4,754 research outputs found

    Analysing the Performance of GPU Hash Tables for State Space Exploration

    Get PDF
    In the past few years, General Purpose Graphics Processors (GPUs) have been used to significantly speed up numerous applications. One of the areas in which GPUs have recently led to a significant speed-up is model checking. In model checking, state spaces, i.e., large directed graphs, are explored to verify whether models satisfy desirable properties. GPUexplore is a GPU-based model checker that uses a hash table to efficiently keep track of already explored states. As a large number of states is discovered and stored during such an exploration, the hash table should be able to quickly handle many inserts and queries concurrently. In this paper, we experimentally compare two different hash tables optimised for the GPU, one being the GPUexplore hash table, and the other using Cuckoo hashing. We compare the performance of both hash tables using random and non-random data obtained from model checking experiments, to analyse the applicability of the two hash tables for state space exploration. We conclude that Cuckoo hashing is three times faster than GPUexplore hashing for random data, and that Cuckoo hashing is five to nine times faster for non-random data. This suggests great potential to further speed up GPUexplore in the near future.Comment: In Proceedings GaM 2017, arXiv:1712.0834

    Boosting Multi-Core Reachability Performance with Shared Hash Tables

    Get PDF
    This paper focuses on data structures for multi-core reachability, which is a key component in model checking algorithms and other verification methods. A cornerstone of an efficient solution is the storage of visited states. In related work, static partitioning of the state space was combined with thread-local storage and resulted in reasonable speedups, but left open whether improvements are possible. In this paper, we present a scaling solution for shared state storage which is based on a lockless hash table implementation. The solution is specifically designed for the cache architecture of modern CPUs. Because model checking algorithms impose loose requirements on the hash table operations, their design can be streamlined substantially compared to related work on lockless hash tables. Still, an implementation of the hash table presented here has dozens of sensitive performance parameters (bucket size, cache line size, data layout, probing sequence, etc.). We analyzed their impact and compared the resulting speedups with related tools. Our implementation outperforms two state-of-the-art multi-core model checkers (SPIN and DiVinE) by a substantial margin, while placing fewer constraints on the load balancing and search algorithms.Comment: preliminary repor

    CATS: linearizability and partition tolerance in scalable and self-organizing key-value stores

    Get PDF
    Distributed key-value stores provide scalable, fault-tolerant, and self-organizing storage services, but fall short of guaranteeing linearizable consistency in partially synchronous, lossy, partitionable, and dynamic networks, when data is distributed and replicated automatically by the principle of consistent hashing. This paper introduces consistent quorums as a solution for achieving atomic consistency. We present the design and implementation of CATS, a distributed key-value store which uses consistent quorums to guarantee linearizability and partition tolerance in such adverse and dynamic network conditions. CATS is scalable, elastic, and self-organizing; key properties for modern cloud storage middleware. Our system shows that consistency can be achieved with practical performance and modest throughput overhead (5%) for read-intensive workloads
    • …
    corecore