that it did not

improve the results and allows for faster processing. The features extracted in this block

probably do not contribute much because of the too-large receptive field of the pixels

at this depth. The receptive field after the third ResNet block for each output value is

already 195 pixels of the original BEV image, corresponding with almost a 20m x 20m

area when using a 0.1m resolution. Although the context can help to detect the objects

and the effective receptive field is smaller than the theoretical one [192], it seems to be

already a large enough region.

We also use custom anchor boxes. The size of a car is consistent everywhere in the

image because of the relation between their real size and their representation in the

BEV image. This allows the designing of anchor boxes that best-fit cars, pedestrians,

and cyclists.

In the second stage of the network, we use ROI-Align [193] to get 14×14 candidate

ROIs, which are max pooled with a 2×2 kernel and fed to three fully connected layers

with 1024 parameters each. After each layer, a ReLU activation function is used.

Lastly, the output detection bounding boxes are processed by the NMS method

[150] so that unwanted bounding boxes are removed based on their classification score

and the overlap between the boxes. If the DNN mistakes the classification scores of

overlapping correct and incorrect boxes, this may lead to poor results. To make these

classification scores more robust based on the LiDAR data peculiarities, we compute

the percentage of non-empty pixels of each candidate box. The correctly oriented boxes

mostly have a higher density of points, so we add this value to the classification score to

help the NMS choose the correct detections.
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7.1.2.1 Bounding Box Regression

The original Faster R-CNN network regresses axis-aligned bounding boxes (with no ori-

entation). The bounding box regression is done in two stages. The first bounding box

regression step is in the RPN. In addition, the network does a second bounding box

regression at the end of the second stage. Both steps regress axis-aligned bounding

boxes, which are represented by the center of the bounding box (x, y) and the dimen-

sions of the bounding box (h, w). For accurate 3D detection, we need to detect oriented

bounding boxes, so an additional parameter (theta) has to be added to regress the an-

gle of the bounding box. We maintain the axis-aligned regions’ regression in the RPN

but regress five parameters in the second stage, including the box’s orientation. The

oriented bounding box parameters can be regressed individually with a loss function

like L1, L2, or smooth L1. The underlying assumption is that regressing these param-

eters individually will lead to a global optimum for the bounding box estimation. For

axis-aligned boxes, this works, but for oriented bounding boxes does not. [194] show

the conflicting interest between the angle regression and the other regressions. A way to

solve this problem is to directly minimize the loss for what you are evaluating, which is

the IoU between ground truth and estimated bounding boxes. We use the IoU loss for

the second stage [195].

7.1.2.2 Loss Function

Regarding the loss function, both network stages have a regression loss and a classifica-

tion loss. Consequently, the total loss is a combination of four losses. The first stage is

the RPN and uses the same loss objectives as the original Faster R-CNN. Four regression

parameters are optimized with a smooth L1 loss, being (x, y) the center and (h, w) the

dimensions of the bounding box. Once the difference between the ground truth param-

eter and the estimated one is computed (d), the smooth L1 loss is used according to the

following Equation 1:

L1(d) =
{

0.5d 2σ if |d | < 0.5
σ

|d |− 0.5
σ

otherwise
(7.1)

where σ is a tuning hyperparameter. We use σ= 3 for the RPN network and σ= 1 for

the head network, as in the Faster R-CNN implementation [150]. The RPN classifica-

tion loss is binary cross-entropy with foreground and background boxes. We use an IoU
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regression loss with five regression parameters instead of four [195] in the second stage.

For the classification, we use a multi-class cross-entropy loss.

7.2 Network Extensions

One of the biggest challenges for the BEV-based object detection methods is distin-

guishing the smallest objects (e.g., pedestrians). When converting point clouds to BEV

images, compression takes place where some data are lost. This is not a problem if there

is enough data left to accurately perform detection of the target objects. When looking

at the BEV images, this clearly seems to be the case for the cars. Many points are dis-

carded, but they still show a clear structure, making detecting them possible. This is

unclear for small classes such as pedestrians and the cyclists. The top view perspec-

tive only covers a small area of these objects. This might be alleviated with additional

data that helps to distinguish these objects from others. For this reason, we test two net-

work extensions. The first uses data already provided in the BEV image, and the second

incorporates external data.

Each point in a LiDAR point cloud is represented by its 3D coordinates and its re-

flectance values. These values are related to the object class it represents and can

provide meaningful information. Even if some values are stored in the BEV image, the

specific pixel values are often lost along the network’s operations [196]. The detectors

consequently rely on the shape patterns in the BEV image more than on the extra in-

formation provided by the specific values. To test if these data could complement the

patterns learned by the network, we add a skip connection from the input BEV map to

the head network. This connection adds the raw values to the data received in the head

network (feature maps of the candidate ROIs from the RPN) so that we guarantee that

the values do not get discarded in the backbone and they can be used in the second

stage of the network. In addition, we add two fully connected layers to the input values

before concatenating them to the input data of the head network. These layers allow

the network to learn a better fusion mechanism from the two feature spaces. Figure 7.2

shows the fusion scheme.

Based on the same fusion scheme, we could add information from a different BEV

image instead of the heights-based one we use as input to the network. For instance, we
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Figure 7.2: Fusion scheme to add information to the head network from a BEV image.

can add data related to another sensor, such as the camera. The camera captures infor-

mation about the textures and appearances of the objects. The information provided

by the camera pixel values about the object appearances is complimentary to the data

from the LiDAR and might help gain robustness. To test this, we project the camera im-

age pixel values from the camera to the point cloud. An example of the resulting point

cloud is shown in Figure 7.3. Next, we compute the BEV representation, which contains

pixel color information in each cell instead of height. Figure 7.4 shows an example of

this kind of BEV. The new BEV image is added to the head network with the same fusion

mechanism as the heights-based BEV image (Figure 7.2).

Figure 7.3: A LiDAR scan of the KITTI benchmark to which its corresponding camera image
RGB values are projected.

7.3 Network Optimization

Using BEV images for 3D object detection reduces the amount of data to be handled.

This translates into less processing time and makes the approach suitable for real-time
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Figure 7.4: A BEV image which contains the projected image pixels color information in-
stead of the heights of the points.

applications or collaborative environments. The Faster R-CNN network is more accu-

rate than most single-stage object detection architectures but also slower. Consequently,

we optimize the model after training to make the inference faster without reducing the

architecture complexity.

The number of proposals generated in the first network stage varies in every im-

age. However, the input batch of the second stage remains fixed. If the number of

generated proposals is smaller than the batch number, the missing proposals must be

simulated with empty ones. To avoid this processing, we divide the network into two

parts corresponding to each stage and treat them as two independent networks running

asynchronously. Thus, the first network processes batches of N images and generates

a different number of proposals for each image, which are processed together in one

batch by the second network. This way, the batch of the second network is optimized

for the total number of proposals.

Using a dynamic batch for the second network may lead to time overheads, as

the network needs to be re-adapted for the new size. To avoid this, the proposals are

grouped in batches of a fixed size M and fed asynchronously to the network. Once the

proposals are classified, they are returned again to their original batches according to

the image they belong to. We optimize the models with TensorRT [197].
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7.4 Experiments

We test our approach on the KITTI dataset, which has 7,158 training samples. We

use a 50/25/25 split for training/validation/test sets. We convert the point clouds to

700×700×3 images with a 0.1m resolution. Only the annotated area is considered, cor-

responding to the camera’s field of view. We evaluate the network on the three classes

of the benchmark, but we train two separate networks, one for cars and another for

pedestrians and cyclists. For each network, we train and evaluate three variants: the

baseline model, the baseline with the fusion of the input BEV in the head network, and

the same model but with the fusion of the RGB data-based BEV. The car class has by far

the most objects, which is the reason to train it apart. Otherwise, the network would

be very biased in favor of this class. The KITTI results are evaluated by calculating aver-

age precision (AP) for every class’s three difficulty categories (easy, moderate, hard). We

consider an x, y, z range of [(0, 70), (-35, 35), (0, 3)] meters, respectively, for the car class

and [(-35, 35), (-35, 35), (0, 3)] meters for pedestrians and cyclists. As the benchmark

proposes, we use an IoU threshold of 0.7 for cars and 0.5 for pedestrians and cyclists.

Regarding the training, our loss function is optimized with stochastic gradient de-

scent with a momentum of 0.9. An initial learning rate of 0.003 is used with decay steps

at 35 and 42 epochs, with a factor of 0.1. The network is trained for 70 epochs with a

batch size of 1 and a mini-batch size of 256. The mini-batch corresponds to the number

of region proposals that are fed to the second stage. Weight decay is set at 0.0001. The

entire baseline model has 19M learnable parameters. The backbone is initialized with

pre-trained weights from ImageNet, whereas the head network is trained from scratch.

All tests are done on a single Nvidia Tesla V100 GPU. All other hyperparameters are the

same as those used for the Faster R-CNN.

7.5 Results and Discussion

Table 7.1 shows the AP obtained by our method compared to other state-of-the-art ap-

proaches for car, pedestrian, and cyclist classes. In the same way as in [8], we validate

our results on our split validation dataset, whereas the others are validated on the of-

ficial KITTI test set. Our models outperform most works with only LiDAR data for the

three classes and difficulties. Our proposed CNN architecture achieves a higher AP than
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other BEV-based pipelines, such as [153] and [8]. These models mainly differ in the

proposed backbone architecture and the regression loss. In addition, our work also sur-

passes the approaches which process raw point clouds, such as [158] and [159]. Only

the method in [155] presents a slightly better accuracy for cars in the hard category. This

shows that using a BEV-based approach is not a limitation for obtaining a high detection

accuracy.

Method Modality BEV Car Pedestrian Cyclist
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PIXOR [153] LiDAR Yes 81.70 77.05 72.95 N/A N/A N/A N/A N/A N/A
Complex-YOLO [8] LiDAR Yes 85.89 77.40 77.33 46.08 45.90 44.20 72.37 63.36 60.27
PointPillars [159] LiDAR No 88.35 86.10 79.83 58.66 50.23 47.19 79.14 62.25 56.0

SECOND [158] LiDAR No 88.07 79.37 77.95 55.10 46.27 44.76 73.67 56.04 48.78
Joint 3D [155] LiDAR No 90.23 87.53 86.45 N/A N/A N/A N/A N/A N/A

F-PointNets [154] RGB+LiDAR No 88.16 84.02 76.44 72.38 66.39 59.57 81.82 60.03 56.32
Baseline LiDAR Yes 97.3 89.6 85.0 54.1 52.5 51.0 73.2 60.7 58.7

Baseline + input BEV LiDAR Yes 93.7 88.7 84.4 52.9 51.7 49.1 80.4 66.6 64.2
Baseline + cam.-based BEV RGB+LiDAR Yes 94.6 87.1 83.3 56.1 54.0 50.7 82.6 73.1 70.5

Table 7.1: Our proposed approach compared to other state-of-the-art methods on our
KITTI validation set based on the AP. Note that our work and [8] are validated on our split
validation dataset, whereas all others are validated on the official KITTI test set.

Regarding the network extension tests, no improvement is obtained for the car

class. This may be because the cars already had enough points and information to

be accurately detected in the BEV image. This is not the case of smaller objects such

as pedestrians and cyclists. Adding the skip connection with the input values to the

head network boosts the accuracy of the cyclist class. Regarding the addition of the

camera-based BEV image, it increments the accuracy of the pedestrian and cyclist de-

tections. When comparing this network to another multimodal approach like [154], we

observe that the accuracy obtained by Frustum PointNets is higher for the pedestrian

class but not for the cars and the cyclists. This may happen because of the feature space

where the detections are estimated. Frustum PointNets detect the object proposals on

the RGB image, and then, computing a 3D viewing frustum, they predict the final 3D

box on the point cloud. Therefore, the accuracy is closely related to the 2D detector for

the RGB image. This differs from our approach, which projects the RGB values to the

point cloud instead of detecting the objects in the RGB image. For small classes in the

BEV representation, the camera detections seem more reliable, even if the projected

information boosts the BEV-based detection accuracy.

Figure 7.5 shows some qualitative results of the baseline model on the BEV images.

The left image corresponds to the model trained on cars, whereas the right image shows
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Figure 7.5: Qualitative results on our KITTI validation set. Detections are shown on the BEV
representation for the car class (left) and the pedestrian class (right).

the detections from the pedestrian and cyclist model (only pedestrians are present in

the image). The mean inference time per scan (entire pipeline) is 30 ms. Figure 7.6

shows the same detections projected to the camera images to visualize the results better.

Figure 7.6: Qualitative results on our KITTI validation set. Detections are shown on the BEV
representation (left) and projected to the camera image (right).

The optimization applied to the trained DNNs allows scaling the detection task to

process different BEV images at the same time. The batch-oriented optimization may

be interesting for processing the data from the different LiDARs of a vehicle or for an au-

tomotive ground truth annotation application that requires handling batches of scans.

Compared to a 3D CNN, the computational cost of a BEV-based CNN is lower. The com-

putational complexity of a 3D CNN grows cubically with the voxel resolution [158]. In
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addition, the BEV representation reduces the target raw point cloud (up to millions of

points) to a 3-channel image covering the area of interest and filtering many points that

are not significant. The biggest challenge for BEV-based methods is the detection of the

objects covering a small area in the BEV image.
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8
Data-oriented Deep Neural

Network Design and Training:
data source

As seen in Chapter 1, abundant and well-distributed data are essential to make

DNNs learn appropriate pattern recognition features and have enough generalization

ability. Chapter 4, Chapter 5, and Chapter 6 show different use cases where the use of

synthetic data reduces the effort of generating varied and annotated data. However, syn-

thetic data usually present a domain gap with real-world samples, which limits the final

model’s accuracy or generalization ability. This gap can be reduced with domain adap-

tation techniques. This chapter proposes a methodology to adapt a DNN design and

training to the training data source (Hypothesis 5, Chapter 1). We start from the work

presented in Chapter 5 in the context of digitalized on-demand aircraft cabin readiness

verification with a camera-based system. We incorporate synthetic images generated

in the simulated environment together with real captured samples to train a DNN for

passenger seat analysis.

The research presented in this chapter has been published in the SN Computer

Science journal [198].
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8.1 Methodology

In order to evaluate the impact of adapting a DNN design and training to the training

data source, we train a DNN with real and synthetic data. The objective of the DNN is

to analyze the visual appearance of an aircraft seat to determine if it contains luggage

correctly or incorrectly placed for the TTL requirements (Chapter 5). Figure 8.1 shows

an example of the image ROIs that are classified by the DNN, from the perspective of a

camera installed above the seats.

Figure 8.1: Image from a camera installed on top of the aircraft seats and ROIs classified by
the DNN.

8.1.1 Real Data Acquisition

We consider the same camera-based setup designed in Chapter 5 (cameras on top of the

seats and the corridor). Once the virtual camera setup is done, it can also be replicated

for real data acquisition.

When capturing real data for video surveillance systems, it is common to get some

very similar or redundant images, especially in scenarios where events happen from

time to time and stay the same the rest of the time. The advantage of capturing data

continuously is that skipping consecutive frames may reduce data redundancy. How-

ever, this process can exclude interesting samples as it only relies on time consistency

but does not consider the content of the images. We propose an alternative process
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Figure 8.2: Clustering-based pipeline to select samples of interest from all the captured
data of each target class.

for selecting varied samples in Figure 8.2. The goal of the pipeline is to choose specific

samples of interest to train the target DNN.

For that purpose, we do the following steps:

• Use a pretrained generalist DNN’s backbone as a feature extractor to encode all

the images in image embeddings (m-dimensional vectors).

• Cluster the embeddings using a clustering algorithm, such as K-Means.

• Select a specific number of n samples randomly from each cluster to generate the

new subset of images.

The optimum number of clusters to be used in a clustering algorithm such as K-

Means can be computed using the Elbow method. This method consists of plotting the

sum of squared distances from each point to its assigned center as a function of the

number of clusters, and selecting the elbow of the curve as the optimum number of

clusters. The process is applied to all the images of a specific target category i so that

a balanced dataset is generated. The number of samples per cluster depends on the

target size of the dataset.

Once the samples are selected, they are combined with the rest of the synthetic data

to complete the final dataset.

8.1.2 Synthetic Data Generation

For synthetic data, we follow the methodology presented in Chapter 5 to generate var-

ied images based on the simulated 3D environment. Figure 8.3 shows some examples

of the generated images from different cameras’ perspectives.
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Figure 8.3: Examples of synthetically generated images with different appearances and ob-
jects’ configurations.

8.1.3 Deep Neural Network Design

To analyze how a DNN performs with the generated synthetic and real data, we train the

model EfficientNet-B0 [29] to classify images as correct or incorrect (e.g., cabin luggage

correctly or incorrectly placed).

Figure 8.4: DNN architecture for learning domain-invariant image features.

To minimize the domain gap between the synthetic and real domains during the

training, we include the domain adaptation technique of [166]. The idea is to learn to

extract domain-invariant features from the images using a Domain Adversarial Neural

Network (DANN), of which an overview schema is shown in Figure 8.4. The DANN ar-

chitecture contains three main parts: the feature extractor, the main classifier, and the

discriminator.

The feature extractor is the DNN responsible for extracting the features that rep-

resent the images. We use EfficientNet-B0 as the feature extraction backbone, as in
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Chapter 5. The main classifier of the architecture classifies the images in the correct or

incorrect category and contains a fully connected layer and a softmax activation. The

discriminator is an adversarial domain classifier whose loss is maximized using a gradi-

ent reversal layer [166]. It tries to classify the domain an input sample belongs to using

two fully connected layers’ output and a softmax activation. The fully connected layers

have 1,280 and 2 outputs, respectively. The discriminator’s role is to encourage the fea-

ture extractor to find domain-invariant latent representations. The gradient reversal

layer is key in obtaining this, as it acts like an identity function during the forward prop-

agation but during the backpropagation, it multiplies its input by -λ. The output of this

layer leads to the opposite direction of gradient descent with respect to the classification

loss of the domain classifier. Consequently, during learning, this loss is maximized.

8.2 Experiments

8.2.1 Dataset Generation

We replicate a cabin mock-up with the chosen camera configuration to capture some

real images. We simplify the setup to a single camera above the seats.

We prepare a recording protocol for a group of 20 participants. Each participant

is asked to place a piece of cabin luggage correctly or incorrectly to generate different

scenes. We also ask them to act naturally and stay calm so artificial situations with a

lot of movement are avoided. Otherwise, blurry images which belong to unnatural be-

haviors would be captured. As a disadvantage, staying calm reinforces the possible

redundancy between the captured frames. Figure 8.5 shows an example of this redun-

dancy in the image crop of one of the seats. A participant stays calm with a suitcase

between his legs for some seconds. We can observe that consecutive frames look very

similar.

We capture 24,000 images, half of them belonging to situations where the luggage is

incorrectly placed. To avoid including many redundant samples in the training dataset,

we apply the clustering-based image selection pipeline (Section 8.1.1). We use the clas-

sification model EfficientNet-B0, already pretrained on the ImageNet dataset, without

the last classification layers as a feature extractor. We choose EfficientNet-B0 for the
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Figure 8.5: Similar captured images of a participant staying calm with a suitcase between
his legs.

backbone as it obtains high-accuracy results with better efficiency than other alterna-

tive state-of-the-art DNNs. In this context, efficiency is also a key factor, as the system

should be energetically sustainable to go on board. We resize input images to resolu-

tions of 300x300, as the minimum resolution that allows visualizing smaller objects with

sufficient size for the classifications. This way, each input image with a size of 300x300

pixels is embedded as a 1280-length feature vector. Then, we use the Elbow curve for

both target categories (correct and incorrect situations) to choose the number of clus-

ters for applying the K-Means algorithm. This results in 300 clusters. From each cluster,

we randomly select ten samples. We combine these images with synthetic images.

For the synthetic dataset generation, see Chapter 5, Section 5.2.

8.2.2 Real Samples Selection

To analyze whether the images’ redundancy problem affects the DNN training and, in

that case, how much our clustering-based approach helps mitigate it, we do the fol-

lowing tests. We train the EfficientNet-B0 image classifier with different datasets but

with the same training configuration to analyze the impact of varying data sampling

strategies. We define an ROI for each seat, which will be classified as correct or incorrect

by the DNN, depending on the correctness of the cabin luggage. We generate different

datasets following each of the subsequent strategies:

• Use all the captured data.

• Use a random subset of the recorded data.

• Use a subset of the recorded data, skipping some images when selecting them

based on the order they were captured.
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• Use a subset of the recorded data based on the proposed clustering algorithm that

helps us select non-redundant images.

Then, we add the real samples to a subset of 4,000 synthetic samples for each op-

tion to complete the training dataset. We use these datasets in the following training

experiments.

8.2.3 Deep Neural Network Training

In order to see how a DNN performs when trained with different data sampling strate-

gies for real data, and with domain adaptation to combine both real and synthetic

samples, we do the following experiments.

Sampling strategies. To see the impact of the different sampling strategies, we train

the DANN with the different generated datasets (Section 8.2.2). We initialize the DANN

backbone with pretrained weights on the ImageNet dataset and fine-tune it with our

datasets. The classifier and the discriminator are trained from scratch. We train each

model for 50 epochs with a batch size of 40, and the RMSprop optimizer [178]. We split

the data into training, validation, and test sets. We separate the captures of a recording

session to use them in the validation and test sets so that neither the participants nor

the lighting conditions used in training are repeated in the validation or test sets, which

contain 2,000 and 500 images, respectively. Table 8.1 shows the results.

Sampling Method Test Accuracy
All images 86.9%
Random subset of images 86.7%
Skipping consecutive frames 92.2%
Selecting images based on the clustered embeddings 95.3%

Table 8.1: Comparison between achieved DANN accuracy in the test set for different sam-
pling strategies. Synthetic images are added to the real ones in all the trainings.

As can be seen, using all the captured images does not lead to the best results. Ran-

domly selecting a subset of the images (30% of the images) does not help either, resulting

in the lowest accuracy (86.7%). The image redundancy is confirmed as a problem be-

cause when we skip 10 consecutive frames, we obtain an accuracy boost of almost 6%

compared to using all the samples. Selecting the training samples with the proposed
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approach improves an additional 3.1% of the final accuracy. Consequently, selecting

the images based on their content helps to improve the training dataset.

Synthetic and real data combination. We compare the proposed DANN with other

state-of-the-art methods that combine synthetic and real domain data using different

strategies. No works are applied to the same task, so we adopt the methods followed by

other authors for different tasks and apply them to our DNN training. We summarize

the results of the experiments in Table 8.2. The authors in [103, 163] train their DNN on

the synthetic domain and then fine-tune the model on the real domain in a second step.

We replicate this process with our data. We train the classification DNN with no domain

adversarial branch for this experiment. We use the EfficientNet-B0 backbone as in our

proposed method and maintain the same training parameters configuration to make

both models comparable. The model achieves an accuracy of 93.8%, which is 1.5% lower

than our proposed methodology. We additionally compare our method with [79, 162],

which jointly trains with both domains’ images by using mini-batches from the source

and target domain. We follow the same data strategy and train the classification DNN

with no domain adversarial branch. We use the EfficientNet-B0 backbone and maintain

the same training parameter configuration. The model achieves an accuracy of 92.2%

in the test set, which is 3.1% lower than our proposed method.

Synthetic and real data combination strategy Test Accuracy
Pretrain with synthetic data, fine-tune with real data [103, 163] 93.8%
Train with real and synthetic mini-batches [79, 162] 92.2%
Train with a domain adversarial strategy (ours) 95.3%

Table 8.2: Comparison between achieved DNN accuracy in the test set for different data
combination strategies.

The goal of the adversarial branch of the DANN model is that the extracted features

do not discriminate between the source domains. That would mean that the domain

gap is minimal. In order to qualitatively analyse this domain gap, we extract the features

of all the training images using the trained DANN for the seat with ID 0 and visualize

them. We also repeat the same DANN training but without domain adaptation (no

discriminator) to see the difference. The features extracted have a dimension of 1,280

(features before the heading networks), so we apply a Principal Component Analysis
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(PCA) to reduce their dimensionality to 3. PCA applies an orthogonal linear transfor-

mation that transforms the features into a new coordinate system organized by their

variance content in the form of principal components. Applying the PCA to our features,

we reduce them to a 3-dimensional space where we can visualize them, as shown in

Figure 8.6.

Figure 8.6: Extracted features from training images after PCA when the DNN is trained with-
out and with domain adaptation (left and right, respectively).

Graphs on the left belong to the model trained with no domain adaptation, whereas

graphs on the right are computed with the DANN. The top images show the 1st and 2nd

components, and the bottom images show the 1st and 3rd components. Each processed

sample is represented as a colored point. The color depends on the class of the image

(correct luggage or incorrect) and the domain it belongs to. Real samples are drawn

in blue (correct class) and orange (incorrect class). Synthetic samples are shown in

green (correct class) and red (incorrect class). Ideally, the samples that belong to the cor-
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rect class from both domains should be mixed together, and the same for the samples

belonging to the incorrect class. If this is met, the features are not domain dependent.

When the model is trained without domain adaptation, we can see that the data

distribution is sparse and has no clear pattern. The real and synthetic samples’ distribu-

tions are quite differentiable, and the quality of the distributions seems quite poor. Real

correct samples and incorrect synthetic samples appear quite mixed too in the different

projections. The effect of domain adaptation on the distribution of the data is remark-

able. We can see in the right projection images that the distributions of the correct real

and synthetic samples and the distributions of the incorrect real and synthetic samples

are much closer, even aligned, and it is quite difficult to differentiate between them.

Last, Figure 8.7 shows some correctly and incorrectly classified test images using

our proposed DANN for the synthetic and real data domains. In the first column, we

show two samples of situations with cabin luggage incorrectly placed, which are cor-

rectly classified as so. There is no cabin luggage in the second and third column images,

but the last ones are incorrectly classified. We think this is probably because of these

images’ dark or blurry characteristics. In the last column, we show two more samples of

incorrect classifications. In both images, cabin luggage is barely visible on the egress.

This is the most challenging situation for the classification, as the passenger or the seat

might remarkably occlude the objects. We think temporal analysis of the consecutive

frames’ classification might help in these situations.

Figure 8.7: Some examples of correctly (green) and incorrectly (red) classified images using
the proposed DANN model. Images in the top row are synthetic, and images in the bottom
row are real.
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The journey not the arrival matters.

T.S. Eliot

CHAPTER

9
Conclusions

This thesis studies key factors in data-centric training and design of DNNs for percep-

tion systems. Data play a crucial role in deep learning-based models and, consequently,

also how data are obtained and handled in a DNN is of utmost importance. More

specifically, our research has validated the following hypotheses:

Hypothesis 1: Artificially generated samples using 3D models and environments are

valid for training DNNs.

In the work presented in Chapter 4, we analyze, reproduce, and combine different

synthetic data generation strategies to create an accurate dataset for training an ob-

ject detection CNN. In particular, we focus on generating a dataset to train a people

detection model from omnidirectional cameras in large spaces, such as airports or train

stations. This task is a real-world computer vision challenge that lacks available training

data.

We have proposed a methodology to design data generation and evaluate the im-

pact of adopting different strategies when generating the data. The results demonstrate

the importance of properly modeling the sensor effects, such as distortion. More specif-

ically, we apply a distortion rectification algorithm that matches the distortion obtained

by a real and a virtual camera. More accurate results are obtained when the simulated
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distortion matches the real one. Our tests also show that not any domain randomiza-

tion method is valid for generating a good synthetic dataset. Additionally, the adoption

of various accessories and accurate lighting configurations brings the rendered im-

ages closer to reality, and this also results in more accurate DNN performance. Thus,

considering the results of this study can minimize the domain gap between real and

synthetic data and consequently improve DNN models’ generalization capabilities. We

have published all generated and evaluated datasets for the benefit of the research

community.

Moreover, we demonstrate that combining real and synthetic images produces su-

perior results compared to using only real data. Thus, synthetic data generation is not

only a way to avoid the laborious task of collecting and annotating real data, but also an

effective means to enhance DNN performance. We generate a suitable dataset for DNN

training and develop a people detection model using omnidirectional cameras, which

achieves an AP of 82% in a real-world evaluation scenario. The findings of this study

can be applied to other 3D computer graphics software and computer vision tasks.

Hypothesis 2: A simulated 3D environment can help define the required data and

sensor setup for vision-based perception systems and generate appropriate data for DNN

training with a high level of automation.

Chapter 5 presents a methodology for creating simulated 3D environments to con-

figure and train multi-camera systems for various surveillance contexts with minimal

effort. This approach assists in designing an appropriate camera system that covers

the target use cases and avoids expensive system setup errors. After configuring the

camera, our method allows for generating a diverse set of situations that are relevant for

training DNNs with suitable synthetic data. For successful DNN training, the generated

situations should be balanced, and this is ensured by controlling the content of the data

with input configuration files and a user-friendly fast scene parameterization. To ensure

greater data variability, the scenes are designed to have certain randomness in object

spatial locations and appearances.

We present a practical implementation of our methodology in the form of a camera-

based smart sensing system for digitized on-demand aircraft cabin readiness verifi-

cation. Using our proposed environment, we design a 39-camera-based system and
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generate a training dataset of 40,755 images, containing 71,966 object instances in the

cabin environment. We follow a data balancing strategy to guarantee the suitability

of the generated data based on the configuration files. Compared with other state-of-

the-art approaches, our methodology offers generality, flexibility, and a multi-camera

setting. We evaluate the effectiveness of our approach by comparing it to other methods

and training a classification DNN using a subset of the generated dataset jointly with

real images. Our results demonstrate that incorporating our synthetic samples into the

training dataset boosts the model’s accuracy when tested on real images. Consequently,

our methodology generates images that are suitable for training DNNs.

Hypothesis 3: Artificially generated samples using generative models are valid to train

DNNs with no need for a simulation environment.

In Chapter 6, we introduce a new approach to create annotated synthetic data by

leveraging the advantages of various labeled and unlabeled data sources through a gen-

erative adversarial network. We use this technique to produce synthetic data for the

gaze estimation task. First, we train a gaze-aware compositional GAN to create realistic

synthetic images with specific gaze directions in a labeled data domain. Then, we trans-

fer this model to an unlabeled data domain to exploit the variance these data provide.

Our experiments demonstrate that this method can enhance existing annotated data

for gaze estimation DNN training by generating within-domain and cross-domain aug-

mentations that improve the DNN accuracy. We also demonstrate that our work can be

used for additional applications such as facial image editing and gaze redirection.

Hypothesis 4: Adapting the DNN architecture design to the data modalities improves

the results obtained by predefined and pretrained models.

In Chapter 7, we propose a two-stage neural network architecture for 3D object de-

tection from LiDAR point cloud data, based on bird’s eye view (BEV) representations

that avoid processing the entire raw point clouds. Our approach extends an image-

detection architecture to point clouds and introduces two network enhancements that

improve the detection accuracy for the most challenging object classes by incorporat-

ing BEV data from the same sensor or an additional modality to the head network. We
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evaluate our method on the KITTI BEV benchmark and show that it achieves state-of-

the-art results, outperforming recent approaches based on both BEV images and raw

point clouds. Our findings suggest that BEV-based detection research should not be re-

placed with more complex point cloud-based detectors, as BEV representations provide

a lightweight scene representation that is suitable for cooperative scenarios or for fast

inference. The key to achieving these results is adapting the DNN architecture to the

point cloud BEV representation.

Hypothesis 5: Adapting the DNN architecture design to the data domains improves

the results obtained by predefined and pretrained models.

In Chapter 8, we introduce a methodology to effectively combine real and synthetic

data for DNN training. This approach is demonstrated in the context of aircraft cabin

readiness verification using a camera-based smart sensing system. Combining real data

with synthetic data can help reduce the domain gap between the two types of data.

However, captured real data may contain high redundancy that could negatively impact

DNN accuracy. To mitigate this, our method uses feature clustering to avoid includ-

ing redundant samples in the training dataset. As for synthetic data, we generate them

using the methodology outlined in Chapter 5, and incorporate an adversarial domain

branch to facilitate the learning of domain-agnostic features during training. By incor-

porating synthetic samples in the training dataset, we demonstrate that our method can

improve the accuracy of DNN models when tested on real images. Finally, we highlight

the importance of adapting the neural network architecture and training approach to

the specific data sources used to achieve the best possible results.

9.1 Future Work

Based on the results and findings of the research presented in this thesis project, we

outline some potential avenues for future research.

Data are essential to training machine learning-based perception models, but ob-

taining enough quality data is still one of the major challenges in most perception

systems’ development. As shown in the current thesis, synthetic data are a promis-

ing alternative. Data obtained with GANs are realistic, can be transferred to a specific
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domain, and do not require setting up a simulation environment. Consequently, gener-

ative models might be a better solution in some situations than simulated data using

3D environments. The suitability of the approach depends on the target data. Suppose

it is, for example, a complex scenario, such as the aircraft in Chapter 5, or a multimodal

setup, such as a driverless vehicle. In that case, it might be more effective to use a 3D

simulation environment. In a simulation environment, agents can interact with each

other, and it is possible to have more control over the spatial configuration of the sce-

nario. If the target data are oriented to an instance (e.g., person, object) in a relatively

controlled setting (e.g., gaze estimation, driver monitoring, pose estimation), then using

GANs for data generation might be more effective. In future work, simulated 3D envi-

ronments could benefit from generative models. Emerging DNN techniques to generate

3D models may speed up the manual process of gathering or designing the 3D assets

required for any virtual environment. Generative models could also be used to augment

the data generated in a simulated environment, alleviating the time that heavy render-

ing processes might involve, minimizing the domain gap, or transferring the variance

learned by a generative model from real data to the rendered images globally or locally

to specific instances in the image. Generative models are not limited to the GANs, re-

cent proposals on diffusion models seem promising, and more research is required to

see how far they can take us.

Another exciting future research is extending to new computer vision tasks the work

done on leveraging unlabeled data and limited annotations to learn GANs. This could

allow exploiting already existing data in large-scale datasets. These datasets provide

plenty of varied data but usually focus on specific tasks and, consequently, contain an-

notations only for those tasks. Combining strengths from different datasets might help

develop more robust models with better generalization capability. It would also be inter-

esting to explore the the use of GANs with other data modalities, such as point clouds.

Research in this field is still scarce, but DNN training would benefit from it.

Regarding model design, future research includes working on model explainability.

Being able to interpret or understand why a model makes a specific prediction will help

us to design better datasets and, consequently, models. In addition, it would prevent

negative artifacts such as bias. Model explainability can also be beneficial to analyze

the role of different data sources in the output of multimodal DNNs and redesigning

the architectures accordingly.
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A
Publications

List of publications during the presented research period:

A.1 Learning Gaze-aware Compositional GAN from Lim-

ited Annotations [under review]

Title: Learning Gaze-aware Compositional GAN from Limited Annotations

Authors: Nerea Aranjuelo, Siyu Huang, Ignacio Arganda-Carreras, Luis Unzueta, Oi-

hana Otaegui, Hanspeter Pfister, Donglai Wei

Proceedings: The 23rd International Joint Conference on Artificial Intelligence

Year: 2023

Abstract: Gaze-annotated facial data is crucial for training deep neural networks (DNNs)

for gaze estimation. However, obtaining these data is labor-intensive and requires spe-

cialized equipment due to the challenge of accurately annotating the gaze direction of

a subject. In this work, we present a generative framework to create annotated gaze

data by leveraging the benefits of labeled and unlabeled data sources. We propose a

Gaze-aware Compositional GAN that learns to generate annotated facial images from a

limited labeled dataset. Then we transfer this model to an unlabeled data domain to take
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advantage of the diversity it provides. Experiments demonstrate our approach’s effective-

ness in generating within-domain image augmentations in the ETH-XGaze dataset and

cross-domain augmentations in the CelebAMask-HQ dataset domain for gaze estimation

DNN training. We also show additional applications of our work, which include facial

image editing and gaze redirection.

A.2 Leveraging Synthetic Data for DNN-Based Visual Ana-

lysis of Passenger Seats

Title: Leveraging Synthetic Data for DNN-Based Visual Analysis of Passenger Seats

Authors: Nerea Aranjuelo, Jose Luis Apellaniz, Luis Unzueta, Jorge Garcia, Sara Garcia,

Unai Elordi, Oihana Otaegui

Journal: SN Computer Science

Year: 2022

DOI: https://doi.org/10.1007/s42979-022-01453-x

Abstract: Deep neural network (DNN)-based vision systems could improve passenger

transportation safety by automating processes such as verifying the correct positioning of

luggage, seat occupancy, etc. Abundant and well-distributed data are essential to make

DNNs learn appropriate pattern recognition features and have enough generalization

ability. The use of synthetic data can reduce the effort of generating varied and annotated

data. However, synthetic data usually present a domain gap with real-world samples,

that can be reduced with domain adaptation techniques. This paper proposes a method-

ology to build simulated environments to generate balanced and varied synthetic data

and avoid including redundant samples to train classification DNNs for passenger seat

analysis. We show a practical implementation for detecting whether luggage is correctly

placed or not in an aircraft cabin. Experimental results show the contribution of the syn-

thetic samples and the importance of correctly discarding redundant data.
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A.3 Designing Automated Deployment Strategies of Face

Recognition Solutions in Heterogeneous IoT Platforms

Title: Designing Automated Deployment Strategies of Face Recognition Solutions in

Heterogeneous IoT Platforms

Authors: Unai Elordi, Chiara Lunerti, Luis Unzueta, Jon Goenetxea, Nerea Aranjuelo,

Alvaro Bertelsen, Ignacio Arganda-Carreras

Journal: Multidisciplinary Digital Publishing Institute

Year: 2021

DOI: https://doi.org/10.3390/info12120532

Abstract: In this paper, we tackle the problem of deploying face recognition (FR) solutions

in heterogeneous Internet of Things (IoT) platforms. The main challenges are the optimal

deployment of deep neural networks (DNNs) in the high variety of IoT devices (e.g., robots,

tablets, smartphones, etc.), the secure management of biometric data while respecting

the users’ privacy, and the design of appropriate user interaction with facial verification

mechanisms for all kinds of users. We analyze different approaches to solving all these

challenges and propose a knowledge-driven methodology for the automated deployment

of DNN-based FR solutions in IoT devices, with the secure management of biometric data,

and real-time feedback for improved interaction. We provide some practical examples

and experimental results with state-of-the-art DNNs for FR in Intel’s and NVIDIA’s hard-

ware platforms as IoT devices.

A.4 Key Strategies for Synthetic Data Generation for Train-

ing Intelligent Systems based on People Detection from

Omnidirectional Cameras

Title: Key Strategies for Synthetic Data Generation for Training Intelligent Systems based

on People Detection from Omnidirectional Cameras

Authors: Nerea Aranjuelo, Sara García, Estíbaliz Loyo, Luis Unzueta, Oihana Otaegui

Journal: Computers & Electrical Engineering

Year: 2021
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DOI: https://doi.org/10.1016/j.compeleceng.2021.107105

Abstract: To train Deep Neural Networks (DNNs)-based methods, suitable training data

are key to help DNNs learn appropriate pattern recognition features. The use of synthetic

data may help in generating sufficient and balanced data. However, models trained with

such data often present a domain gap when applied to real-world scenarios. Many studies

focus on techniques such as domain adaptation to minimize this gap, but little attention

is paid to the data generation itself. Our work shows that this gap can be minimized by

enhancing the generated data features. More specifically, we generate different synthetic

training datasets with particular features and use them to train a DNN for people detec-

tion in large spaces using omnidirectional cameras. Experimental results with real-world

data show that proper synthetic data minimize the domain gap. We also show that ex-

panding a training dataset to include synthetic samples in addition to real samples, can

improve the model’s capabilities.

A.5 Optimal Deployment of Face Recognition Solutions in

a Heterogeneous IoT Platform for Secure Elderly Care Ap-

plications

Title: Optimal Deployment of Face Recognition Solutions in a Heterogeneous IoT Plat-

form for Secure Elderly Care Applications

Authors: Unai Elordi, Alvaro Bertelsen, Luis Unzueta, Nerea Aranjuelo, Jon Goenetxea,

Ignacio Arganda-Carreras

Proceedings: Procedia Computer Science [Best Student Paper Award]

Year: 2021

DOI: https://doi.org/10.1016/j.procs.2021.09.093

Abstract: Face recognition provides a desirable solution for authentication and surveil-

lance in Internet of Things platforms for elderly care. However, its inclusion is challenging

because of the possibly reduced interaction capabilities of users, the high variety of inter-

action devices, and the need of managing biometric data securely. Our approach relies

on lightweight deep neural networks for secure recognition and to guide users during

interaction. An automated procedure selects the appropriate inference engine, model
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configurations, and batch size, based on edge device characteristics. Biometric data is

homomorphically encrypted to preserve privacy. An evaluation with respect to state-of-

the-art alternatives shows its potential.

A.6 Building Synthetic Simulated Environments for Config-

uring and Training Multi-camera Systems for Surveillance

Applications

Title: Building Synthetic Simulated Environments for Configuring and Training Multi-

camera Systems for Surveillance Applications

Authors: Nerea Aranjuelo, Jorge García, Luis Unzueta, Sara García, Unai Elordi, Oihana

Otaegui

Proceedings: Proceedings of the 16th International Joint Conference on Computer Vi-

sion, Imaging and Computer Graphics Theory and Applications

Year: 2021

Abstract: Synthetic simulated environments are gaining popularity in the Deep Learning

Era, as they can alleviate the effort and cost of two critical tasks to build multi-camera

systems for surveillance applications: setting up the camera system to cover the use cases

and generating the labeled dataset to train the required Deep Neural Networks (DNNs).

However, there are no simulated environments ready to solve them for all kind of sce-

narios and use cases. Typically, ‘ad hoc’ environments are built, which cannot be easily

applied to other contexts. In this work we present a methodology to build synthetic simu-

lated environments with sufficient generality to be usable in different contexts, with little

effort. Our methodology tackles the challenges of the appropriate parameterization of

scene configurations, the strategies to generate randomly a wide and balanced range of

situations of interest for training DNNs with synthetic data, and the quick image cap-

turing from virtual cameras considering the rendering bottlenecks. We show a practical

implementation example for the detection of incorrectly placed luggage in aircraft cabins,

including the qualitative and quantitative analysis of the data generation process and its

influence in a DNN training, and the required modifications to adapt it to other surveil-

155



DATA-CENTRIC DESIGN AND TRAINING OF DEEP NEURAL NETWORKS WITH
MULTIPLE DATA MODALITIES FOR VISION-BASED PERCEPTION SYSTEMS

lance contexts.

A.7 Multi-Stage Dynamic Batching and On-Demand I-

Vector Clustering for Cost-effective Video Surveillance.

Title: Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for Cost-

effective Video Surveillance.

Authors: David Montero, Luis Unzueta, Jon Goenetxea, Nerea Aranjuelo, Estíbaliz Loyo,

Oihana Otaegui, Marcos Nieto

Proceedings: Proceedings of the 16th International Joint Conference on Computer Vi-

sion, Imaging and Computer Graphics Theory and Applications

Year: 2021

Abstract: In this paper, we present a cost-effective Video-Surveillance System (VSS) for

face recognition and online clustering of unknown individuals at large scale. We aim

to obtain Performance Indicators (PIs) for people flow monitoring in large infrastruc-

tures, without storing any biometric information. For this purpose, we focus on how

to take advantage of a central GPU-enabled computing server, connected to a set of

video-surveillance cameras, to automatically register new identities and update their

descriptive data as they are re-identified. The proposed method comprises two main

procedures executed in parallel. A Multi-Stage Dynamic Batching (MSDB) procedure

efficiently extracts facial identity vectors (i-vectors) from captured images. At the same

time, an On-Demand I-Vector Clustering (ODIVC) procedure clusters the i-vectors into

identities. This clustering algorithm is designed to progressively adapt to the increas-

ing data scale, with a lower decrease in its effectiveness compared to other alternatives.

Experimental results show that ODIVC achieves state-of-the-art results in well-known

large scale datasets and that our VSS can detect, recognize and cluster in real time faces

coming from up to 40 cameras with a central off-the-shelf GPU-enabled computing server.
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A.8 Robust 3D Object Detection from LiDAR Point Cloud

Data with Spatial Information Aggregation

Title: Robust 3D Object Detection from LiDAR Point Cloud Data with Spatial Informa-

tion Aggregation

Authors: Nerea Aranjuelo, Guus Engels, Luis Unzueta, Ignacio Arganda-Carreras, Mar-

cos Nieto, Oihana Otaegui

Proceedings: 15th International Conference on Soft Computing Models in Industrial

and Environmental Applications

Year: 2020

Abstract: Current 3D object detectors from Bird’s Eye View (BEV) LiDAR point cloud data

rely on Convolutional Neural Networks (CNNs), which have originally been designed for

camera images. Therefore, they look for the same target features, regardless of the position

of the objects with respect to the sensor. Discarding this spatial information makes 3D

object detection unreliable and not robust, because objects in LiDAR point clouds contain

distance dependent features. The position of a group of points can be decisive to know

if they represent an object or not. To solve this, we propose a network extension called

FeatExt operation that enables the model to be aware of both the target objects features

and their spatial location. FeatExt operation expands a group of feature maps extracted

from a BEV representation to include the distance to a specific position of interest in the

scene, in this case the distance with respect to the LiDAR. When adding the proposed op-

eration to a baseline network in an intermediate fusion fashion, it shows up to an 8.9

average precision boost in the KITTI BEV benchmark. Our proposal can be easily added

to improve existing object detection networks.

A.9 Building a Camera-based Smart Sensing System for

Digitalized On-demand Aircraft Cabin Readiness Verifica-

tion.

Title: Building a Camera-based Smart Sensing System for Digitalized On-demand Air-

craft Cabin Readiness Verification.
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Authors: Luis Unzueta, Sandra Garcia, Jorge García, Valentin Corbin, Nerea Aranjuelo,

Unai Elordi, Oihana Otaegui, Maxime Danielli

Proceedings: ROBOVIS

Year: 2020

Abstract: Currently, aircraft cabin operations such as the verification of taxi, take-off,

and landing (TTL) cabin readiness are done manually. This results in an increased work-

load for the crew, operational inefficiencies, and a nonnegligible risk of human errors

in handling safety-related procedures. For TTL, specific cabin readiness requirements

apply to the passenger, to the position of seat components and cabin luggage. The us-

age of cameras and vision-based object-recognition algorithms may offer a promising

solution for specific functionalities such as cabin luggage detection. However, building a

suitable camera-based smart sensing system for this purpose brings many challenges as

it needs to be low weight, with competitive cost and robust recognition capabilities on

individual seat level, complying with stringent constraints related to airworthiness certi-

fication. This position paper analyzes and discusses the main technological factors that

system designers should consider for building such an intelligent system. These include

the sensor setup, system training, the selection of appropriate camera sensors and lenses,

AI-processors, and software tools for optimal image acquisition and image content analy-

sis with Deep Neural Network (DNN)-based recognition methods. Preliminary tests with

pre-trained generalist DNN-based object detection models are also analyzed to assist with

the training and deployment of the recognition methods.

A.10 3D Object Detection from LiDAR Data using Distance

Dependent Feature Extraction

Title: 3D Object Detection from LiDAR Data using Distance Dependent Feature Extrac-

tion

Authors: Guus Engels, Nerea Aranjuelo, Ignacio Arganda-Carreras, Marcos Nieto, Oi-

hana Otaegui

Proceedings: 6th International Conference on Vehicle Technology and Intelligent Trans-

port Systems [Best Industrial Paper Award]
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Year: 2020

Abstract: This paper presents a new approach to 3D object detection that leverages the

properties of the data obtained by a LiDAR sensor. State-of-the-art detectors use neural

network architectures based on assumptions valid for camera images. However, point

clouds obtained from LiDAR are fundamentally different. Most detectors use shared filter

kernels to extract features which do not take into account the range dependent nature

of the point cloud features. To show this, different detectors are trained on two splits of

the KITTI dataset: close range (objects up to 25 meters from LiDAR) and long-range. Top

view images are generated from point clouds as input for the networks. Combined results

outperform the baseline network trained on the full dataset with a single backbone. Ad-

ditional research compares the effect of using different input features when converting

the point cloud to image. The results indicate that the network focuses on the shape and

structure of the objects, rather than exact values of the input. This work proposes an im-

provement for 3D object detectors by taking into account the properties of LiDAR point

clouds over distance. Results show that training separate networks for close-range and

long-range objects boosts performance for all KITTI benchmark difficulties.

A.11 BEV Object Tracking for LIDAR-based Ground Truth

Generation

Title: BEV Object Tracking for LIDAR-based Ground Truth Generation

Authors: David Montero, Nerea Aranjuelo, Orti Senderos, Marcos Nieto

Proceedings: 27th European Signal Processing Conference

Year: 2019

Abstract: Building ADAS (Advanced Driver Assistance Systems) or AD (Autonomous Driv-

ing) vehicles implies the acquisition of large volumes of data and a costly annotation

process to create labeled metadata. Labels are then used for either ground truth compo-

sition (for test and validation of algorithms) or to set-up training datasets for machine

learning processes. In this paper we present a 3D object tracking mechanism that oper-

ates on detections from point cloud sequences. It works in two steps: first an online phase
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which runs a Branch and Bound algorithm (BBA) to solve the association between detec-

tions and tracks, and a second filtering step which adds the required temporal smoothness.

Results on KITTI dataset show the produced tracks are accurate and robust against noisy

and missing detections, as produced by state-of-the-art deep learning detectors.

A.12 Web-based Video-assisted Point Cloud Annotation for

ADAS Validation

Title: Web-based Video-assisted Point Cloud Annotation for ADAS Validation

Authors: Andoni Mujika, Ana Dominguez Fanlo, Iñigo Tamayo, Orti Senderos, Javier

Barandiaran, Nerea Aranjuelo, Marcos Nieto, Oihana Otaegui

Proceedings: The 24th International Conference on 3D Web Technology

Year: 2019

Abstract: This paper introduces a web application for point cloud annotation that is

used in the advanced driver assistance systems field. Apart from the point cloud viewer,

the web tool has an object viewer and a timeline to define the attributes of the annota-

tions and a video viewer to validate the point cloud annotations with the corresponding

video images. The paper also describes several strategies we followed to obtain annota-

tions correctly and quickly: (i) memory management and rendering of large-scale point

clouds, (ii) coherent combination of video images and annotations, (iii) content synchro-

nization in all parts of the application and (iv) automatic annotation before and during

the annotation task of the user.

A.13 Fractal Characterization of Retinal Microvascular Net-

work Morphology during Diabetic Retinopathy Progression

Title: Fractal Characterization of Retinal Microvascular Network Morphology during

Diabetic Retinopathy Progression

Authors: Natasa Popovic, Mirko Lipovac, Miroslav Radunovic, Jurgi Ugarte, Erik Is-

usquiza, Andoni Beristain, Ramón Moreno, Nerea Aranjuelo, Tomo Popovic
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Journal: Microcirculation

Year: 2019

DOI: https://doi.org/10.1111/micc.12531

Abstract: Objective: The study aimed to characterize morphological changes of the retinal

mi- crovascular network during the progression of diabetic retinopathy. Methods: Pub-

licly available retinal images captured by a digital fundus camera from DIARETDB1

and STARE databases were used. The retinal microvessels were seg- mented using

the automatic method, and vascular network morphology was ana- lyzed by fractal

parametrization such as box-counting dimension, lacunarity, and multifractals. Results:

The results of the analysis were affected by the ability of the segmentation method to in-

clude smaller vessels with more branching generations. In cases where the segmentation

was more detailed and included a higher number of vessel branch- ing generations, in-

creased severity of diabetic retinopathy was associated with in- creased complexity of

microvascular network as measured by box-counting and multifractal dimensions, and

decreased gappiness of retinal microvascular network as measured by lacunarity param-

eter. This association was not observed if the seg- mentation method included only 3-4

vessel branching generations. Conclusions: Severe stages of diabetic retinopathy could

be detected noninvasively by using high resolution fundus photography and automatic

microvascular segmenta- tion to the high number of branching generations, followed by

fractal analysis para- metrization. This approach could improve risk stratification for

the development of microvascular complications, cardiovascular disease, and dementia

in diabetes.

A.14 Multimedia Analysis in Police–Citizen Communica-

tion: Supporting Daily Policing Tasks

Title: Multimedia Analysis in Police–Citizen Communication: Supporting Daily Policing

Tasks

Authors: Peter Leškovský, Santiago Prieto, Aratz Puerto, Jorge García, Luis Unzueta,

Nerea Aranjuelo, Haritz Arzelus, Aitor Álvarez

Journal: Social Media Strategy in Policing: From Cultural Intelligence to Community
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Policing

Publisher: Springer International Publishing

Year: 2019

DOI: https://doi.org/10.1007/978-3-030-22002-0_13

Abstract: This chapter describes an approach for improved multimedia analysis as part

of an ICT-based tool for community policing. It includes technology for automatic pro-

cessing of audio, image and video contents sent as evidence by the citizens to the police.

In addition to technical details of their development, results of their performance within

initial pilots simulating nearly real crime situations are presented and discussed.

A.15 Fully Automatic Detection and Segmentation of Ab-

dominal Aortic Thrombus in Post-operative CTA Images

using Deep Convolutional Neural Networks

Title: Fully Automatic Detection and Segmentation of Abdominal Aortic Thrombus in

Post-operative CTA Images using Deep Convolutional Neural Networks

Authors: Karen López-Linares, Nerea Aranjuelo, Luis Kabongo, Gregory Maclair, Nerea

Lete, Mario Ceresa, Ainhoa García-Familiar, Iván Macía, Miguel A González Ballester

Journal: Medical image analysis

Year: 2018

DOI: https://doi.org/10.1016/j.media.2018.03.010

Abstract: Computerized Tomography Angiography (CTA) based follow-up of Abdominal

Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair (EVAR) is essential

to evaluate the progress of the patient and detect complications. In this context, accu-

rate quantification of post-operative thrombus volume is required. However, a proper

evaluation is hindered by the lack of automatic, robust and reproducible thrombus seg-

mentation algorithms. We propose a new fully automatic approach based on Deep

Convolutional Neural Networks (DCNN) for robust and reproducible thrombus region of

interest detection and subsequent fine thrombus segmentation. The DetecNet detection

network is adapted to perform region of interest extraction from a complete CTA and a

new segmentation network architecture, based on Fully Convolutional Networks and a
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Holistically-Nested Edge Detection Network, is presented. These networks are trained,

validated and tested in 13 post-operative CTA volumes of different patients using a 4-fold

cross-validation approach to provide more robustness to the results. Our pipeline achieves

a Dice score of more than 82% for post-operative thrombus segmentation and provides

a mean relative volume difference between ground truth and automatic segmentation

that lays within the experienced human observer variance without the need of human

intervention in most common cases.

A.16 Multimodal Deep Learning for Advanced Driving Sys-

tems

Title: Multimodal Deep Learning for Advanced Driving Systems

Authors: Nerea Aranjuelo, Luis Unzueta, Ignacio Arganda-Carreras, Oihana Otaegui

Proceedings: Articulated Motion and Deformable Objects, AMDO 2018

Publisher: Springer International Publishing

Year: 2018

DOI: https://doi.org/10.1007/978-3-319-94544-6_10

Abstract: Multimodal deep learning is about learning features over multiple modalities.

Impressive progress has been made in deep learning solutions that rely on a single sensor

modality for advanced driving. However, these approaches are limited to cover certain

functionalities. The potential of multimodal sensor fusion has been very little exploited,

although research vehicles are commonly provided with various sensor types. How to

combine their data to achieve a complex scene analysis and improve therefore robustness

in driving is still an open question. While different surveys have been done for intelligent

vehicles or deep learning, to date no survey on multimodal deep learning for advanced

driving exists. This paper attempts to narrow this gap by providing the first review that

analyzes existing literature and two indispensable elements: sensors and datasets. We

also provide our insights on future challenges and work to be done.
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Acronyms

ADAS Adavanced Driver Assistance Sytems

AI Artificial Intelligence

ANN Artificial Neural Network

AP Average Precision

ASD Advanced Synthetic Dataset

BEV Bird’s Eye View

CAN Controller Area Network

CLAHE Contrast Limited Adaptive Histogram Equalization

CNN Convolutional Neural Network

CRF Conditional Random Field

DANN Domain Adversarial Neural Network

DASD Dynamic Advanced Synthetic Dataset

DL Deep learning

DNN Deep Neural Network

DRD Domain Randomization Dataset

DRL Deep Reinforcement Learning
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FID Fréchet Inception Distance

GAN Generative Adversarial Network

GC-GAN Gaze-aware Compositional GAN

GDPR General Data Protection Regulation

GLG Gaze-aware Local Generator

GNSS Global Navigation Satellite System

GPU Graphics processing unit

I2V Infrastructure-to-vehicle

IMU Inertial Measurement Units

IoU Intersection over union

IS Inception Score

ITS Intelligent Transport Systems

LiDAR Light Detection And Ranging

MLops Machine learning operations

MLP Multi-layer perceptron

MLTRL Machine Learning Technnology Readiness Level

NMS Non-Maximum Supression

PoC Proof of concept

Radar Radio Detection And Ranging

RDD Real Data Dataset

ReLU Rectified Linear Unit
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ACRONYMS

RNN Recurrent Neural Network

ROI Region of interest

RPN Region Proposal Network

RSDD Real and Synthetic Data Dataset

SRSD Simplified Rectified Synthetic Dataset

SSD Simplified Synthetic Dataset

TTL Taxi, Take-off, and Landing

V2V Vehicle-to-vehicle

VCD Video Content Description

VFE Voxel feature encoding

169





Part VI

Bibliography

171





Bibliography

[1] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous

driving? the KITTI vision benchmark suite. In 2012 IEEE conference on computer

vision and pattern recognition, pages 3354–3361. IEEE, 2012. xvii, 11, 17

[2] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-

fidelity visual and physical simulation for autonomous vehicles. In Field and

service robotics, pages 621–635. Springer, 2018. xvii, 12

[3] Alexander Lavin, Ciarán M Gilligan-Lee, Alessya Visnjic, Siddha Ganju, Dava New-

man, Sujoy Ganguly, Danny Lange, Atílím Güneş Baydin, Amit Sharma, Adam
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