116,772 research outputs found

    Process Algebras

    Get PDF
    Process Algebras are mathematically rigorous languages with well defined semantics that permit describing and verifying properties of concurrent communicating systems. They can be seen as models of processes, regarded as agents that act and interact continuously with other similar agents and with their common environment. The agents may be real-world objects (even people), or they may be artifacts, embodied perhaps in computer hardware or software systems. Many different approaches (operational, denotational, algebraic) are taken for describing the meaning of processes. However, the operational approach is the reference one. By relying on the so called Structural Operational Semantics (SOS), labelled transition systems are built and composed by using the different operators of the many different process algebras. Behavioral equivalences are used to abstract from unwanted details and identify those systems that react similarly to external experiments

    Brief Announcement: Update Consistency in Partitionable Systems

    Get PDF
    Data replication is essential to ensure reliability, availability and fault-tolerance of massive distributed applications over large scale systems such as the Internet. However, these systems are prone to partitioning, which by Brewer's CAP theorem [1] makes it impossible to use a strong consistency criterion like atomicity. Eventual consistency [2] guaranties that all replicas eventually converge to a common state when the participants stop updating. However, it fails to fully specify shared objects and requires additional non-intuitive and error-prone distributed specification techniques, that must take into account all possible concurrent histories of updates to specify this common state [3]. This approach, that can lead to specifications as complicated as the implementations themselves, is limited by a more serious issue. The concurrent specification of objects uses the notion of concurrent events. In message-passing systems, two events are concurrent if they are enforced by different processes and each process enforced its event before it received the notification message from the other process. In other words, the notion of concurrency depends on the implementation of the object, not on its specification. Consequently, the final user may not know if two events are concurrent without explicitly tracking the messages exchanged by the processes. A specification should be independent of the system on which it is implemented. We believe that an object should be totally specified by two facets: its abstract data type, that characterizes its sequential executions, and a consistency criterion, that defines how it is supposed to behave in a distributed environment. Not only sequential specification helps repeal the problem of intention, it also allows to use the well studied and understood notions of languages and automata. This makes possible to apply all the tools developed for sequential systems, from their simple definition using structures and classes to the most advanced techniques like model checking and formal verification. Eventual consistency (EC) imposes no constraint on the convergent state, that very few depends on the sequential specification. For example, an implementation that ignores all the updates is eventually consistent, as all replicas converge to the initial state. We propose a new consistency criterion, update consistency (UC), in which the convergent state must be obtained by a total ordering of the updates, that contains the sequential order of eachComment: in DISC14 - 28th International Symposium on Distributed Computing, Oct 2014, Austin, United State

    Distributed Logic Objects: A Fragment of Rewriting Logic and its Implementation

    Get PDF
    Abstract This paper presents a logic language (called Distributed Logic Objects, DLO for short) that supports objects, messages and inheritance. The operational semantics of the language is given in terms of rewriting rules acting upon the (possibly distributed) state of the system. In this sense, the logic underlying the language is Rewriting Logic. In the paper we discuss the implementation of this language on distributed memory MIMD architectures, and we describe the advantages achieved in terms of flexibility, scalability and load balancing. In more detail, the implementation is obtained by translating logic objects into a concurrent logic language based on multi-head clauses, taking advantage from its distributed implementation on a massively parallel architecture. In the underlying implementation, objects are clusters of processes, objects' state is represented by logical variables, message-passing communication between objects is performed via multi-head clauses, and inheritance is mapped into clause union. Some interesting features such as transparent object migration and intensional messages are easily achieved thanks to the underlying support. In the paper, we also sketch a (direct) distributed implementation supporting the indexing of clauses for single-named methods

    An Object-Oriented Model for Extensible Concurrent Systems: the Composition-Filters Approach

    Get PDF
    Applying the object-oriented paradigm for the development of large and complex software systems offers several advantages, of which increased extensibility and reusability are the most prominent ones. The object-oriented model is also quite suitable for modeling concurrent systems. However, it appears that extensibility and reusability of concurrent applications is far from trivial. The problems that arise, the so-called inheritance anomalies are analyzed and presented in this paper. A set of requirements for extensible concurrent languages is formulated. As a solution to the identified problems, an extension to the object-oriented model is presented; composition filters. Composition filters capture messages and can express certain constraints and operations on these messages, for example buffering. In this paper we explain the composition filters approach, demonstrate its expressive power through a number of examples and show that composition filters do not suffer from the inheritance anomalies and fulfill the requirements that were established

    Update Consistency for Wait-free Concurrent Objects

    Get PDF
    In large scale systems such as the Internet, replicating data is an essential feature in order to provide availability and fault-tolerance. Attiya and Welch proved that using strong consistency criteria such as atomicity is costly as each operation may need an execution time linear with the latency of the communication network. Weaker consistency criteria like causal consistency and PRAM consistency do not ensure convergence. The different replicas are not guaranteed to converge towards a unique state. Eventual consistency guarantees that all replicas eventually converge when the participants stop updating. However, it fails to fully specify the semantics of the operations on shared objects and requires additional non-intuitive and error-prone distributed specification techniques. This paper introduces and formalizes a new consistency criterion, called update consistency, that requires the state of a replicated object to be consistent with a linearization of all the updates. In other words, whereas atomicity imposes a linearization of all of the operations, this criterion imposes this only on updates. Consequently some read operations may return out-dated values. Update consistency is stronger than eventual consistency, so we can replace eventually consistent objects with update consistent ones in any program. Finally, we prove that update consistency is universal, in the sense that any object can be implemented under this criterion in a distributed system where any number of nodes may crash.Comment: appears in International Parallel and Distributed Processing Symposium, May 2015, Hyderabad, Indi

    Causal Consistency: Beyond Memory

    Get PDF
    In distributed systems where strong consistency is costly when not impossible, causal consistency provides a valuable abstraction to represent program executions as partial orders. In addition to the sequential program order of each computing entity, causal order also contains the semantic links between the events that affect the shared objects -- messages emission and reception in a communication channel , reads and writes on a shared register. Usual approaches based on semantic links are very difficult to adapt to other data types such as queues or counters because they require a specific analysis of causal dependencies for each data type. This paper presents a new approach to define causal consistency for any abstract data type based on sequential specifications. It explores, formalizes and studies the differences between three variations of causal consistency and highlights them in the light of PRAM, eventual consistency and sequential consistency: weak causal consistency, that captures the notion of causality preservation when focusing on convergence ; causal convergence that mixes weak causal consistency and convergence; and causal consistency, that coincides with causal memory when applied to shared memory.Comment: 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Mar 2016, Barcelone, Spai

    Defining correctness conditions for concurrent objects in multicore architectures

    Get PDF
    Correctness of concurrent objects is defined in terms of conditions that determine allowable relationships between histories of a concurrent object and those of the corresponding sequential object. Numerous correctness conditions have been proposed over the years, and more have been proposed recently as the algorithms implementing concurrent objects have been adapted to cope with multicore processors with relaxed memory architectures. We present a formal framework for defining correctness conditions for multicore architectures, covering both standard conditions for totally ordered memory and newer conditions for relaxed memory, which allows them to be expressed in uniform manner, simplifying comparison. Our framework distinguishes between order and commitment properties, which in turn enables a hierarchy of correctness conditions to be established. We consider the Total Store Order (TSO) memory model in detail, formalise known conditions for TSO using our framework, and develop sequentially consistent variations of these. We present a work-stealing deque for TSO memory that is not linearizable, but is correct with respect to these new conditions. Using our framework, we identify a new non-blocking compositional condition, fence consistency, which lies between known conditions for TSO, and aims to capture the intention of a programmer-specified fence
    corecore