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Abstract

Concurrent and parallel algorithms are different. How-
ever, in the case of dictionaries, both kinds of algorithms
share many common points. We present a unified approach
emphasizing these points. It is based on a careful analy-
sis of the sequential algorithm, extracting from it the more
basic facts, encapsulated later on as local rules. We apply
the method to the insertion algorithms in AVL trees. All
the concurrent and parallel insertion algorithms have two
main phases. A percolation phase, moving the keys to be in-
serted down, and a rebalancing phase. Finally, some other
algorithms and balanced structures are discussed.

1 A brief history of some balanced data struc-
tures and their algorithms

Computer science deals with the management of data
sets. A good example is the dictionary data type which is
defined by the following operations: testing of a member-
ship in the set, insertion of elements into the set and deletion
of elements from the set. Dictionaries can be represented
by lists, hash tables and search trees. The choice of one
of them depends on the time and space requirements. We
restrict ourselves to balanced schemes.

When the dictionary is consulted by only one user we
have a sequential approach. If there are many users, we
can follow a sequential strategy, such that one user works
after another without any concurrency. However, we can
find more efficient strategies because the simultaneous use
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of the dictionary by many users is desirable. For this pur-
pose concurrent and parallel algorithms have been designed.
When users work in an asynchronous way we have concur-
rent algorithms. When users work in a synchronous way we
have a parallel algorithm (see Figure 1). These approaches
have been the subject of very active research areas. Let us
consider them with more detail.

Sequential approach. In the sequential case, algorithms
on trees take time proportional to the height of trees. There-
fore, balanced search trees (having logarithmic height) pro-
vide an excellent basis for very efficient implementations
(in fact they have optimal performance among compari-
son based data structures). We will also consider a slight
variant of balanced search trees, namely, skip lists, where
randomization is used to (probabilistically) balance the data
structure. In the case of balanced trees, the elements de-
noted keys are ordered in a depth-first-left-right traversal.
The balance criteria give us different approaches.

� AVL trees, were designed by G.M. Adel’son-Vel’skiĭ
and Landis [2] in 1962. They were the first balanced
trees. On AVL trees, the balance is achieved by allow-
ing a maximum difference of 1 between the heights of
the sons of any node in the tree.

� 2-3 trees, were developed by J. E. Hopcroft [1] in 1970.
In these trees, all the leaves have the same depth and
any internal node has 2 or 3 sons. They are considered
the precursors of B-trees, introduced by R. Bayer and
C. McCreight in 1972 [4].

� Red-Black trees were defined by L. Guibas and R. Sed-
wick [17] in 1978. In these trees, nodes can be red or
black and any leaf (nil node) is black. If a node is red
both its children are black. Finally, every simple path
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Figure 1. An intuitive view of the sequential,
concurrent and parallel algorithms.

from a node to a leaf contains the same number of black
nodes.

� Brother trees, were introduced by T. Ottmann, H. Six,
and D. Wood [36, 35] in 1979. In Brother trees all the
leaves have the same depth, internal nodes can have
one or two sons, but each node with only one son has a
brother with two sons. Brother trees are quite close to
AVL trees.

� Skip lists, were introduced by W. Pugh [40] in 1990.
As they are composed of a set of linked lists, they
are not actually search trees. However, Skip lists be-
have very much like trees for searching, insertion and
deletion. Balancing this data type is achieved through
randomization.

� Skip trees, were introduced by X. Messeguer [31] in
1997. They are quite close to skip lists. On skip trees
all the leaves have the same depth and the number of
sons of an internal node is determined randomly. These
trees have many similarities with Brother and B-trees.

Concurrent approach. For the last fifteen years, there has
been a number of attempts to design concurrent management
schemes mainly for balanced trees: the goal is to allow
concurrent insertions and deletions, at least as long as no
race condition may occur. Locking groups of nodes in the

tree during the critical updates can obviously be not avoided,
but the goal is to keep those groups as small as possible, and
to lock them for a time as short as possible.

The early works of R. Bayer and M. Schkolnick [5] and
C.S. Ellis [11, 10] develop several solutions based on com-
plete path optimizations. Concurrent accessing is obtained
with a sophisticated locking technique with roll-backs in
update. These attempts have often resulted in complex de-
scriptions and the number of subtle details to be mastered
is actually so large that proving correctness becomes hardly
possible.

Later on, to avoid the preceding problems, most of the
solutions are described by a set of evolution rules. In such a
description, the control is kept as non-deterministic as pos-
sible. Any rule can be selected and applied to the global
structure in any order as soon as its guard is satisfied. The
rules assume: temporal atomicity (an action should corre-
spond to a fixed, small number of assignments and tests)
and spatial atomicity (an action should necessitate the ex-
clusive access to a fixed, small set of neighboring nodes).
The correctness can be derived from a small number of
invariants. The safety property expresses that, if no rule
can apply, then a satisfactory final state has been reached.
The liveness property expresses that eventually no rule ap-
plies [23]. The independence property expresses that rules
with disjoint support commute: they may safely be exe-
cuted concurrently. This approach was first undertaken by
J.L.W. Kessels [19] in 1983 with the design of a concurrent
algorithm to deal with insertions in AVL trees. This work
has been a good starting point. For AVL trees, consider for
instance the work of O. Nurmi, E. Soisalon-Soininen and
D. Wood [33] dealing with concurrent insertions and dele-
tions, the work of K.S. Larsen [24] bounding the number
of rules to by applied to balance the tree, or the work of
L. Bougé, J. Gabarró, X. Messeguer and N. Schabanel [7]
dealing with fine grain models. The method has been suc-
cessfully applied to other classes of trees. Red-Black trees
have been generalized to work in a concurrent environment
by O. Nurmi, E. Soisalon-Soininen [32] or J. Gabarró, X.
Messeguer and D. Riu [14].

Parallel approach. Parallel dictionaries have been widely
studied in the recent years. In a systolic framework, priority
queues and search trees algorithms were designed by C.E.
Leiserson in [27]. Later, M.J. Atallah and S.R. Kosaraju [3]
developed a generalized dictionary where a sequence of op-
erations can be pipelined at a constant rate. The situation
changed in 1983 when W. Paul, U. Vishkin and H. Wagener
proposed efficient PRAM algorithms to dynamically main-
tain a parallel dictionary on 2–3 trees working on “batches”
of k keys simultaneously [37]. They have considered an
EREW PRAM machine with k processors. Parallel search,
insertion and deletion algorithms for k items in a 2–3 tree



storing n items were shown to take time O�logn � logk�
in the worst-case. Both the insertion and deletion are rather
sophisticated. Higham and Schenk have studied parallel
algorithms for the dynamic maintenance of a dictionary
on B-trees [18] that exhibit a performance comparable to
that of the algorithms for 2–3 trees. This approach has
been extended to skip lists by J. Gabarró, C. Martı́nez and
X. Messeguer [12] and, more recently, to AVL and Brother
trees by J. Gabarró and X. Messeguer [13].

Implementations. Sequential case. The sequential dic-
tionaries have been widely implemented. For instance, the
LEDA [28] Platform implemented in C++ by K. Mehlhorn
and S. Näher contains dictionaries.

Concurrent algorithms. The work of C.S. Ellis [11, 10]
on AVL and 2-3 trees contains a experimental evaluation
of the proposed algorithms. More recently, N. Schabanel
has evaluated the experimental behavior of a fine grained
AVL algorithm [42, 7]. Also D. Riu [41, 14] has studied the
experimental behavior of HyperRed-Black trees (a variation
of the Red-Black trees).

Parallel dictionaries They have been implemented on
massively parallel machines. T. Duboux, A. Ferreira and
M. Gastaldo [9] have implemented a MIMD dictionary in
a Volvox IS860 with 8 nodes using sequential algorithms
on 2–3–4 trees as local data structures. More recently, M.
Gastaldo [16] has implemented a parallel dictionary in a
SIMD machine, the MasPar MP-1. The parallel algorithms
for Skip lists have been implemented by X. Messeguer [29]
in C* an the programs were tested in a CM 200. J. Pe-
tit [38, 15] has developed ParaDict, a data parallel library
for dictionaries having two different interfaces. The first in-
terface is written in C* for data parallel users and the second
interface in C, for users that want to use a parallel library but
not to write parallel programs. Also the programs where ran
in a CM 200. The references [29, 38, 15] provide good ex-
amples of the transition of theoretical PRAM algorithms into
readable and efficient machine-executable programs written
in C*. Finally C. Kessler and J. Träff are developing PAD,
a general purpose PRAM library written in Fork95 [20].

2 A common design approach

We were a littlebit puzzled by the great number of (appar-
ently different) approaches in concurrent and parallel algo-
rithms. However, a more accurate reading, reveals the first
quite obvious fact: all the algorithms (concurrent and par-
allel) were inspired by their sequential counterpart. A main
difference between both classes is the role of the time. In a
concurrent environment the processes (or processors) work
asynchronously while in a parallel algorithm all the pro-
cesses (or processors) are synchronized. But, both classes

Sequential algorithms

Non-deterministic scheduler Parallel scheduler

Sequential scheduler

One key One key
(Insertions only)

Sequential local rules

+ rules to avoid dead-lock + rules to addres concurrency

Distributed algorithms Massively parallel algorithms

Sequential algorithms

Figure 2. A common design approach to se-
quential, concurrent and parallel algorithms.

have another common point, if the “time scale” were rough
and we were seeing a big data structure from the “distance”,
we would be seeing “zillions” of small local changes hap-
pening “at the same time”. We would like to consider mas-
sively parallel and distributed algorithms in a very general
and common setting. Local rules (issued from distributedal-
gorithms) are a very good starting point to design massively
parallel algorithms.

LOCAL RULE: It is composed by a small number of instruc-
tions which access a small and fixed number of neighbor
nodes.

Quite often these rules are obtained by a careful inspection of
the sequential case. This suggest the followingmethodology
(see Figure 2) [30] to get a common design framework:

1. By a careful analysis of the sequential algorithms try to
isolate the basic parts of the algorithm (pieces of text)
updating the data structure. Write these pieces in the
form of local rules. This analysis will give us a very
hight level version of the sequential algorithm. This
new view is a good starting point for concurrent and
parallel developments.

2. To design a concurrent algorithm we start from the
preceding rules. Massage them, quite often new rules
need to be added (in order to avoid deadlock). In other
cases, the rules need to be slightly modified (to keep
some invariant). In this way, we get a concurrent algo-
rithm just applying the rules concurrently. By coupling
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Figure 3. An example of AVL tree.

or slicing some rules, we can control the granularity of
the algorithm. The proof of safety is (usually) easy but
the proof of termination is more difficult.

3. To design a parallel algorithm, take also the basic rules
and try to apply them in tightly synchronized way. If
the structure is quite irregular, the main problem will
be to avoid collisions between the different parts of the
evolving structure.

For a more extensive development look at [30]. In the
following we will apply this methodology to the insertion
algorithms in AVL trees. Later on, deletion algorithms in
AVL trees and dictionaries on other data structures will be
sketched.

3 Extraction of local rules from the sequential
insertion on AVL trees.

Let n be a node of the search tree. We denote respectively
by n�p� n�ls� n�rs the parent, the left son and the right
son of n in the tree. The empty tree is denoted ‘nil’ and the
root of the tree ‘root’. The real height realh�n� is defined
as usual:
realh�nil� � �
realh�n �� nil� � � �max�realh�n�ls�� realh�n�rs��

With the prefix real in realh�n� we mean that this height
corresponds to the usual mathematical definition of height
in binary search trees. In the case of concurrent or parallel
algorithms we will find other heights with other prefixes like
local, dynamical or virtual. Using the real height we define
the (real)balance of a node n as

bal�n� � realh�n�ls� � realh�n�rs�

In the sequential algorithm, every node n holds a local reg-
ister bal�n�.

Be careful, other works can define the balance as bal�n� �
realh�n�rs� � realh�n�ls�.

AVL TREE. A binary search tree is an AVL iff any node
verifies bal�n� � f��� ����g (see Figure 3).

Let us consider the sequential insertion algorithm [21]. Re-
call that this algorithm has two main phases percolation and
rebalancing. In order to extract (a first version of a useful)
set of local rules we will look closely at the rebalancing
phase. As a convention the final state of a node n after
application of a rule is denoted n�.

Percolation Phase. The key k moves down and finally ar-
rives at the bottom of the tree. Then k is allocated “inside”
an empty nil node. We give only the left version, corre-
sponding to k � key�n�, the right version corresponds to
k � key�n�. For the sake of clarity, the final state of any
node n once a rule has been applied is denoted n�. Unless
specified, it is identical to the initial state. The figures are
drawn with the same convention.

Rule : Left Percolation
Guard: The key k points at n and k � key�n�.
Behavior:
(1) If n�ls �� nil, the key k moves downward pointing at
n�ls.
(2) If n�ls � nil then a new node p is allocated such
that p � n�ls, key�p� � k, bal�p� � �, p�ls � nil,
p�rs � nil. The balance of n is updated as follows:
If n�rs �� nil then bal�n�� � �.
If n�rs � nil then bal�n�� � �.
Spatial scope: Node n and the new node p.

At the end of this phase the new key has been attached and
the search tree can be a little bit unbalanced. Worse, some
bal registers contain unfaithful information. To solve this
problem the second phase starts.

Rebalancing Phase. This phase reconstructs the tree bot-
tom up in order to maintain balances. Recall that key k has
just been added to the tree at the end of the percolation pro-
cess. We will apply a bottom up propagation process which
changes the value of bal�n� along the nodes of the restruc-
turing path (the path going from the new leaf to the last node
of the insertion path with a non-zero balance [11]). When
we arrive at the critical node (last node having non zero bal-
ance), only a rotation will be applied if ever necessary. In
the following we redefine both processes, propagation and
rotation, in the form of local rules.

Propagation Rule. Let us encapsulate the change of the
bal�n� along the structuring path by a local rule. One appli-
cation of this rule just updates the balance of one node.



Rule : Left Propagation
Guard: Node n with bal�n� � f�� �g and bal�n�ls� �� �.
Behavior: If bal�n� � � then bal�n�� � �.
If bal�n� � �� then bal�n�� � �.
In both cases other registers are not modified.
Spatial Scope: Nodes n and n�ls.

Rotation Rules. The rotation around the critical node n
can be also encapsulated as a local rule. As it is well known
we have to perform a single or double rotation depending on
the balances of n and its updated son. A single rotation is
needed when n and its son have the same balance. It can be
rewritten as follows (we give only one case, the symmetrical
one is similar). We adopt the following notation: n�A�B�
denotes the (sub)tree with root n, left son A and right son
B.

Rule : Single Right Rotation
Guard: A subtree n�p�A�B�� C� such that the balances of
n and p verify bal�n� � bal�p� � ��.
Behavior: Restructure the tree into p��A� n��B�C�� with
the usual updating for keys and left and right pointers, nodes
n� and p� become balanced.
Spatial Scope: Nodes n and p.

Also the double rotation can be clearly rewritten as local
rules. We give only one case.

Rule : Double Left Right Rotation
Guard: A subtree n�p�A� q�B�C�� D� with the condition
bal�n� � �� but bal�p� � ��.
Behavior: Restructure the tree into q��p��A�B�� n��C�D��
with the usual updating for keys and left and right pointers.
Nodes p� and q� become balanced.
If bal�q� � �� then bal�p�� � ��.
If bal�q� � �� and bal�n�� � ��.
Comment: The case bal�q� � � cannot appear in the se-
quential case.
Spatial Scope: Nodes n� p� q.

Guidelines for concurrent and parallel insertion algo-
rithms. The preceding analysis has suggested a design in
two phases:

� Percolation phase. In this part the set of keys move
down and finally they are added to the tree. This ad-
dition can generate a highly unbalanced date structure.
This process is supported by a local rule generically
called percolation.

� Rebalancing phase. In this part the data structure is
reconstructed. This is done with propagations and
rotations.

Some freedom is needed. The rules isolated in the se-
quential algorithm give us hints about the structure of the
algorithms to be designed. However, these rules are not
“fixed” objects. They can be (in fact they will be) modified,
augmented or adapted.

4 Concurrent insertion algorithms on AVL
trees

Our goal is to design a general rebalancing strategy based
on sets of local atomic actions applied concurrently. To
ensure good concurrency, each action should lock as few
nodes as possible for a time as short as possible. Thus, no
reliable knowledge on the current global shape of the tree
can be assumed. Each node stores in local registers its best
local knowledge on the tree.

4.1 A fine grained algorithm

In this section we survey our common work with
L. Bougé and N. Schabanel [6, 7, 42]. As concurrent modi-
fications in the tree prevent from maintaining realh on each
node, each node n �� nil encodes its local knowledge of the
state of the structure in two private registers.

In addition to the key register, lefth�n� and righth�n� are
respectively the apparent heights of the left and right sons
of n, at the best of the knowledge of n.

The application of a rule modifies the values stored into
the local registers. Observe that these quantities may be
arbitrarily different from their real values. We do not try to
define accurately what we mean by real. Informally, to get
the (real) height or (real) balance we freeze the tree and we
compute these values as usual. Whenever a local register is
updated with the information sent to it (at some preceding
moment) we call this information apparent. Of course, the
value of the apparent information can be very different from
the value of the real information. In order to guarantee a
correct final result, we need to anchor the correct values of
the local height at some nodes. This means that (at least) the
border nodes have an accurate knowledge about their height.
These ideas are contained in the following definition

HEIGHT-RELAXED SEARCH TREE. We call height-
relaxed search tree (HRS-tree) a search tree whose nodes are
equipped with the two private registers lefth and righth sat-
isfying the following consistency condition: lefth�n� � �
(resp. righth�n� � �) for any node n with an empty left
(resp. right) son.

The followingauxiliary functions on the nodes of HRS-trees
will be useful.

� localh�n� is the apparent local height of u, as com-
puted from the two previous registers :
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localh�n� � � �max�lefth�n�� righth�n��

� car�u�, the carry ofu, is the gap of knowledge between
u and its parent:

car�n� �

����
���

lefth�n�p�� localh�n�
if n is the left son

righth�n�p�� localh�n�
otherwise

The car function measures the inconsistency of local
information on the structure of the tree. A nodeu is said
reliable if car�u� � �. By convention car�root� � �.

� abal�n� of n is the apparent balance of n, defined as
follow:

abal�n� � lefth�n� � righth�n�

A node n is said apparently balanced if abal�n� �
f��� ����g .

If each node of an HRS-tree T is reliable and apparently
balanced, then T is an AVL.

Percolation Phase. The idea is to simulate the percolation
of keys in the original sequential algorithm with a new reg-
ister waiting�n� which holds the keys waiting at node n for
downwards percolation. To handle the possibility of equal
keys, waiting�n� is managed as a bag. Operation � adds
a key to the bag. Operation � removes it. This register is
called the waiting bag at n.

If we like to build a height-relaxed tree starting from the
set of keys fk�� � � � � kNg, we can start with the tree having
only the node n such that key�n� � k�, waiting�n� �
fk�� � � � � kNg and lefth�n� � righth�n�� � �. Later on we
apply the following percolation rule. We describe this rule
with a daemon. The life of a daemon runs as follow: it
wakes up at some point, selects a set of nodes satisfying one
of its guards and locks it while it applies the appropriate
action. The selection step may be roughly implemented by
a random draw among all the nodes.

Rule : HR Percolation
Guard: Node n, key k � waiting�n� and k � key�n�.
Behavior: Restructure waiting�n�� � waiting�n� � k. If
n has a left son, waiting�n��ls� � waiting�n�ls� � k.
Otherwise, create a new node p, left son of n. The apparent
heights of p are set to 0, key�p� � k and waiting�p� � �.
Spatial scope: Node n and the potential new node p.
Note: Symmetrically with k � key�n� and node q the right
son of n.

We say that a distributed, search tree is strongly sorted if
the following condition holds: If n is in the left (resp. right)
subtree of m, and k � waiting�n�, then k � key�m� (resp.
a � key�m�) (see Figure 4). Of course the tree generated
for fk�� � � � � kNg is strongly sorted. This tree is height-
relaxed, but the local information concerning the height is
really unfaithful (any node n verifies localh�n� � �). This
is not a big surprise because all the nodes “think” they are
leaves. To get better knowledge information, needs to flow
up in the the rebalancing phase starts.

Rebalancing phase. As this phase starts at the end of the
percolation phase, all the update registers are empty. Does
not have sense to take care of them. In the following, update
registers does not appear. We describe this phase giving a
set of daemons.

Propagation rule. It propagates information upwards from
a son to its parent. We only presents the variations of lefth
and righth from which the registers localh, car and bal are
computed.

Rule : HR Left Propagation
Guard: The left son of n isn’t reliable, car�n�ls� �� �.
Behavior: The apparent left height of n is updated,
lefth�n�� � localh�n�ls�
Note: abal�n�� � abal�n�� car�n�ls�.
Spatial scope: n and its son.

Rotation Rules. These rules are inspired from the sequential
case [2] but extended to the case where the balances of the
nodes may exceed �. These relaxed preconditions allow to
rebalance any tree with any initial local knowledge. The
rotation rules tend to reduce the apparent balance, but of
course, can worsen not only the consistency of the local
heights but also the real balance if the apparent balance was
wrong.



Rule : HR Right Rotation, Unbalanced case
Guard: Node p is the left son of node n, p is reliable,
abal�p� � � and bal�n� � �
Action: p and n execute a right rotation with the obvious
updating:

lefth�p�� � lefth�p� righth�p�� � localh�n��
lefth�n�� � righth�p� righth�n�� � righth�n�

Note: localh�p�� � localh�n���, so car�p�� � car�n���.
Spatial Scope: p and its parent n.

The set of rules needs to be designed in order to cover
all the possible situations. For instance, we can have a
subtreen�p�A�B�� q�with abal�p� � � et bal�n� � �. This
situation is new because it cannot appear in the sequential
case. The set of rules needs to be extended to cover this
case, otherwise we could have deadlocks.

Rule : HR Right Rotation, Balanced case
Guard: Node p is the left son of node n, p is reliable,
abal�p� � � et bal�n� � �
Action: p and n execute a right rotation with the obvious
updating:

lefth�p�� � lefth�p� righth�p�� � localh�n��
lefth�n�� � righth�p� righth�n�� � righth�n�

Note: localh�p�� � localh�n�, so car�p�� � car�n�.
Spatial Scope: p and its parent n.

Rule : HR Left-Right Double Rotation
Guard: Node q is the right son of the left son p of node n,
q and p are reliable, abal�p� � � and abal�n� � �.
Action: p, n and q execute a left-right double rotation with
the obvious updating:

lefth�p�� � lefth�p� righth�p�� � lefth�q�
lefth�n�� � righth�q� righth�n�� � righth�n�
lefth�q�� � localh�p�� righth�q�� � localh�n��

Note: localh�q�� � localh�n���, so car�q�� � car�n���.
Spatial Scope: p, its parent n and its right son q.

Safety and liveness properties. The rebalancing algorithm
is safe because the following property holds. Let T be an
HRS-tree. If T � is obtained by applying on T any one of
the rules described above, then T � is an HRS-tree holding
the same keys than T . Moreover if no rule applies on T ,
T is an AVL. To prove liveness we consider two separate
cases. First, we will take care of negative carries. Negative
carries flow upward to the root where they vanish. To catch
this phenomenon, we shall introduce Out�n�, the number of
nodes of the tree which are not in the subtree rooted in n, as
proposed by Kessels in [19]. Out�n� is a kind of distance
from node n to the root of the tree whose advantage is that it

is left unchanged outside the spatial scope of any rule. Let
us denote by NEG:

NEG �
X

car�n���

Out�n� 	 jcar�n�j

Second, we consider positive carries. Propagations show
that car and bal seem to be correlated: their respective
variations appear to have close magnitudes. We introduce
the POS and BAL quantities which respectively measure the
positive inconsistency of the local heights and the apparent
global imbalance of the tree:

POS �
X

car�n���

car�n� and BAL �
X
n

jabal�n�j

finally we introduce RBAL �
X

jabal�n�j��

jabal�n�j � ��

The proof of the following two facts can be found in [7, 42].

Theorem 1 (Variant) � �NEG�POS�� � BAL�RBAL
is a valid variant for the algorithm.

Let cmax and bmax respectively denote the maximum
absolute values of car and bal initially. We get the following
worst convergence time bound:

Corollary 1 (Worst convergence time) The algorithm ap-
plies at most � cmaxn�n����	 bmaxn rules to rebalance
any arbitrary HRS-tree with any initial state.

Experimental average convergence time. Intensive simu-
lations of the rebalancing algorithm has been made by N.
Schabanel [42], look also [7]. He show that the regular
zigzag trees appear to be the most difficult to rebalance
among the linear trees. Again, intensive simulations on the
regular zigzag trees with up to 
� ��� nodes yield a worst
convergence time of ��n rules (n measures the size of the
tree) applications, where � 
� �. The quadratic executions
are thus likely to be extremely singular. A more precise
analysis of the convergence time distribution confirms the
above assumption (see Figure 5). The behavior of our al-
gorithm appears to be very smooth: the convergence time
seems to follow a “Gaussian-like” distributionas well as the
number of rotation rule applications. The average conver-
gence time appears to be ��n with � 
� 	�
 with a standard
deviation of �

p
n with � 
� ���. This Gaussian-like distri-

bution confirms the previous result on practical worst cases:
the probability of convergence time greater than ��n tends
to � as n grows. Thus, our scheme rebalances in practice a
arbitrary binary tree after at most O�n� rule applications.

Concurrent insertion and rebalancing. Up to now we
have assumed two different phases. First, a percolation
phase moves new keys to be inserted down and (when all the
keys are located at the bottom the rebalancing process starts.
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The two phases can be interleaved. Some attention has to
be paid to the relationship between percolation (moving
new keys down) and rotations (moving some new keys to
up). However, with a little bit of thought, the rules can be
redefined.

4.2 A little bit more coarse grained approaches

We will consider the works of J.L.W. Kessels [19],
O. Nurmi, E. Soisalon-Soininen and D. Wood [34] and
K.S. Larsen [24]. In all these works the main idea con-
sists on coupling the propagation of the information with a
local rebalancing in order to maintain a relaxed version of
AVL trees.

(1) Now we develop the approach taken by J.L.W. Kessels
in [19]. If car�n� � f��� �g, we can associate colors to the
nodes. This color will be stored into a register color�n� and
can be defined as:

red�n� � �color�n� � red� � �car�n� � ���
white�n� � �color�n� � white� � �car�n� � ��

We may assume that a newly inserted node does not count to
compute the height. A way to do it consists to color it red.
Therefore, old nodes are white and the new ones are red,
color�nil� � red. Red nodes mean two things, first they

do not count to compute the height [19] and second, they
represent an unstable perturbation to be propagated up or
erased as soon as possible. We recall from [19] the dynamic
height. If n is a red leaf dheight�n� � �, if n is a white leaf
dheight�n� � �, otherwise:

dheight�n� � white�n�
�max�dheight�n�ls�� dheight�n�rs��

The relationship between the dynamic height and the local
height is dheight�n� � car�n� � localh�n�. Based on this
height we have the dynamic balance

dbal�n� � dheight�n�ls� � dheight�n�rs��

In this case the local knowledge of the struc-
ture is encoded in the following two registers.
Every node n holds two local registers, dbal�n� �
f��� �� �g and color�n� � fwhite� redg.

Now we relax the usual definition of AVL tree in two ways.
First, we replace the (real) balance by the dynamic balance
in the balance property. Second, in the case of the sequen-
tial rebalancing algorithm, while the the propagation goes
through an unstable node (in the critical path) this node
become unbalanced. Therefore we assume that, unstable
nodes (different from leaves) cannot be balanced.

RED-RELAXED AVL. A red-relaxed AVL is a search tree
whose nodes are red or white satisfying two conditions.
First, any node n is verifies dbal�n� � f��� ����g.
Second, any red node n with dheight�n� �� � verifies
dbal�n� �� �.

When, in a red-relaxed AVL all the nodes are white,
the dynamic height coincides with the real height and the
dynamic balance with the balance. Therefore a red-relaxed
AVL having only white nodes is an AVL.

Percolation phase. As in the case of height-relaxed trees
we add a waiting�n� register. If we like to build a red-
relaxed AVL tree starting from the set fk�� � � � � kNg, we
start with the tree having the node n such that key�n� � k�,
waiting�n� � fk�� � � � � kNg and color�n� � red and we
apply the following percolation rule.

Rule : Red Percolation
Guard: Node n, key k � waiting�n� and k � key�n�.
Behavior: Restructure waiting�n�� � waiting�n��k. If n
has a left son, waiting�n��ls� � waiting�n�ls��k. Oth-
erwise, create a new node p, left son of n with color�p� �
red, key�p� � k and waiting�p� � �.
Spatial scope: Node n and the potential new node p.
Note: Symmetrically with k � key�n� and node q the right
son of n.

The tree builded applying this rule is a red-relaxed AVL,
but the local information is unfaithful. Any node n verifies



dheight�n� � � and dbal�n� � �, because all of them
“think” they are red nilnodes.

Rebalancing phase. Let us consider the rebalancing prob-
lem transforming a red-relaxed AVL into an AVL. The set
of rules has been designed to achieve two goals. First, to
move redness up. Second to preserve the red-relaxed AVL
character.

Rule : Left Red Propagation
Guard: Node n is white, n�ls is red and dbal�n� �
f��� �g.
Behavior: Node n�ls becomes white.
If dbal�n� � �� then n� becomes white and balanced.
If dbal�n� � � then n� is red and unbalanced with
dbal�n�� � �.
Spatial Scope: Nodes n and n�ls.

Rule : Single Right Red Rotation
Guard: A subtree n�p�A�B�� C� such that dbal�n� �
dbal�p� � � the node n is white and p is red.
Behavior: Restructure into p��A� n��B�C�� with the usual
updating. Nodes n� and p� are white and dynamically bal-
anced.
Spatial Scope: Nodes n and p.

Rule : Double Left Right Red Rotation
Guard: A subtree n�p�A� q�B�C�� D� with n white, p red,
dbal�n� � �� and dbal�p� � ��.
Behavior: Restructure the tree into q��p��A�B�� n��C�D��
with the usual updating for keys and left and right pointers.

1. If q is white and dbal�q� � �� thenn�� p�� q� are white,
dbal�p�� � � and q�� n� are balanced.

2. If q is white and balanced then n�� p�� q� are white and
balanced.

3. If q is white with dbal�q� � � then then n�� p�� q� are
white, dbal�n�� � �� and p�� q� are balanced.

4. If q is red with dbal�q� � �� then q� is red and
p�� n� are white and dbal�q�� � ��, dbal�p�� � �,
dbal�n�� � �.

5. If q is white with dbal�q� � � then q� is red and
p�� n� are white and dbal�q�� � �, dbal�p�� � ��,
dbal�n�� � �.

Spatial Scope: Nodes n� p� q.

We assume that root can always be updated as a white node
(increasing by �� the dynamic height of the tree).

Figure 6. An intuitive view of the parallel rebal-
ancing scheduler for insertions. First, pack-
ets are located at the bottom. Second, pack-
ets are split and the middle key is isolated.
Third, middle keys start a wave. Four, the
waves are chained into a pipeline.

Any application of a rule, keeps the tree dynamically
balanced. A propagation rule verifies dheight�m�� �
dheight�m�� A colored rotation maintains the dynamic
height of the subtree, for instance in single right rotation
dheight�p�� � dheight�n�� when the root changes from
red to white it holds dheight�root�� � � � dheight�root��

Safety and liveness. The algorithm is safe because any
application of the preceding rules transforms any red-relaxed
AVL into another red relaxed-AVL. Moreover all the red
nodes, different from leaves, are maintained unbalanced.
To prove liveness it is enough to verify that any application
of a local rule strictly decreases the variant:

OUTSIDE �
X

color�n��red

Out�n�

The degree of concurrency have two limitations. First, only
red nodes having a white parent can be updated. Therefore
only the top nodes of big clusters of red nodes can be up-
dated. Second, nodes can have only two colors whiteand
red, therefore the information flow up slowly.

(2) Now we consider the following extension of the J.L.W.
Kessels’ algorithm developed by O. Nurmi, E. Soisalon-
Soininen and D. Wood in [34] (see also [33]). Ev-
ery node holds the registers dbal�n� � f��� �� �g and



car�n� � f��� �� �� �� � � �g and they redefine the dynamic
height as:

dheight�n� � � � car�n�
�max�dheight�n�ls�� dheight�n�rs��

As before, the rules assume car�n� �� � and car�n�p� � �.

(3) Finally let us consider the approach taken by
K.L. Larsen [24]. The precondition car�n� �� � and
car�n�p� � � has been relaxed by Larsen accepting
nonzero values for car�n�p�. To do it, K.L. Larsen modi-
fies the preceding transformations to avoid the accumulation
of negative values in car�n�p�. As before he also couples
a propagation with the rotation. He defines 13 rules.

5 Parallel insertion algorithms on AVL trees

Let us consider the case where we have to insert into an
AVL tree an ordered set of k new keys stored in a sorted
array a
���k�, look at [13, 30]. We have two phases.

Percolation Phase. To percolate keys down, we can use
the search algorithm by packet routing [37]. At the very start
of the algorithm an active packet p� � a
���k� containing
all k (ordered) keys is “injected” into the root of the AVL
tree. In each stage, each active packet is routed down, or it
is split into two packets and at least one of them is moved
down. The main loop of the search ends when all the packets
become inactive. At most k processors are needed to execute
this loop; we need one processor to route in parallel each
active packet. We will say that a subpacket p � a
f��l�
located at node n hits this node if af � key�n� � al. A
packet p is active wile is moving down, initiallyp� is active.

Rule : AVL Packet Percolation
Guard: The active packets p � a
f��l� points at node n.
Behavior: There are three cases.
(1) Case n�ls �� nil and n�rs �� nil, then p active and:

� Move down. If p does not hit key�n� then:

If al � key�n� the packet moves at n�ls

If key�n� � af the packet p moves at n�rs.

� Split and move. Assume the packet p hits a label. Split
p � a
f��l� into the subpackets p� � a
f��m� and
p� � a
m��l� with m � d f�l� e. If pi with i � �� � hits
no key�n� then it is sent to the appropriate son, else it
remains in n.

(2) Case n�ls � nil and n�rs � nil, the packet p is at the
bottom of the tree, the routing stops and p becomes inactive.
(3) The case n�ls �� nil and n�rs � nil (reciprocally
n�ls � nil and n�rs �� nil) can be easily defined.
Spatial scope: Node n and its sons.

This search algorithm is formally identical to the search
by packet routing on Skip lists. The results about read con-
flicts in Split lists apply here [12] and we have the following
theorems:

Theorem 2 At most three subpackets can remain on a node.

Theorem 3 Given an AVL tree with n nodes, the packet
routing procedure for an ordered array a
���k� takes time
O�logn�logk� using k processors on an EREW (exclusive
read exclusive write) PRAM.

At the end of the percolation phase the original packet
p� � a
���k� has been split into a set of packet attached at
the leaves (first case in Figure 6).

Rebalancing Phase. When the subpackets are located at
the bottom of the AVL the rebalancing phase can start. The
divide and conquer approach given in [37] allows us to start
a wave (second and third case in Figure 6). Finally the
waves can be chained into a pipeline (last case in Figure 6).
AVL trees are a highly irregular data structure, pipeline
information bottom up seems to be rather difficult. Let us
explain how to pipeline information on AVL trees.

Pipelines schemes. Let us consider with greater detail the
pipelines in AVLs. We have two cases. First, we consider
how to pipeline information in an (static) AVL tree. Second,
we solve the same problem in a red relaxed case.

In a (static) AVL the usual definition of depth, so called
real depth is

reald�root� � �
reald�n �� root� � � � reald�n�p�

Given a node n we denote the brother of n by n�br.
Noden is lower if lower�n� � �realh�n� � realh�n�br��.
Let us define a new depth so called virtual depth such that

virtuald�root� � �
virtuald�n �� root� � � � lower�n� � virtuald�n�p�
This new depth give us the invariant:

realh�root� � virtuald�nil� � virtuald�n� � realh�n�

Therefore it is possible design ”virtually plane waves such
that every pair of nodes p and q into the wave front verify:
realh�p� � realh�q� and virtuald�p� � virtuald�q�. Based
on this (if we assume that informations flow does not mod-
ifies the tree) we can design a pipeline flowing bottom-up
(see Figure 7).

PIPELINE SCHEME FOR STATIC AVLs: using virtual
depth, the leaves become aligned at the bottom of the AVL.
It is possible to start and move up a virtual plane wave.
When a wave moves up the height increases and virtual
depth decreases. We can chain virtual plane waves to get a
pipeline in a static AVL.
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We would like to work in a parallel environment were a front
of unstable nodes rises up. To deal with this phenomenon,
accept red nodes. However, as the information rises up in
parallel, does not have sense to consider red nodes unbal-
anced, therefore we assume the following weaker definition
of red AVL trees.

WEAK-RED-RELAXED AVL. A weak-red-relaxed AVL is a
search tree whose nodes are red or white and any node n is
verifies dbal�n� � f��� ����g.

We define the virtual dynamic depth for relaxed AVLs,

virtual-ddepth�root� � �
virtual-ddepth�n �� root� �

white�n� � dlower�n� � virtual-ddepth�n�p��
In a weak-red-relaxed AVL any node n verifies

dheight�root� � red�root� �
dheight�n� � virtual-ddepth�n� � red�n�

and all the nil nodes have the same virtual dynamic depth.
Based on this we come to our second design scheme.

RED DYNAMIC PIPELINE SCHEME: Using virtual dy-
namic depth, the leaves become aligned at the bottom of a
weak-red-relaxed AVL. Thus it is possible to start and move
up a virtual dynamic plane wave When this wave moves
up the dynamic height increases and the virtual dynamic
depth decreases. We can chain waves to get a pipeline in
weak-red-relaxed AVL.

Description of daemons. We can easily get a set of rules
in the same spirit of J.L.W. Kessels [19] dealing first, with
weak-red-relaxed AVL trees and second, with parallel red
nodes. In order to give a flavor of these rules consider a
parallel red propagation.

Rule : Parallel Red Propagation
Guard: A subtreen�p�A�B�� q�C�D�� such thatn is white
and its sons p and q are red. There are no conditions on the
dynamic balances.
Behavior: The dynamic balance of the nodes remain un-
changed, p� and q� become white and n� becomes red.
Spatial scope: Nodes n, p and q.

White nodes are stable while red nodes are bubbles going
up. We “give the control” to the white nodes and call a
node n active if it is white but has at least a red son. The
rules can be designed to get the following condition. Let n
be an active node in a red relaxed AVL. Any propagation
rule keeps constant the dynamic balanced depth of any node
different from n and

virtual-ddepth�n� � virtual-ddepth�n�� � red�n���

Any colored rotation can only modify the dynamic balanced
depth of nodes in its scope. If r� is the new root of the rotated
subtree we have:

virtual-ddepth�n� � virtual-ddepth�r�� � red�r���

Parallel scheduler for insertions. We will take the usual
set of rules and apply them in a synchronized way based
on our second design scheme. We have three cases having
increasing complexity (as in the case of 2-3 trees [37]).

� All the keys to be inserted are attached to a white node.

� We have an AVL with a “red beard” on the bottom.

� We have to insert the sorted array a
���k�.

(1) Assume all the keys to be inserted are attached to a
white node. More formally, any red node (different from
nil) with dynamic height 0 has a white father. The parallel
algorithm can be sketched as follows.

� all active nodes with dynamic height 1, applies the
corresponding rule,

� all active nodes with dynamic height 2, applies the
corresponding rule,

� iterate, increasing the dynamic height.

We can see the set of active nodes as a wave going bottom-up
the tree.

Lemma 1 The nodes that belong to the front wave have the
same virtual dynamic depth.

The expression virtual red plane wave makes sense be-
cause the wave behaves as a plane wave using the dynamic
height and the virtual dynamic depth. As all the active
white nodes have the same dynamic height and dynamic
virtual depth it makes sense to assign a dynamic height and



a dynamic virtual depth to the virtual plane wave w written
dheight�w� and virtual-ddepth�w�.

(2) Let us consider the case of an AVL with a “red beard
on the bottom”. By this we mean that all the red nodes,
containing a new key to be inserted, are at the bottom of the
tree and all the other nodes are white. To solve this case we
would like to pipeline different virtual plane waves. To do
this we need to prove that two different waves do not collide
if they are initially separated from one another. But, any
virtual plane wave will not be affected by the behavior of
other waves higher in the tree. Therefore It holds:

Theorem 4 Take a relaxed AVL having red nodes at the
bottom. If we start from the bottom a virtual plane wave w
moving up and 	 (take for instance 	 � ��) steps later we
start another one w� moving up at the same rate, the wave
w� will remain virtually plane and moreover

	 � dheight�w�� dheight�w��
� virtual-ddepth�w�� � virtual-ddepth�w�

while w andw� are moving up.

(3) Finally let us consider the case where we have an
AVL with n keys (now n is a number not a node) and we
have to insert the array a
���k�. First, we employ the search
algorithm by packet routing [37, 18, 12]. When the sub-
packets are at the bottom of the tree, the divide and conquer
strategy [37] allows us to start a pipeline (see Figure 6) and
the results of (2) assure that

Theorem 5 The massively parallel insertion of k keys into a
red-relaxed AVL tree withn keys takes timeO�logn�log k�
using k processors on an EREW PRAM.

6 Deletions in AVL trees

The unified approach can also be extended to deletion algo-
rithms. Some hints, in the case of concurrent algorithms,
can be found in [33, 6]. In the case of parallel algorithms
the method has been developed in [13].

7 Other balanced structures

The study of concurrent and parallel dictionaries is a
broad subject of research. In the following we comment
briefly some other approaches. An interesting complemen-
tary survey on concurrent algorithms has been recently writ-
ten by E. Soisalon-Soininen and P. Widmayer [43].

Distributed algorithms Red-Black trees. These trees
have been a good starting point for the study of concur-
rent algorithms based on local rules. We consider only
two extension, the HyperRed-Black trees [14, 41] and
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the Chromatic trees introduced by O. Nurmi, E. Soisa-
lon Soininen [32]. The HyperRed-Black trees [14] are
defined to work well with insertions. This can be done
accepting negative values, therefore nodes can have color
color�n� � f�� ���������	� 	 	 	g. Node n is black if
color�n� � �, red if color�n� � � and hyper-red if
color�n� � f�������	� 	 	 	g.

HYPER RED-BLACK tree is a binary search tree such that,
every node is either red, black or hyper-red, every leaf (NIL)
is black and every simple path from a node to a leaf has the
same sum of colors.

Chromatic trees were designed to work efficiently with
deletions. Then positive colors are accepted, nodes can
have color color�n� � f�� �� �� 	� 	� 	 	 	g. Node n is red if
color�n� � �, black if color�n� � � and overweighted if
color�n� � f�� �� 	� 	 	 	g.

CHROMATIC tree is a binary search tree such that, every
node is either red, black or overweighted, every leaf (NIL)
is black and every simple path from a node to a leaf has the
same sum of colors.

An efficient rebalancing procedure for Chromatic trees has
been found by J. Boyar and K. Larsen [8].

D. Riu has experimentally compared [41] HyperRed-
Black trees with Chromatic trees evaluating the (average)
time needed to transform a linked list into a Red Black
tree. This time is computed by counting the number of steps
needed to obtain a Red Black tree. It is possible to choose a
locally stable node, where no rule applies. In this case, the
rebalance of the tree does not progress at all and we count
this step as a failure. Otherwise, the node is locally unstable
and can be updated. We make progress and we count this
step as a success. The Figure 9 plots failures and successes
in the case of a linked list rebalancing into a Red Black tree.
2-3 trees and B-trees. The evolution of the 2-3 trees can be
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easily coded in the form of local rules. Other works in B
trees are [26, 22, 25].

Skip Lists and Skip trees. Concurrentalgorithms on skip lists
are not always very clear [39]. In [31] X. Messeguer has
introduced the skip trees a data structure which resembles to
B trees (but are actually isomorphic to skip lists). It is rather
straightforward to derive concurrent algorithms for skip lists
along the lines described here.

Parallel algorithms. 2-3 and B trees. The first parallel
dictionary was designed by W. Paul, U. Vishkin and H.
Wagener [37] in 1983. This dictionary runs over 2–3 trees.
The search is based on packet routing, and insertion and
deletion are based on a pipeline of “insertion waves”. Recall
that, any node n has 3 or 2 sons, written as n�ls, n�ms,
n�rs. Each node has labels L�n� and possibly M �n�.
Let us sketch the basic packet routing algorithm as is given
in [37]. Initially, we have all the keys ordered in a packet
p� � a
���N �. The packet p� is located at the root of the
2-3 tree. Along the algorithm p� will be split into several
subpackets located at different nodes of the tree. We will
say that a subpacket p � a
f��l� pointing at node n hits a
label X if af � X � al.

Rule : 2-3 Packet Percolation
Guard: The packets p � a
f��l� points at node n.
Behavior: There are two cases.

�Move down. The packet p does not hit any label ofn. Then
p moves down to the appropriate son of n, more precisely:
If al � L�n� the packet moves at n�ls
If L�n� � af and al �M �n� and n has 3 sons, p moves at
n�ms.
If M �n� � af and n has 3 sons or L�n� � af and n has 2
sons, p moves at n�rs.

� Split and move. The packet p hits a label. Splitp � a
f��l�
into the subpackets p� � a
f��m� and p� � a
m��l� with
m � d f�l� e. If pi with i � �� � hits no label, then it is sent
to the appropriate son, else it remains in n.

Spatial scope: Node n and its sons.

This routing procedure verifies the following theorem

Theorem 6 No more than two packets may pass each edge
of the 2-3 tree at any single step.

In the case of AVL trees, using dynamic depth we can
define virtual straight plane waves. However, in 2-3 trees,
these waves are really “straight line” because the dynamic
depth is the real depth (if you make a picture of a weave you
get a straight line). Following the previous ideas we can get:

Theorem 7 There is a EREW massively parallel dictionary
on 2-3 trees working in timeO�logn�log k� and k proces-
sors.

J. Petit [38] (look also [15]) has implemented ParaDict,
which is a parallel library for dictionaries, using the algo-
rithms given in [37]. ParaDict is written in C*. In order to
evaluate the performance of some usual operations of Para-
Dict, J. Petit measured and analyzed their running time on a
CM 200. Experiments have been repeated enough times to
yield significant figures; results shown below are a mean of
a large number of runs and the variances are not substantial.
The experimental results obtained for searching or insert-
ing k keys in a dictionary storing n elements are shown in
Figure 8. For comparison with a well-known workstation,
we also show the times needed for the equivalent sequential
insertions. We conclude that, with our machines, even if
the sequential implementation is faster than the parallel one
for reasonable values of k, the time increase is smoother,
making clear the scalability of the parallel library.

The algorithms given in [37] were extended to B trees by
L. Higham and E Schenk [18].

Skip lists. A parallel dictionary on skip lists has been de-
signed by J. Gabarró, C. Martı́nez and X. Messeguer [12].
The search is made by packet routing and insertion and dele-
tion use prefix sum and pointer jumping. The algorithms are
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Figure 10. Running times for inserting k el-
ements in a dictionary of size 150000 when
using 2-3 trees (ParaDict) or skip lists on a
CM 200 with 2K processors.

presented using a top-down design. These algorithms have
been implemented by X. Messeguer [29] in C* and were
also ran in a CM 200. Figure 10 compares 2-3 trees and
skip lists. It seems that ParaDict’s implementation with 2-3
trees is slightly more efficient than implementation based on
skip lists.

Brother trees. Let us briefly comment parallel algorithms
on Brother trees [36, 35]. Recall that in Brother trees all
the leaves have the same depth, internal nodes can have one
or two sons, but each node with only one son has a brother
with two sons. Usually, information is stored in the leaves
and internal nodes act as routers. To transform an AVL tree
to a Brother tree we need to add a white node, denoted 
,
with no information between n and n�p if lower�n� holds.
Therefore, any internal node n different from 
, has one of
the following forms, n�A�B�, n�A� 
�B�� or n�
�A�� B�
such that A�B are brother trees having a binary node as a
root.

It is possible to define Relaxed brother trees for inser-
tions. These trees are intuitively close to the 2–3 trees be-
cause we accept nodes with two or three sons. As before, bi-
nary nodes can have one of the forms n�A�B�, n�A� 
�B��
or n�
�A�� B�. Only two forms are allowed for ternary
nodes, n�A�B�C� or n�A� 
�B�� C� (with 
 in the middle).
In any case all the leaves have the same depth. We can ex-
tend the set of rules given by T. Ottmann and D. Wood [36]
to deal with the parallel cases. These rules allow us to move
up ternary nodes.

In Relaxed brother trees for deletions we can have things
liken�
�A�� 
�
�B���where chains of two consecutive
 ap-
pear. Extending the rules given for deletion by T. Ottmann
and D. Wood [36] with the parallel cases we can get an-
other complete set of rules to deal with deletions. Following
these ideas we have been able to find algorithms with per-

formances similar to those of other search trees.

Acknowledgments. We thank L. Bougé, C. Martı́nez,
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de Lyon, Laboratoire de l’Informatique du Parallelisme,
1995. Appeared with the same title as: INRIA, Rapport
de Recherche 2761.
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