4,625 research outputs found

    Atomic-SDN: Is Synchronous Flooding the Solution to Software-Defined Networking in IoT?

    Get PDF
    The adoption of Software Defined Networking (SDN) within traditional networks has provided operators the ability to manage diverse resources and easily reconfigure networks as requirements change. Recent research has extended this concept to IEEE 802.15.4 low-power wireless networks, which form a key component of the Internet of Things (IoT). However, the multiple traffic patterns necessary for SDN control makes it difficult to apply this approach to these highly challenging environments. This paper presents Atomic-SDN, a highly reliable and low-latency solution for SDN in low-power wireless. Atomic-SDN introduces a novel Synchronous Flooding (SF) architecture capable of dynamically configuring SF protocols to satisfy complex SDN control requirements, and draws from the authors' previous experiences in the IEEE EWSN Dependability Competition: where SF solutions have consistently outperformed other entries. Using this approach, Atomic-SDN presents considerable performance gains over other SDN implementations for low-power IoT networks. We evaluate Atomic-SDN through simulation and experimentation, and show how utilizing SF techniques provides latency and reliability guarantees to SDN control operations as the local mesh scales. We compare Atomic-SDN against other SDN implementations based on the IEEE 802.15.4 network stack, and establish that Atomic-SDN improves SDN control by orders-of-magnitude across latency, reliability, and energy-efficiency metrics

    Computational Intelligence Inspired Data Delivery for Vehicle-to-Roadside Communications

    Get PDF
    We propose a vehicle-to-roadside communication protocol based on distributed clustering where a coalitional game approach is used to stimulate the vehicles to join a cluster, and a fuzzy logic algorithm is employed to generate stable clusters by considering multiple metrics of vehicle velocity, moving pattern, and signal qualities between vehicles. A reinforcement learning algorithm with game theory based reward allocation is employed to guide each vehicle to select the route that can maximize the whole network performance. The protocol is integrated with a multi-hop data delivery virtualization scheme that works on the top of the transport layer and provides high performance for multi-hop end-to-end data transmissions. We conduct realistic computer simulations to show the performance advantage of the protocol over other approaches

    Whisper: Fast Flooding for Low-Power Wireless Networks

    Full text link
    This paper presents Whisper, a fast and reliable protocol to flood small amounts of data into a multi-hop network. Whisper relies on three main cornerstones. First, it embeds the message to be flooded into a signaling packet that is composed of multiple packlets. A packlet is a portion of the message payload that mimics the structure of an actual packet. A node must intercept only one of the packlets to know that there is an ongoing transmission. Second, Whisper exploits the structure of the signaling packet to reduce idle listening and, thus, to reduce the radio-on time of the nodes. Third, it relies on synchronous transmissions to quickly flood the signaling packet through the network. Our evaluation on the Flocklab testbed shows that Whisper achieves comparable reliability but significantly lower radio-on time than Glossy -- a state-of-the-art flooding algorithm. Specifically, Whisper can disseminate data in FlockLab twice as fast as Glossy with no loss in reliability. Further, Whisper spends 30% less time in channel sampling compared to Glossy when no data traffic must be disseminated

    Long-Term Stable Communication in Centrally Scheduled Low-Power Wireless Networks

    Get PDF
    With the emergence of the Internet of Things (IoT), more devices are connected than ever before. Most of these communicate wirelessly, forming Wireless Sensor Networks. In recent years, there has been a shift from personal networks, like Smart Home, to industrial networks. Industrial networks monitor pipelines or handle the communication between robots in factories. These new applications form the Industrial Internet of Things (IIoT). Many industrial applications have high requirements for communication, higher than the requirements of common IoT networks. Communications must stick to hard deadlines to avoid harm, and they must be highly reliable as skipping information is not a viable option when communicating critical information. Moreover, communication has to remain reliable over longer periods of time. As many sensor locations do not offer a power source, the devices have to run on battery and thus have to be power efficient. Current systems offer solutions for some of these requirements. However, they especially lack long-term stable communication that can dynamically adapt to changes in the wireless medium.In this thesis, we study the problem of stable and reliable communication in centrally scheduled low-power wireless networks. This communication ought to be stable when it can dynamically adapt to changes in the wireless medium while keeping latency at a minimum. We design and investigate approaches to solve the problem of low to high degrees of interference in the wireless medium. We propose three solutions to overcome interference: MASTER with Sliding Windows brings dynamic numbers of retransmissions to centrally scheduled low-power wireless networks, OVERTAKE allows to skip nodes affected by interference along the path, and AUTOBAHN combines opportunistic routing and synchronous transmissions with the Time-Slotted Channel Hopping (TSCH) MAC protocol to overcome local wide-band interference with the lowest possible latency. We evaluate our approaches in detail on testbed deployments and provide open-source implementations of the protocols to enable others to build their work upon them

    Hybrid-Vehfog: A Robust Approach for Reliable Dissemination of Critical Messages in Connected Vehicles

    Full text link
    Vehicular Ad-hoc Networks (VANET) enable efficient communication between vehicles with the aim of improving road safety. However, the growing number of vehicles in dense regions and obstacle shadowing regions like Manhattan and other downtown areas leads to frequent disconnection problems resulting in disrupted radio wave propagation between vehicles. To address this issue and to transmit critical messages between vehicles and drones deployed from service vehicles to overcome road incidents and obstacles, we proposed a hybrid technique based on fog computing called Hybrid-Vehfog to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. Our proposed algorithm dynamically adapts to changes in an environment and benefits in efficiency with robust drone deployment capability as needed. Performance of Hybrid-Vehfog is carried out in Network Simulator (NS-2) and Simulation of Urban Mobility (SUMO) simulators. The results showed that Hybrid-Vehfog outperformed Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP), PEer-to-Peer protocol for Allocated REsource (PrEPARE), Fog-Named Data Networking (NDN) with mobility, and flooding schemes at all vehicle densities and simulation times
    corecore