60,787 research outputs found

    Hybrid SAT-Based Consistency Checking Algorithms for Simple Temporal Networks with Decisions

    Get PDF
    A Simple Temporal Network (STN) consists of time points modeling temporal events and constraints modeling the minimal and maximal temporal distance between them. A Simple Temporal Network with Decisions (STND) extends an STN by adding decision time points to model temporal plans with decisions. A decision time point is a special kind of time point that once executed allows for deciding a truth value for an associated Boolean proposition. Furthermore, STNDs label time points and constraints by conjunctions of literals saying for which scenarios (i.e., complete truth value assignments to the propositions) they are relevant. Thus, an STND models a family of STNs each obtained as a projection of the initial STND onto a scenario. An STND is consistent if there exists a consistent scenario (i.e., a scenario such that the corresponding STN projection is consistent). Recently, a hybrid SAT-based consistency checking algorithm (HSCC) was proposed to check the consistency of an STND. Unfortunately, that approach lacks experimental evaluation and does not allow for the synthesis of all consistent scenarios. In this paper, we propose an incremental HSCC algorithm for STNDs that (i) is faster than the previous one and (ii) allows for the synthesis of all consistent scenarios and related early execution schedules (offline temporal planning). Then, we carry out an experimental evaluation with KAPPA, a tool that we developed for STNDs. Finally, we prove that STNDs and disjunctive temporal networks (DTNs) are equivalent

    Who Learns Better Bayesian Network Structures: Accuracy and Speed of Structure Learning Algorithms

    Get PDF
    Three classes of algorithms to learn the structure of Bayesian networks from data are common in the literature: constraint-based algorithms, which use conditional independence tests to learn the dependence structure of the data; score-based algorithms, which use goodness-of-fit scores as objective functions to maximise; and hybrid algorithms that combine both approaches. Constraint-based and score-based algorithms have been shown to learn the same structures when conditional independence and goodness of fit are both assessed using entropy and the topological ordering of the network is known (Cowell, 2001). In this paper, we investigate how these three classes of algorithms perform outside the assumptions above in terms of speed and accuracy of network reconstruction for both discrete and Gaussian Bayesian networks. We approach this question by recognising that structure learning is defined by the combination of a statistical criterion and an algorithm that determines how the criterion is applied to the data. Removing the confounding effect of different choices for the statistical criterion, we find using both simulated and real-world complex data that constraint-based algorithms are often less accurate than score-based algorithms, but are seldom faster (even at large sample sizes); and that hybrid algorithms are neither faster nor more accurate than constraint-based algorithms. This suggests that commonly held beliefs on structure learning in the literature are strongly influenced by the choice of particular statistical criteria rather than just by the properties of the algorithms themselves.Comment: 27 pages, 8 figure
    • …
    corecore