335 research outputs found

    Conditional Linear Cryptanalysis – Cryptanalysis of DES with Less Than 242 Complexity

    Get PDF
    In this paper we introduce a new extension of linear cryptanalysis that may reduce the complexity of attacks by conditioning linear approximations on other linear approximations. We show that the bias of some linear approximations may increase under such conditions, so that after discarding the known plaintexts that do not satisfy the conditions, the bias of the remaining known plaintexts increases. We show that this extension can lead to improvements of attacks, which may require fewer known plaintexts and time of analysis. We present several types of such conditions, including one that is especially useful for the analysis of Feistel ciphers. We exemplify the usage of such conditions for attacks by a careful application of our extension to Matsui’s attack on the full 16-round DES, which succeeds to reduce the complexity of the best attack on DES to less than 242. We programmed a test implementation of our attack and verified our claimed results with a large number of runs. We also introduce a new type of approximations, to which we call scattered approximations, and discuss its applications

    On Linear Cryptanalysis with Many Linear Approximations

    Get PDF
    In this paper we present a theoretical framework to quantify the information brought by several linear approximations of a block-cipher without putting any restriction on these approximations. We quantify here the entropy of the key given the plaintext-ciphertext pairs statistics which is a much more accurate measure than the ones studied earlier. The techniques which are developed here apply to various ways of performing the linear attack and can also been used to measure the entropy of the key for other statistical attacks. Moreover, we present a realistic attack on the full DES with a time complexity of 2482^{48} for 2412^{41} pairs what is a big improvement comparing to Matsui\u27s algorithm 2 (251.92^{51.9})

    Security Evaluation of GOST 28147-89 In View Of International Standardisation

    Get PDF
    GOST 28147-89 is is a well-known 256-bit block cipher which is a plausible alternative for AES-256 and triple DES, which however has a much lower implementation cost. GOST is implemented in standard crypto libraries such as OpenSSL and Crypto++ and is increasingly popular and used also outside its country of origin and on the Internet. In 2010 GOST was submitted to ISO, to become a worldwide industrial encryption standard. Until 2011 researchers unanimously agreed that GOST could or should be very secure, which was summarized in 2010 in these words: despite considerable cryptanalytic efforts spent in the past 20 years, GOST is still not broken . Unhappily, it was recently discovered that GOST can be broken and is a deeply flawed cipher. There is a very considerable amount of recent not yet published work on cryptanalysis of GOST known to us. One simple attack was already presented in February at FSE 2011. In this short paper we describe another attack, to illustrate the fact that there is now plethora of attacks on GOST, which require much less memory, and don\u27t even require the reflection property to hold, without which the recent attack from FSE 2011 wouldn\u27t work. We are also aware of many substantially faster attacks and of numerous special even weaker cases. These will be published in appropriate peer-reviewed cryptography conferences but we must warn the ISO committees right now. More generally, our ambition is to do more than just to point out that a major encryption standard is flawed. We would like to present and suggest a new general paradigm for effective symmetric cryptanalysis of so called Algebraic Complexity Reduction which in our opinion is going to structure and stimulate substantial amounts of academic research on symmetric cryptanalysis for many years to come. In this paper we will explain the main ideas behind it and explain also the precise concept of Black-box Algebraic Complexity Reduction . This new paradigm builds on many already known attacks on symmetric ciphers, such as fixed point, slide, involution, cycling, reflection and other self-similarity attacks but the exact attacks we obtain, could never be developed previously, because only in the recent 5 years it became possible to show the existence of an appropriate last step for many such attacks, which is a low data complexity software algebraic attack. This methodology leads to a large number of new attacks on GOST, way more complex, better and more efficient than at FSE 2011. One example of such an attack is given in the present paper

    Some Words on Cryptanalysis of Stream Ciphers

    Get PDF
    In the world of cryptography, stream ciphers are known as primitives used to ensure privacy over a communication channel. One common way to build a stream cipher is to use a keystream generator to produce a pseudo-random sequence of symbols. In such algorithms, the ciphertext is the sum of the keystream and the plaintext, resembling the one-time pad principal. Although the idea behind stream ciphers is simple, serious investigation of these primitives has started only in the late 20th century. Therefore, cryptanalysis and design of stream ciphers are important. In recent years, many designs of stream ciphers have been proposed in an effort to find a proper candidate to be chosen as a world standard for data encryption. That potential candidate should be proven good by time and by the results of cryptanalysis. Different methods of analysis, in fact, explain how a stream cipher should be constructed. Thus, techniques for cryptanalysis are also important. This thesis starts with an overview of cryptography in general, and introduces the reader to modern cryptography. Later, we focus on basic principles of design and analysis of stream ciphers. Since statistical methods are the most important cryptanalysis techniques, they will be described in detail. The practice of statistical methods reveals several bottlenecks when implementing various analysis algorithms. For example, a common property of a cipher to produce n-bit words instead of just bits makes it more natural to perform a multidimensional analysis of such a design. However, in practice, one often has to truncate the words simply because the tools needed for analysis are missing. We propose a set of algorithms and data structures for multidimensional cryptanalysis when distributions over a large probability space have to be constructed. This thesis also includes results of cryptanalysis for various cryptographic primitives, such as A5/1, Grain, SNOW 2.0, Scream, Dragon, VMPC, RC4, and RC4A. Most of these results were achieved with the help of intensive use of the proposed tools for cryptanalysis

    Block Ciphers: Analysis, Design and Applications

    Get PDF
    In this thesis we study cryptanalysis, applications and design of secret key block ciphers. In particular, the important class of Feistel ciphers is studied, which has a number of rounds, where in each round one applies a cryptographically weak function

    MILP-aided Cube-attack-like Cryptanalysis on Keccak Keyed Modes

    Get PDF
    Cube-attack-like cryptanalysis was proposed by Dinur et al. at EUROCRYPT 2015, which recovers the key of Keccak keyed modes in a divide-and-conquer manner. In their attack, one selects cube variables manually, which leads to more key bits involved in the key-recovery attack, so the complexity is too high unnecessarily. In this paper, we introduce a new MILP model and make the cube attacks better on the Keccak keyed modes. Using this new MILP tool, we find the optimal cube variables for Keccak-MAC, Keyak and Ketje, which makes that a minimum number of key bits are involved in the key-recovery attack. For example, when the capacity is 256, we find a new 32-dimension cube for Keccak-MAC that involves only 18 key bits instead of Dinur et al.\u27s 64 bits and the complexity of the 6-round attack is reduced to 2422^{42} from 2662^{66}. More impressively, using this new tool, we give the very first 7-round key-recovery attack on Keccak-MAC-512. We get the 8-round key-recovery attacks on Lake Keyak in nonce-respected setting. In addition, we get the best attacks on Ketje Major/Minor. For Ketje Major, when the length of nonce is 9 lanes, we could improve the best previous 6-round attack to 7-round. Our attacks do not threaten the full-round (12) Keyak/Ketje or the full-round (24) Keccak-MAC. When comparing with Huang et al.\u27s conditional cube attack, the MILP-aided cube-attack-like cryptanalysis has larger effective range and gets the best results on the Keccak keyed variants with relatively smaller number of degrees of freedom

    New Attacks from Old Distinguishers Improved Attacks on Serpent

    Get PDF
    International audienceSerpent was originally proposed in 1998 and is one of the most studied block ciphers. In this paper we improve knowledge of its security by providing the current best attack on this cipher, which is a 12-round differential-linear attack with lower data, time and memory complexities than the best previous attacks. Our improvements are based on an improved conditional key guessing technique that exploits the properties of the Sboxes

    A New Linear Distinguisher for Four-Round AES

    Get PDF
    In SAC’14, Biham and Carmeli presented a novel attack on DES, involving a variation of Partitioning Cryptanalysis. This was further extended in ToSC’18 by Biham and Perle into the Conditional Linear Cryptanalysis in the context of Feistel ciphers. In this work, we formalize this cryptanalytic technique for block ciphers in general and derive several properties. This conditional approximation is then used to approximate the inv : GF(2^8) → GF(2^8) : x → x^254 function which forms the only source of non-linearity in the AES. By extending the approximation to encompass the full AES round function, a linear distinguisher for four-round AES in the known-plaintext model is constructed; the existence of which is often understood to be impossible. We furthermore demonstrate a key-recovery attack capable of extracting 32 bits of information in 4-round AES using 2^125.62 data and time. In addition to suggesting a new approach to advancing the cryptanalysis of the AES, this result moreover demonstrates a caveat in the standard interpretation of the Wide Trail Strategy — the design framework underlying many SPN-based ciphers published in recent years

    Statistical cryptanalysis of block ciphers

    Get PDF
    Since the development of cryptology in the industrial and academic worlds in the seventies, public knowledge and expertise have grown in a tremendous way, notably because of the increasing, nowadays almost ubiquitous, presence of electronic communication means in our lives. Block ciphers are inevitable building blocks of the security of various electronic systems. Recently, many advances have been published in the field of public-key cryptography, being in the understanding of involved security models or in the mathematical security proofs applied to precise cryptosystems. Unfortunately, this is still not the case in the world of symmetric-key cryptography and the current state of knowledge is far from reaching such a goal. However, block and stream ciphers tend to counterbalance this lack of "provable security" by other advantages, like high data throughput and ease of implementation. In the first part of this thesis, we would like to add a (small) stone to the wall of provable security of block ciphers with the (theoretical and experimental) statistical analysis of the mechanisms behind Matsui's linear cryptanalysis as well as more abstract models of attacks. For this purpose, we consider the underlying problem as a statistical hypothesis testing problem and we make a heavy use of the Neyman-Pearson paradigm. Then, we generalize the concept of linear distinguisher and we discuss the power of such a generalization. Furthermore, we introduce the concept of sequential distinguisher, based on sequential sampling, and of aggregate distinguishers, which allows to build sub-optimal but efficient distinguishers. Finally, we propose new attacks against reduced-round version of the block cipher IDEA. In the second part, we propose the design of a new family of block ciphers named FOX. First, we study the efficiency of optimal diffusive components when implemented on low-cost architectures, and we present several new constructions of MDS matrices; then, we precisely describe FOX and we discuss its security regarding linear and differential cryptanalysis, integral attacks, and algebraic attacks. Finally, various implementation issues are considered

    Optimising Linear Key Recovery Attacks with Affine Walsh Transform Pruning

    Get PDF
    International audienceLinear cryptanalysis [25] is one of the main families of keybrecovery attacks on block ciphers. Several publications [16,19] have drawn attention towards the possibility of reducing their time complexity using the fast Walsh transform. These previous contributions ignore the structure of the key recovery rounds, which are treated as arbitrary boolean functions. In this paper, we optimise the time and memory complexities of these algorithms by exploiting zeroes in the Walsh spectra of these functions using a novel affine pruning technique for the Walsh Transform. These new optimisation strategies are then showcased with two application examples: an improved attack on the DES [1] and the first known atttack on 29-round PRESENT-128 [9]
    • 

    corecore