N
N

N

HAL

open science

Optimising Linear Key Recovery Attacks with Affine
Walsh Transform Pruning

Antonio Florez Gutierrez

» To cite this version:

Antonio Florez Gutierrez. Optimising Linear Key Recovery Attacks with Affine Walsh Transform
Pruning. ASIACRYPT 2022 - 28th Annual International Conference on the Theory and Application

of Cryptology and Information Security, Dec 2022, Taipei, Taiwan. hal-03878737

HAL Id: hal-03878737
https://hal.inria.fr /hal-03878737
Submitted on 30 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.inria.fr/hal-03878737
https://hal.archives-ouvertes.fr

Optimising Linear Key Recovery Attacks with
Affine Walsh Transform Pruning

Antonio Fl(’)reZ—GutiérreZ[0000_0001_7749_8925]
Inria, France
antonio.florez_gutierrez@inria.fr

Abstract. Linear cryptanalysis [25] is one of the main families of key-
recovery attacks on block ciphers. Several publications [16, 19] have drawn
attention towards the possibility of reducing their time complexity using
the fast Walsh transform. These previous contributions ignore the struc-
ture of the key recovery rounds, which are treated as arbitrary boolean
functions. In this paper, we optimise the time and memory complexities
of these algorithms by exploiting zeroes in the Walsh spectra of these
functions using a novel affine pruning technique for the Walsh Trans-
form. These new optimisation strategies are then showcased with two
application examples: an improved attack on the DES [1] and the first
known atttack on 29-round PRESENT-128 [9].

Keywords: Linear cryptanalysis, Key recovery attacks, FFT, Walsh Transform,
Pruning, DES, PRESENT

1 Introduction
General Background

Linear Cryptanalysis. Matsui’s linear cryptanalysis [25] is a widely studied fam-
ily of statistical cryptanalysis against block ciphers and other symmetric con-
structions, and any new proposals are expected to justify their resilience against
it. Linear attacks are commonly turned into key recovery attacks, in which a lin-
ear distinguisher is extended by one or more rounds by incorporating a key guess.
If the attack requires a data complexity of NV and [bits of the key are guessed, the
time complexity of a standard linear key recovery attack is O (N)+ O (2%!) [26].

Fast Key Recovery Algorithms. In the paper by Collard et al. [16], a new key
recovery algorithm based on the fast Walsh transform! was presented which can
sometimes reduce the time complexity of attacks on key-alternating ciphers to
O (N)+0 (I2'). However, this technique has several limitations, as it complicates
common optimisations of previous attacks, most notably key schedule-induced
relations. The technique was generalised to multiple rounds by Flérez-Gutiérrez
et al. [19], however, many limitations to the algorithm remained.

! Called fast Fourier transform / FFT in the paper.

2 Antonio Flérez-Gutiérrez

Our Contribution

New Pruned Walsh Transform Algorithm. We describe a new pruning technique
for the fast Walsh transform which is effective when the nonzero inputs and the
desired outputs lie in (unions of) affine subspaces of F5. The algorithm reduces
the computation of the desired outputs to a Walsh transform of smaller size than
that of the full transform, thus achieving a large reduction in time complexity.

Reduced Attack Complexity. We next show how this pruned algorithm can be
used to optimise linear key recovery attacks. Previous techniques based on the
Walsh transform treated the key recovery map as a black box, which meant that
the size of the input to this map often became the bottleneck of the algorithm.
In our new approach, we see that in some common cases the cipher construction
leads to the presence of a lot of zeros in the Walsh spectrum which can be
used to improve the key recovery. This, together with information about the key
schedule, can greatly reduce the time complexity. We also show how additional
zeros can be created by rejecting a small fraction of the data.

Applications

Cryptanalysis of the DES. The first application is a variant of Matsui’s attack
on the DES [26] in which the last round of the linear approximation has been
removed, and is treated as a key recovery round. We improve the data complexity
by a factor of 20-° with respect to the best previous result of Biham and Perle [4],
but the memory complexity grows due to the larger key guess.

Cryptanalysis of Reduced-round PRESENT. We add a key recovery round to
the 28-round attack on PRESENT by Florez-Gutiérrez et al. [19] with the new
pruning techniques, giving the first known attack on 29-round PRESENT-128.

Paper Structure Section 2 covers some techniques and notations which are
used in the rest of the paper, as well as the specifications of the applications’
target ciphers. Section 3 describes the affine pruning algorithm for the fast Walsh
transform from a theoretical perspective. Section 4 provides tools which help the
cryptanalyst identify zeroes in the Walsh spectra of the maps which appear in
key recovery attacks. Chapter 5 combines the results of the previous two sections
by optimising linear key recovery attacks to make use of the cipher structure.
Sections 6 and 7 describe the applications to the DES and PRESENT.

2 Preliminaries

2.1 Linear Key Recovery Attacks

Linear approzimation. Let E : F§ x F5 — FZ be a block cipher. A linear
approximation of E is an expression of the form (o, z) + (8,y), where (-,-)

Optimising Linear Attacks with Walsh Transform Pruning 3

denotes the dot product in F5. The correlation of the approximation is

1 a,T x(z
cor(a, B) = OTEe Z Z (—1) (@) +(B.Ex () (1)

KeFs zeFy

Linear attacks make use of biased linear approximations, that is, of approxima-
tions whose correlation is different from zero.

Key recovery attack. We consider a cipher of the form £/ = F o E, and a biased
linear approximation (o, x) + (8,y) of E. In a key recovery attack, we guess
a part k of K so that the value of the linear approximation can be computed
for each pair (z,y = E%(x)) in a collection D of N known plaintext-ciphertext
pairs. We compute an experimental estimation? of the correlation for each guess:

_ 1 o —1
cor(k) = N Z (—1)fm)+BE W) (2)

(z,y)€D

If the value of k corresponding to the correct key K appears within the largest
2lkl=a in the list®, we say that the attack achieves an advantage of a [28]. As a
rule of thumb, the attack requires O (cor(e, 8)~2) data pairs to succeed. In this
paper we use the more precise model of Blondeau and Nyberg [8].

Multiple linear approximations. It is common for linear attacks to make use of
more than one linear approximation [6,21]. In the PRESENT attack we use the
x? multiple linear cryptanalysis statistic:

M
Q(k) =) cor;(k)?, (3)
=1

where cor;(k) denotes the experimental correlation for the i-th approximation.
In a multiple linear attack, the data complexity is determined by the capacity
C= Zf\il cor(ay, B;)%. Detailed models were given by Blondeau and Nyberg [8].

2.2 The Walsh Transform

Definition 1 Let f : F§ — C be a complez-valued function on Fy. We refer
to the space of functions of this kind as CF}, which is isomorphic to C*". The

Hadamard or Walsh transform of f is another map f: F3 — C given by*

~

flu) =Y (=) f(x). (4)
zEFy

2 The notation éor should not be confused with the Walsh transform f.

3 |z| will denote the number of bits of a binary vector x.

4 Tt is common to use the normalised Hadamard transform, which is divided by /27,
but for the purposes of this paper we will not use this factor in the definition.

4 Antonio Flérez-Gutiérrez

The transform of any vector in CF5 can be computed efficiently using:

flu) = Z Z (—1)tn-2Eno2 e TUOTO £(0 0y o L 1)
Tp_2€F2 zoE€F2 (5)
F (=Dt YT Y ()R e T (1 gy).
Ty —2€F zo€F2

This formula, in a divide-and-conquer approach, leads to the fast Walsh trans-
form algorithm [18], which has a time complexity of n2" additions/subtractions.
An associated transformation can be defined for (vectorial) boolean functions:

Definition 2 Let g : Fy — F3' be any vectorial boolean function. We define
its Walsh transform as the map g : Fy x F* — C given by the formula

ﬁ(u, 'U) = Z (_1)<u,m>@<v,g(z)>. (6)

z€FY

The coefficients of this map ¢ are often called the Walsh spectrum of g. It
is a complex matrix whose columns are the Walsh transforms of indg, : x —
(—1){9(=)) " complex representations of its linear components = +— (v, g(z)).
When m=1 we can ignore the second input and assume v = (1) to define g(u).
We will also use the Walsh spectrum restricted to a subset X:

Definition 3 Let g : F5 — F3' be a vectorial boolean function, and X C Fy a
subset of its domain. The Walsh transform of g restricted to X is defined as

Toex (u,0) = Y (~1)fea @ g, @)
reX

o —

We define the transform restricted to Y C F5' as gymyey = Jueg—1(v)-

2.3 Walsh Transform-accelerated Linear Cryptanalysis

FFT-accelerated linear cryptanalysis was introduced by Collard et al. [16]. Florez-

Gutiérrez et al. [19] provided a two-matrix description for instances in which the

linear approximation can be separated into two independent parts, such as when

key recovery is considered on both the plaintext and the ciphertext sides. We

now show a small generalisation of this approach using d-dimensional arrays.
We consider a linear approximation whose value can be expressed as

fO(m)@fl(xl@k?ak{)@@fd(xd@kdngé)v (8)

F(X®KO KT)

where (21,...,24) = X are separate parts of the plaintext-ciphertext pair z (we
denote this by z — X). (k?,...,k9) = K9 is outer key material which is xored

Optimising Linear Attacks with Walsh Transform Pruning 5

directly to z, and (k{,... k}) = K is additional inner key material. Our aim
is to compute all values of the experimental correlations cor(K?, K1):

N-(T&(KO,KI) - Z(1)f0(90)69f1(301€9ko k1)®... ®fa(xa®kF k)

z€D
= Z(_l)F(X@KO,KI) Z (—l)fo .
X zED
X
A[X] ©
= LZ(_1)<K07Y) [Z(1)V2)(_1)F (2, Kz)] Z 1) A[x]
21X ~ - >
d
— %Z(—l)mo,w (H ﬁ-(yi,k{)> E[Y],
Y i=0

using the convolution theorem. The attack can be performed as follows:

1. For each f;, precompute 2/¥i| tables of size 2!%'| containing f;(- , kI).
Distillation phase: Construct the 211l x ... x 2l#4l_-dimensional array A.
3. Analysis phase:
(a) Apply the FWT on the array A to obtain A. We can consider A is a
one-dimensional array of 2/X! elements.
(b) For each value of K': R R
i. Multiply each entry A[Y] of A by H?:o fi(yi kD).
ii. Apply another FWT to obtain an array containing cor| - , K'].
4. Search phase: Exhaustive search over the rest of the key for the guesses with
the largest values of 21X Nécor[K©, K1].

o

The memory complexity of this algorithm mainly consists 21X1 memory reg-
isters to store A. The time complexity of the distillation phase is O (N), as each
plaintext-ciphertext pair is checked once and discarded. The time complexity of
the analysis phase is dominated by the loop on K7, and consists of d2/% " I+/K°
multiplications and |K©|2/K"1+1K°l additions /subtractions. The time complex-
ity of the search phase is given by models such as [§].

Other improvements to this algorithm were proposed by Flérez-Gutiérrez et
al. [19], most notably in the case of multiple linear cryptanalysis. By separating
the key guesses into groups, it is possible to perform a “complete" key guess
kr (accounting for any dependencies which are induced by the key schedule)
while still using the FFT algorithm on different parts of the key guess for each
individual approximation. The authors also introduced some Walsh transform
pruning techniques for cases in which some external keybits can be deduced from
the internal keybits. This paper builds on that improvement.

2.4 DES Specification

The Data Encryption Standard [1] is one of the most widely analysed block
ciphers due to its use in the industry. It has a block length of 64 bits and

6 Antonio Flérez-Gutiérrez

©
—

32]

° S

8

Kl-$¢¢$¢¢¢$$¢¢$$¢¢§¢¢¢¢¢¢$$¢¢¢$¢¢$g¢¢$$¢¢$$¢¢$¢¢¢¢é¢$$¢¢¢$¢¢¢¢¢¢$£
SIS|sS|S|S S S

nn
105)
9
9
9
n
n
n
9!

Fig.1: A round of PRESENT.

a key size of 56 bits, and is a 16-round Feistel network. Each state (L, R)
consists of two (left and right) 32-bit parts. The cipher operates as follows:
(Lo, Ro) < IP(P);
for : + 1 to 16 do
Li < Riq;
Ri « Li—1 ® f(Ri—1, K;);
end
C IP_l(R16,L16);

where [P is a fixed initial permutation and each K; is a 48-bit round subkey.

The round function f. First, an expansion function F is applied on the 32-bit
input to obtain a 48-bit string. This string is xored with the round subkey, and
eight different 6-to-4-bit Sboxes Si,...,Sg are applied to obtain a 32-bit string.
Finally, an output permutation P is applied.

The key schedule. 1t extracts sixteen 48-bit subkeys K7, ..., K16 from the key:
(C(),DO) — PC’l(P),
for i < 1 to 16 do
Ci + LSpiy(Ci—1);
D; < LSy (Di-1);
Ki — PCQ(Oi, Di);
end
where C; and D; are 28 bits long, PC, and PC are two permutated choices,
LS; is a j bit rotation to the left, and p(7) is either 1 or 2.

Notation. In this paper, X[j] will denote the j-th rightmost (least significant)
bit of X, starting from 0. We will also ignore IP, IP~! and PC; and denote
P = (L07R0), C = (R16,L16), K= (Co,Do) instead.

2.5 PRESENT Specification

PRESENT [9] is a lightweight block cipher which has received substantial atten-
tion from cryptanalysts since its inroduction, and is a popular target for linear

Optimising Linear Attacks with Walsh Transform Pruning 7

cryptanalysis. PRESENT has a block size of 64 and can operate with keys of
either 80 or 128 bits. It is a substitution permutation network with 31 rounds:

X+ P;

for : + 1 to 31 do
X + addRoundKey (X, K;);
X + sBoxLayer(X);
X + pLayer(X);

end

C <+ addRoundKey (X, K33);

Sbox Layer. The nonlinear operation consists of the parallel application of 16
identical 4-bit Sboxes on all the nibbles of the state.

Permutation Layer. The linear transformation is a bit permutation, which sends
the bit in position ¢ to the position P(i) = 16i mod 63,i # 63, P(63) = 63. For
its inverse we do the same with P~1(j) = 45 mod 63, # 63, P~1(63) = 63.

Key Schedule. A 64-bit round subkey K is xored to the state in each round.
These are obtained from the master key K. For 128 bits:

for i < 1 to 31 do
K; + K[127,...,64];
K+ LSﬁl(K),
K[127,126,125,124] «+ S(K[127,126,125, 124]);
K[123,122,121,120] + S(K[123,122,121,120]);
K[66,...,62] «+ KI66,...,62] ® RCy;

end

Kso «+ K[127,...,64];

Notation. We denote the i-th rightmost bit of X starting from 0 by X[i].

3 Affine Pruned Walsh Transform Algorithm

In order to remove unnecesary computations from the algorithm of Section 2.3,
we must efficiently compute the Walsh transform when the non-zero inputs or
desired outputs are limited to previously-known fixed subsets of F5. An algo-
rithm which obtains the desired outputs with less computations than the “full"
fast transform will be called a pruned fast Walsh transform algorithm. The case
of fixed values for some output position bits was already considered by Flérez-
Gutiérrez et al. in [19]. Our algorithms generalise this result.

Definition 4 (Problem statement) Let f : Fy — C be any vector in CFy.
We assume that lists L, M C FZ are given, and that f(x) =0 for all z € F§ \ L.

~

The aim is to compute f(y) for all y € M with as few operations as possible.

8 Antonio Flérez-Gutiérrez

3.1 Overview of Previous Results for the One-dimensional DFT

The pruning problem has already been studied for the one-dimensional discrete
Fourier transform (DFT), as it arises naturally in some applications. Markel [24]
prunes the decimation-in-frequency algorithm for the case in which L consists
of the first 2", r < s points of the input. Similarly, Skinner [30] prunes the
decimation-in-time algorithm for the case in which L consists of the first 2" points
in bit-reversed order. An algorithm limiting both inputs and outputs at the same
time was introduced by Sreenivas and Rao [32]. A pruned decimation-in-time al-
gorithm which can compute the outputs in a consecutive (but possibly shifted)
frequency window was presented by Nagai [27]. Sorensen and Burrus [31] pro-
posed an alternative transform decomposition technique, which maps the nonzero
inputs to a series of smaller DFTs, and then combines the results. All these algo-
rithms exhibit similar complexities: evaluating 2" points of a 2" point transform
costs O (r2"). However, an interesting phenomenon was observed by Shousheng
and Torkelson [20]: when the subset of outputs M is a comb of equidistant points,
a smaller complexity of O (2™ + 72") can be achieved.

Alves et al. [2] introduced the first traceback pruning method for arbitrary
input or output sets. Hu and Wan [22] showed a similar technique and found the
average complexity as a function of n,|L| and |M|. The overhead computations
were reduced by Singh and Srinivasan [29]. Pruning has been recently generalised
to mixed-radix and composite length DFTs in works such as [33, 14].

We consider the pruning problem for the Walsh transform or (2,...,2)-
dimensional DFT, specifically the case when L and M lie in affine subspaces
of F%. Our algorithm takes a different approach to the works mentioned above:
we reduce the Walsh transform to one of significantly smaller dimension.

3.2 Walsh Transform Pruning for Affine Sets

We now describe a pruned algorithm which can be used when both the input
and output sets of the Walsh transform lie in affine subspaces of F5.

Definition 5 (Affine pruning problem) Let f : Fy — C be a vector. We
are given lists L, M C Fy, vector subspaces X,U C F3 and vectors xo,uo € F5
so that L C xog + X, M C ug + U, and f(x) = 0 for all x & L. The aim is to

~

compute f(y) for all y € M with as few operations as possible.

Ezample. Consider the Walsh transform of size 16 = 2%. The fast transform
requires 4 - 2* = 64 additions. Let the lists L = 2o+ X and M = ug + U be

To = (05 07 170)a X = Span{(oa 07 0) 1)7 (Oa 17 170)7 (1a 07 170)})
Up = (07 17070)7 U= Span{(07 Ou 07 1)7 (07 Ou 170)7 (17 1a 070)} :
A traceback-based pruning approach as done in [24,30,32,27,20,2,22] is

shown in Figure 2. By removing unnecesary computations from the fast Walsh
transform, we obtain the desired outputs with 32 additions and subtractions.

Optimising Linear Attacks with Walsh Transform Pruning 9

foo00 Foooo
fooo1 Q V4 Fooo1
foo1o foo1o
foo11 foo11
fo100 Fo100
fo1o01 foi01
fo11o foi10
fo111 fo111
f1000 F1000
f1001 Fro01
f1010 Fro10
f1o11 fro11
f1100 F1100
f1101 fii01
fi110 Fi110
fi1111 fii11

Fig. 2: Using traceback techniques, we can reduce the cost of this Walsh Trans-
form of length 16 from 64 to 32 operations.

Let us examine the expressions for each of the outputs:

]Enoo = +foo10 +foo11 —fo100 —fo101 +f1000 +f1o01 —fi110 —f1111
@101 = +foo10 —foo11 —fo100 +fo101 +f1o00 —fioo1 —fii10 +f1111
Jﬁ)no = —foo1o —foo11 —fo100 —fo101 +f1000 +f1001 +fi110 +f1111
@111 = — foo10 +foo11 —for00 +fo101 +fio000 —froo1 +fi110 —fi111
Jf\lOOO = +foo10 +foo11 +foroo +foro1 —f1000 —fr001 —fi110 —f1111
111001 = +foo10 —foo11 +foroo —foror —f1io00 +f1o01 —fi110 +f1111
Ji1010 = —foo10 —foo11 +foroo +foro1 —f1000 —fro01 +f1110 +f1111
firo11 = —fooro +foor1r +for00 —for01 —fro00 +fr001 +f1110 —fr111

We observe the following properties:

foroo = —fio10, foror = —fro11, forio = —f1000, forr1 = —fioo1

The difference in the indices in each of these pairs is (1,1, 1,0), which is or-
thogonal to X . There are also pairs of inputs which always appear with opposite
signs: (foo10, f1110), (foo11, fi111)s (fo1005 fr000), and (foio1, fio01)- In this case,
the difference between the indices is (1,1,0,0), which is orthogonal to U.

This suggests an algorithm which subtracts the input pairs from each other
at the beginning and duplicates the output pairs at the end, such as the one
in Figure 3. With the appropriate intermediate values, the size 2* transform is
reduced to a size 22 transform. The total cost is 24 additions and subtractions.

We now proceed to formalise the “trick", starting with the following lemma:

Lemma 6 Let X,U C F} be vector subspaces of FY. We can define t as

. X . U

10 Antonio Flérez-Gutiérrez

+f0010+f0011 ~f0100 ~ f0101 / fo100

+f1000+f1001 —f1110~F1111

\ foi01
+foo10+foo11+fo100+f0101 4 - foi10
—f1000—f1001—f1110 = f1111 =

, fo111

+fo010—fo011—fo100+f0101 1000

+f1000 = 1001 —f1110+ 1111

N
-

N

v f1001
7N A~
" . 7/ N
+!00107/0011+f0100*)f00101 AN f1010

—f1000+f1001 ~Ff1110+F1111 N
1011

Fig. 3: Organising the inputs and outputs carefully allows us to reduce the cost
of the transform to just 24 operations.

There erist isomorphisms ¢ : X/(X NUL) = Fh and ¢ : U/(UNXL) = FL
which preserve the inner product:

X .U
xnut 'S Unxt

(5,0} = (6(y), b()) for all y € (11)
Proof. The equality of the dimensions is a consequence of the dimension formula
and the properties of orthogonal spaces. It is also easy to show that the inner
product (y,v) is well-defined for any y € X/(X NU*) and v € U/(UN X7).

We will construct a pair of “orthonormal" bases starting from two arbitrary
bases {y1,...,y} and {v1,...,v;}. We will first ensure (y1,v;) = 01, for all j
and (y;,v1) = & for all 4, and then work recursively. There is at least one j so
that (y1,v;) =1 (if y1 L v; for all j, we’d have y; L U, y; = 0). We swap the v;
so that (y1,v1) = 1. We then modify both bases as follows:

yr Y = Y = yi + (yi,v1)y1 forall i #1

new new

v =y 0= v + (y1,v5)v; for all j # 1
These new bases have the following properties:

(Y1, v ") = (Y1, v1) =1
(W1, v) = (Y1, v3)+(y1,v5) (y1, v1) = 0 for all j # 1

(Y7, 1) = (yi, v1) +(yi, v1){yr,v1) = 0 for all i # 1

This process can be iterated on the rest of the elements until we obtain a pair of
bases {y1,...,y:} and {v1,...,v:} which verify (y;,v;) = J;;. We obtain ¢ and
1 by mapping these bases to the standard basis of F%.

This lemma provides the basis for the following result and Algorithm 1:

Proposition 7 Let f be the Walsh transform of f € CF5. We are given lists
LCxy+ X CFy and M Cup+ U CFy, where g + X and ug + U are affine
subspaces, and assume f(z) = 0 for all x & L. Let t = dim (X/(X NU™)) =
dim (U/(U N X*1)). There is an algorithm which computes f(u) for allu e M
with |L| + t2 + |M| additions using 2' memory registers.

Optimising Linear Attacks with Walsh Transform Pruning 11

Algorithm 1: Fast Walsh transform pruned to affine subspaces

Parameters: L C o+ X CFy, M Cug+ U CF3, (X,U subspaces).

Input: f: L —C

Output: f: M — C

Bx = {y1,...,y} < GetBasis(X/(X NU™));

Bu = {v1,..., vt} < GetBasis(U/(U N X1));

for k< 1tot—1do // Generate "good" bases
while (yr,vi) =0 do (Vk, Vi1, .-, Ve—1,0¢) < (Vk41, Vk42, .- ., Vt, Uk);
for i < k+ 1 to t do y; + s + (Ys, Vi) Yk;
for j < k+1 to t do v; < v; + (YK, v;)vVk;

end

let g :F5 — C, g(y) =0 Vy € Fh;

foreach z € L do // Absorb the nonzero inputs
(1, . ..,%:) < GetCoordinates(z — zo, Bx);
giv, ... i) < gin, ... 0) + (_1)<x7x0’u0>f(x)§

end

g+ FWT(g) ; // Fast Walsh transform of size 27t

foreach v € M do // Generate the desired outputs
(J1,---,7t) + GetCoordinates(u — uo, Bv);
Flu) < (1) g, ji);

end

return J/"\

Proof. Let u=ug +u', v € U be one of the desired outputs.

Flu) =30 (=D f() = 3 (1)l b s fag +of)
zeFy z’'eX
= (D Y ()M YD o+ 2),
yeX/(XNUL) z'ey

where x € 3’ means that x is a representative of the class y, in other words,
y =’ + (X NUL). This suggests the following algorithm:

1. For each y € X/(X NU%), compute g(y) = Zm,ey(—l)wm"l)f(xo + 2'),
forming an array g of length 2t. We go over all x € L, compute ' = z — xo,
and add f(x) to the bin corresponding to the class of z’. This costs at most
|L| additions. We do not need to store any entries of f in memory.

2. We apply the fast Walsh transform on g with #2¢ additions. The result is a
vector g which contains, for each v € V € U/(U N X1):

ZORD I C VD S C I F R}

yeX/(XNUL) z' €y

Lemma 6 justifies the validity of this step.
3. For each output u € M, separate u = ug + u’, and sign-swap the entry of g

~

indexed under the class of u’ according to (xg,u) to obtain f(u). The total

12 Antonio Flérez-Gutiérrez

cost is at most |M|. Each output can be queried individually, and we can
even store the vector g and query any output in O (1) afterwards.

Example. We return to the example to illustrate how the algorithm of Figure 3
is justified by proposition 7. Indeed, U N X+ = X+ = span{(1,1,1,0)} and
XNU+=U+ =span{(1,1,0,0)}, so t = 2 and the transform reduces to one of
size 22. The inputs and outputs of the reduced transform correspond to the bases
((0,1,1,0),(0,0,0,1)) of X/(XNU™*) and ((0,0,1,0),(0,0,0,1)) of U/(UNX™).

3.3 A Small Generalisation

We have described a pruned fast Walsh transform algorithm which is effective
when the inputs and/or outputs are restricted to affine subspaces of small di-
mension. We have also shown that the time complexity doesn’t just depend on
the dimensions of these subspaces, but also on their orthogonality. The next
natural step is to look into algorithms for arbitrary subsets of F5.

We can find the smallest subspaces which cover all inputs and outputs by
choosing random zy € L and ug € M and picking X = span ({x — 20}zer)
and U = span ({u — ug tuenr). However, if |L|,|M| > n it is very likely that
X = U =F%, and we just obtain the traditional fast Walsh transform algorithm.
This is the case in the applications later in the paper.

In these applications, however, the nonzero coefficients can be covered by a
small amount of low dimension subspaces. We assume that we separate the lists
L and M as disjoint unions L = Ly U---UL, and M = M; U---U M,. Let’s
also assume that there exist x(l), ..., zh and u(l), .o, ud, as well as X1, ..., X, and
Ui,...,Uq so that L; C % + X; and M; C ué + U;. Although the list families
{L;} and {M;} are disjoint, the affine subspace families {z 4+ X;} and {u}+U;}
need not be disjoint. Because of the linearity of the Walsh transform, we can
compute the transform for each pair (L;, M;) separately, and combine the results
at the end. Let ¢;; := dim (X;/(X; NU;")). The time complexity is:

p q
q|lL| + Z Z tij - 2" + p|M| additions/subtractions. (12)

i=1 j=1

4 Zeros in the Walsh Spectra of SPN Constructions

This section adapts some previously-known results on the Walsh transform
(see [13]) to quickly identify zeroes in the Walsh spectra of block cipher construc-
tions which alternate a bricklayer nonlinear map and a linear transformation,
such as Substitution Permutation Networks. We also illustrate how in some cases
slightly modifying to the key recovery map so that it rejects some plaintexts can
drastically reduce the number of nonzero coefficients.

Optimising Linear Attacks with Walsh Transform Pruning 13

Lemma 8 Let f : Fy — FY', f(x) = Le®c, where L € GL(FY,FLY) is a linear
map and c € F5* is a constant. Then

o~ 0ifu# LTv n m
flu,v) _{(_]1{)@?2” ifu= LTy for alluw € Fy,v € FJ. (13)

Lemma 9 Let f; : Fy' — FJ ¢ = 1,...,d be d vectorial boolean func-
tions. We consider the bricklayer map F :]FZ [IE"Z , which s ob-
tained by concatenation, F(z1,...,24) = (fl(xl) ..,fd(xd)). Then, for any

(U1, ..., uq) € F5* x ... xF3? and (v1,...,vq) € F3"™* x ... x F3" we have

F((ui, ... uq), (vy,. .. Fi(wi, v;). (14)

H':]g

. filw) if vi=1
Note that if m; = 1 and f; is balanced, then f;(u;,v;) = 0 ifu; #0,v,=0.
2mi ifui :O,Ui =0

Lemma 10 Let f : FY — F} and g : Fy, — F3* be vectorial boolean functions.
Let X CFy, Z C IFlz and Y C F3 be subsets. We have

2'go flu,v) =Y Flu,w)-Glw,v) (15)
wG]Fl

2190 Frex(u,v) = > Foex(u,w) - Gw,v) (16)
we]Fl

QZgofgof(m)ey u,v) Z f U, W) gg(z)ey(w v) (17)
wE]Fl

2! goff(;c)EZ u,v) =y ff yez(u, w)g(w,v) = (u, w)Fze z(w, v)
weF} weF},
(18)

Using these results, we can often obtain compact formulas for the Walsh
coefficients of some key recovery maps, such as the following:

Proposition 11 Let f; : Fy — IE*‘ZQZ be d balanced vectorial boolean functions,

let L : FQE b, L be a linear map, and let g : Fy, — Fy be a boolean function.
In the applications, the f; will be some Sboxes with possibly truncated outputs,
L will be a truncation of the linear layer, and g will be a linear combination of
outputs of an Sbox layer. We also consider a subset Z C Fy. We consider the
composition h = go Lo F, where F is the bricklayer function F(xy,...,24) =
(fi(xz1),..., fa(xq)). The Walsh coefficients of h can be obtained through the

14 Antonio Flérez-Gutiérrez

following formula:

d
/}\LL(F(I))GZ(ulv"wud) :% Z Z Z H umwz ngZ() (19)

w1€ﬂ“l21 de]Flzd vEIFl i=1

Proof. We use Lemma 10 to write the Walsh coefficients of h as

hL(F(z))EZ(ula S ,’U,d) 22 T+l Z Z u, U} w U)QZEZ()
weFEl i ’UE]Fl

According to Lemma 8, E(w,v) # 0 if and only if w = L'v, in which case
E(w,v) = 22! This means we only have to consider the sums over the w;
for which an appropriate v exists, and vice versa. Furthermore, we can write
F(u,w) = H?Zl fi(u;, w;) according to Lemma 9. Since f;(0,w;) = 0 if w; # 0,
we can assume w; = 0 for the i for which u; = 0.

In particular, for the case in which all [, = 1:

Corollary 12 Let f; : F} — Fy be | boolean functions and g : F, — Fy. We
consider h(zy,...,1;) = g(fi(x1),..., fa(x;)) and the subset Z C F3. Then

—_— 2Zi‘ui:0ni/\ T
hg@yez (U, ..., u) = ol Gzez(w(ua, ..., u)) H fiui),
z7ul750
where w(ui, ..., u); = {(1) chzz ;8 :

We’ll show how the previous result describes hf/(z)\ez and its zeroes in a
compact manner. We first look at g.c 7. Given any w € F} so that g.cz(w) = 0,

we can deduce that h;;)\ez(ul,...,ul) = 0 for all (uy,...,u;) so that w =
w(u1, ..., u;). Furthermore, for the (uy,...,u;) for which g.c 7 (w(uy,...,u;)) #
0, the Walsh coefficient hF/(z)\eZ(ul, ...,u;) can be written as the product of
Goez(w(uy, ..., w)) and the f;(u;) corresponding to each u; # 0.

An interesting situation appears when g.cz(1,...,1) = 0. Given (u1,...,u;)
so that u; # 0 for all 4, we know that h;,;z(ul, ...,u) = 0, and any nonzero

Walsh coefficient must verify u; = 0 for at least one i. As a result, the nonzero
Walsh coefficients can be separated into [vector subspaces U; of dimensions
Z#i n; — n;. BEach U; is determined by the n; linear equations u; = 0.

When g(1...1) =0, we obtain this decomposition without any modifications
to the key recovery map. When g(1...1) # 0, we would like to choose some large
Z C Fg so that goez(1,...,1) = 0. We can use the following result:

Optimising Linear Attacks with Walsh Transform Pruning 15

Proposition 13 Let g : F, — Fy be a map for which g(1...1) = a # 0. There
exists Z C Fh with | Z| = 2! — |a| so that g.ez(1...1) = 0.

We have substituted the key recovery map, which normally takes values +1
depending on the linear approximation, for a modified map which is zero when
F(z) ¢ Z. From the perspective of the attack, we are rejecting the plaintext-
ciphertext pairs for which the input of g is not in Z. Assuming independence,
the resulting attack has the same parameters except for the data complexity,
which increases by a factor of 2!/|Z| to compensate the rejected plaintexts.

These results describe static key recovery maps F(X @ K©) without inner
key guesses. We must also consider maps of the form F(X @ K, KT). When all
l; = 1, the xoring of a round subkey between rounds only changes the Walsh
coefficient signs, and the positions of the zero coefficients remain unaltered:

Corollary 14 Let f; : F5' — Fy be [boolean functions, g : Fy — Fy, and let
k € L be a fized parameter. We consider the parametric function h(zy, ..., x;;k) =
g((fi(x1), ..., fi(zy)) @ k) and the subset Z C FL. Then

L —

h('> k)F(x)@keZ(uh s 7ul) = (_1)<k7w(u17.“7ul))h('7 O)F(z)GZ(ul’ s 7ul)'

5 Optimised Attack Algorithm

We now provide a linear key recovery algorithm which makes use of the affine
pruned Walsh transform. We assume that the target linear approximation is of
the form fo(z) + f(X @ K@, KT), but it also applies to key recovery maps with
several parts. We will also make some redundancy assumptions:

— The parts of the plaintext-ciphertext pair X which are xored with the outer
o
key guess K lie in an affine subspace of the form zo +Y C]F‘QK 3
— The nonzero Walsh coefficients of F'(+,0) lie in the union of ! affine subspaces

. o .
up+U; C IFIZK | We denote the number of nonzero coefficients in uy +U; by
|L;|. We also assume that the nonzero Walsh coefficients of F(-, K') occupy
the same subspaces. If the latter is not true, each value of K7 must be treated
separately, and the cost of the analysis phase is multiplied by 2% .
— Given the key schedule of the cipher, for a given guess of K', the possible
o
values of K© lie within an affine subspace of the form v " Vir C IFIQK 3
We denote the dimensions of the relevant quotient spaces for the first Walsh
transform as ¢; = dim (Y/(Y NU)). For the last set of Walsh transforms,
we assume that these dimensions are constant for all the K7, that is r; =
I
dim (U; /(U; N V&) for all K