2,015 research outputs found

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    Modularity and Openness in Modeling Multi-Agent Systems

    Full text link
    We revisit the formalism of modular interpreted systems (MIS) which encourages modular and open modeling of synchronous multi-agent systems. The original formulation of MIS did not live entirely up to its promise. In this paper, we propose how to improve modularity and openness of MIS by changing the structure of interference functions. These relatively small changes allow for surprisingly high flexibility when modeling actual multi-agent systems. We demonstrate this on two well-known examples, namely the trains, tunnel and controller, and the dining cryptographers. Perhaps more importantly, we propose how the notions of multi-agency and openness, crucial for multi-agent systems, can be precisely defined based on their MIS representations.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Geometric Aspects of Multiagent Systems

    Get PDF
    Recent advances in Multiagent Systems (MAS) and Epistemic Logic within Distributed Systems Theory, have used various combinatorial structures that model both the geometry of the systems and the Kripke model structure of models for the logic. Examining one of the simpler versions of these models, interpreted systems, and the related Kripke semantics of the logic S5nS5_n (an epistemic logic with nn-agents), the similarities with the geometric / homotopy theoretic structure of groupoid atlases is striking. These latter objects arise in problems within algebraic K-theory, an area of algebra linked to the study of decomposition and normal form theorems in linear algebra. They have a natural well structured notion of path and constructions of path objects, etc., that yield a rich homotopy theory.Comment: 14 pages, 1 eps figure, prepared for GETCO200

    A counter abstraction technique for the verification of robot swarms.

    Get PDF
    We study parameterised verification of robot swarms against temporal-epistemic specifications. We relax some of the significant restrictions assumed in the literature and present a counter abstraction approach that enable us to verify a potentially much smaller abstract model when checking a formula on a swarm of any size. We present an implementation and discuss experimental results obtained for the alpha algorithm for robot swarms

    An Abstract Formal Basis for Digital Crowds

    Get PDF
    Crowdsourcing, together with its related approaches, has become very popular in recent years. All crowdsourcing processes involve the participation of a digital crowd, a large number of people that access a single Internet platform or shared service. In this paper we explore the possibility of applying formal methods, typically used for the verification of software and hardware systems, in analysing the behaviour of a digital crowd. More precisely, we provide a formal description language for specifying digital crowds. We represent digital crowds in which the agents do not directly communicate with each other. We further show how this specification can provide the basis for sophisticated formal methods, in particular formal verification.Comment: 32 pages, 4 figure

    Model checking multi-agent systems

    Get PDF
    A multi-agent system (MAS) is usually understood as a system composed of interacting autonomous agents. In this sense, MAS have been employed successfully as a modelling paradigm in a number of scenarios, especially in Computer Science. However, the process of modelling complex and heterogeneous systems is intrinsically prone to errors: for this reason, computer scientists are typically concerned with the issue of verifying that a system actually behaves as it is supposed to, especially when a system is complex. Techniques have been developed to perform this task: testing is the most common technique, but in many circumstances a formal proof of correctness is needed. Techniques for formal verification include theorem proving and model checking. Model checking techniques, in particular, have been successfully employed in the formal verification of distributed systems, including hardware components, communication protocols, security protocols. In contrast to traditional distributed systems, formal verification techniques for MAS are still in their infancy, due to the more complex nature of agents, their autonomy, and the richer language used in the specification of properties. This thesis aims at making a contribution in the formal verification of properties of MAS via model checking. In particular, the following points are addressed: • Theoretical results about model checking methodologies for MAS, obtained by extending traditional methodologies based on Ordered Binary Decision Diagrams (OBDDS) for temporal logics to multi-modal logics for time, knowledge, correct behaviour, and strategies of agents. Complexity results for model checking these logics (and their symbolic representations). • Development of a software tool (MCMAS) that permits the specification and verification of MAS described in the formalism of interpreted systems. • Examples of application of MCMAS to various MAS scenarios (communication, anonymity, games, hardware diagnosability), including experimental results, and comparison with other tools available
    • …
    corecore