4 research outputs found

    Concurrent rebalancing on hyperred-black trees

    Get PDF
    The HyperRed-Black trees are a relaxed version of Red-Black trees accepting high degree of concurrency. In the Red-Black trees consecutive red nodes are forbidden. This restriction has been withdrawn in the Chromatic trees. They have been introduced by O.~Nurmi and E.~Soisalon-Soininen to work in a concurrent environment. A Chromatic tree can have big clusters of red nodes surrounded by black nodes. Nevertheless, concurrent rebalancing of Chromatic trees into Red-Black trees has a serious drawback: in big cluster of red nodes only the top node can be updated. Direct updating inside the cluster is forbidden. This approach gives us limited degree of concurrency. The HyperRed-Black trees has been designed to solve this problem. It is possible to update red nodes in the inside of a red cluster. In a HyperRed-Black tree nodes can have a multiplicity of colors; they can be red, black or hyper-red.Postprint (published version

    A Unified approach to concurrent and parallel algorithms on balanced data structures

    Get PDF
    Concurrent and parallel algorithms are different. However, in the case of dictionaries, both kinds of algorithms share many common points. We present a unified approach emphasizing these points. It is based on a careful analysis of the sequential algorithm, extracting from it the more basic facts, encapsulated later on as local rules. We apply the method to the insertion algorithms in AVL trees. All the concurrent and parallel insertion algorithms have two main phases. A percolation phase, moving the keys to be inserted down, and a rebalancing phase. Finally, some other algorithms and balanced structures are discussed.Postprint (published version

    Concurrent Rebalancing on HyperRed-Black Trees

    No full text
    The HyperRed-Black trees are a relaxed version of RedBlack trees accepting high degree of concurrency. In the Red-Black trees consecutive red nodes are forbidden. This restriction has been withdrawn in the Chromatic trees. They have been introduced by O. Nurmi and E. Soisalon-Soininen to work in a concurrent environment. A Chromatic tree can have big clusters of red nodes surrounded by black nodes. Nevertheless, concurrent rebalancing of Chromatic trees into Red-Black trees has a serious drawback: in big cluster of red nodes only the top node can be updated. Direct updating inside the cluster is forbidden. This approach gives us limited degree of concurrency. The HyperRedBlack trees has been designed to solve this problem. It is possible to update red nodes in the inside of a red cluster. In a HyperRed-Black tree nodes can have a multiplicity of colors; they can be red, black or hyper-red. 1 Introduction Red-Black trees have been recognized as an important data structure [2]. They are..

    Concurrent rebalancing on hyperred-black trees

    No full text
    The HyperRed-Black trees are a relaxed version of Red-Black trees accepting high degree of concurrency. In the Red-Black trees consecutive red nodes are forbidden. This restriction has been withdrawn in the Chromatic trees. They have been introduced by O.~Nurmi and E.~Soisalon-Soininen to work in a concurrent environment. A Chromatic tree can have big clusters of red nodes surrounded by black nodes. Nevertheless, concurrent rebalancing of Chromatic trees into Red-Black trees has a serious drawback: in big cluster of red nodes only the top node can be updated. Direct updating inside the cluster is forbidden. This approach gives us limited degree of concurrency. The HyperRed-Black trees has been designed to solve this problem. It is possible to update red nodes in the inside of a red cluster. In a HyperRed-Black tree nodes can have a multiplicity of colors; they can be red, black or hyper-red
    corecore