
Electronic Notes in Theoretical Computer Science � ������

Distributed Logic Objects� A Fragment of
Rewriting Logic and its Implementation

Anna Ciampoliniy� Evelina Lammay� Paola Melloz� Cesare Stefanelliy �

y DEIS� Universit�a di Bologna

Viale Risorgimento �� ����� Bologna� Italy
z Istituto di Ingegneria� Universit�a di Ferrara

Via Saragat� ����� Ferrara� Italy

faciampolini�elamma�pmello�cstefanellig�deis	unibo	it

Abstract

This paper presents a logic language �called Distributed Logic Objects� DLO for

short� that supports objects� messages and inheritance� The operational semantics

of the language is given in terms of rewriting rules acting upon the �possibly dis�

tributed� state of the system� In this sense� the logic underlying the language is

Rewriting Logic� In the paper we discuss the implementation of this language on

distributed memory MIMD architectures� and we describe the advantages achieved

in terms of �exibility� scalability and load balancing� In more detail� the implemen�

tation is obtained by translating logic objects into a concurrent logic language based

on multi�head clauses� taking advantage from its distributed implementation on a

massively parallel architecture� In the underlying implementation� objects are clus�

ters of processes� objects� state is represented by logical variables� message�passing

communication between objects is performed via multi�head clauses� and inheri�

tance is mapped into clause union� Some interesting features such as transparent

object migration and intensional messages are easily achieved thanks to the under�

lying support� In the paper� we also sketch a �direct� distributed implementation

supporting the indexing of clauses for single�named methods�

� Introduction

Several ways of combining object�oriented and logic programming have been

proposed to achieve data abstraction� modularity and code reuse� Some pro�

posals have implemented logic objects on stream�based concurrent logic lan�

guages �e�g�� ��������	
�� but this choice is not the best for distribution and

scalability� Streams� in fact� behave like shared variables and thus introduce

a centralization point in the resulting computational model� In particular�

stream communication is programmed by having a producer writing messages

� We thank the anonymous referees for their useful comments and the CNR coordinated

project on integration of logic and objects�

c� ���� Elsevier Science B� V�



Ciampolini et al�

into a di�erence list� whose head is read by a consumer� To merge multi�

ple streams� a chain of active merge processes is needed� thus requiring extra

process reductions and lengthening transmission delay�

In the meanwhile� Meseguer proposed a logic theory of concurrent ob�

jects in ��
 by de�ning Rewriting Logic� Rewriting Logic is a very general

model of concurrency from which many other models can be obtained by spe�

cialization� In this logic� rewriting can take place modulo an arbitrary set

of structural axioms which could be undecidable� This suggests considering

subsets of Rewriting Logic to be e�ciently implementable�

For instance� the Maude language integrates in a very simple and natural

manner functional� object�oriented� relational and concurrent programming by

supporting term rewriting� graph rewriting and object�oriented rewriting� In

particular� the general form ofMaude rewrite rules �represents communication

events in an object�oriented system where it is possible for one� none� or several

objects to appear as participants in the left�hand side of rules� ���
�

In a later work ��	
� Meseguer and Winkler introduce a subset of theMaude

language called SimpleMaude� SimpleMaude rules involve only �at most� one

object and one method in their left�hand side� This is mainly motivated by the

need of having an e�cient implementation on a wide variety of parallel archi�

tectures� ranging from sequential� SIMD� MIMD� and MIMD�SIMD machines

�see ���
��

In this paper� we introduce the language of Distributed Logic Objects

�DLO� for short in the following�� that is characterized by active� asyn�

chronously executing agents which communicate through message passing�

DLO can be considered a particular instance of the general theory of Rewrit�

ing Logic where only object�oriented rewriting is supported�

As in ���
� the approach we consider for the implementation of DLO is

translation� The idea is to apply program transformation techniques which

are semantics�preserving� In this way� we can allow the full generality of

DLO even if at the expenses of some e�ciency� The target language for

transforming DLO programs is a concurrent logic language �Rose ��
� with

multi�head clauses� In Rose� inter�process communication is performed via

multi�head clauses as in ������
� and AND�parallel goals do not share variables

in order to avoid centralization points� Rose has been implemented on a

parallel architecture based on the transputer technology ��
 by extending the

abstract machine for Prolog ���
 with new instructions and data structures

supporting distributed uni�cation� process creation and communication� and

control of nondeterminism� In the resulting implementation of DLO� we map

each logic object into a set of Rose goals and clauses� messages between objects

into goal invocations� and object names into logic variables� Furthermore�

method de�nitions are translated into Rose clauses and inheritance is obtained

through the notion of clause union�

The translation approach is quite e�ective� and has been used in the past

to implement object�oriented systems on top of concurrent logic languages�

By translating distributed logic objects into Rose� we obtain a number of

distinguishing features� In particular� since local and remote method invoca�

�



Ciampolini et al�

tions are treated in a uniform way� it is possible to move objects at run�time

among the nodes of the distributed system� thus allowing a sort of dynamic

load balancing� This makes the real implementation scalable with the under�

lying architecture� Moreover� object names being mapped into logic variables�

intensional messages are easily supported�

The major sources of overhead of the resulting implementation are due

to the dynamic creation of remote objects and the broadcasting of messages

exchanged through the network� In the transformational approach� broad�

casting arises because objects are mapped into logic variables and thus this

implementation does employ neither the object addresses nor the inheritance

structuring for introducing some kind of �indexing� in selecting methods� We

discuss how these sources of overhead can be partially reduced by adopting a

direct implementation for a subset of the DLO language which corresponds

to the fragment of Rewriting Logic where at most one object appears as par�

ticipant in the left�hand side of clauses�

� Distributed Logic Objects

The language of Distributed Logic Objects aims at integrating the deductive

capabilities of logic programming with object�oriented features�

A DLO class is a set of �guarded� DLO clauses� each one serving some

method invocations� DLO clauses are multi�head �extended� clauses of the

kind�

hM�� � � � �Mni� hR�� � � � � Rki� hS�� � � � � Smi � GjO� � m�� � � � � Oj � mj� S
�

�
� � � � � S �

q
�

where q � m� Pred�S �

�
� � � � � S �

q
� � Pred�S�� � � � � Sm�� j is the commit oper�

ator �thus introducing don�t care non�determinism�� and the guard G is a

conjunction of system predicates�

The multi�head of a clause is composed of three multisets of atoms� each

one enclosed between angle brackets� The �rst is the set of atoms �Ms� for

methods� the second one �Rs� is for read�only state variables� i�e�� state vari�

ables which do not change their values when the clause is applied� the third

one �Ss� is for mutable state variables� i�e�� variables which possibly change

their values because of the clause application�

Atomic goals in the body of a clause �S �

�
� � � � � S �

q
� are used for modifying

the state of an object� In particular� a rule with a mutable atom in the head

and another atom with the same name in the body is a rule for modifying the

state of the object� Thus� state changing is obtained through recursive calls

to the state of an object� State variables mentioned in the head of a clause as

read�only cannot occur in the body� thus preventing their modi�cation�

The introduction of read�only atoms is novel with respect to other pro�

posals grounding logic objects on multi�head clauses ���
� and avoids passing

the state variables of an object to the reinstating recursive call if they are not

changed� This feature is not simply syntactic sugar �as in ��
� for instance��

but it has been speci�cally introduced at the lower level of the implementa�

tion �see section �� in order to reduce the number of processes created and

messages exchanged� It is worth noting� however� that although the DLO lan�

�



Ciampolini et al�

guage provides explicit notation for read�only atoms� this optimization could

be automatically done at compile time� by statically analysing the code�

In the body of a clause explicit method invocations occur� A goal of the

kind O � M corresponds to sending a message M �which is an atom� to the

object instance with name O� self�method invocations have the form self � M �

In order to avoid centralization points� no sharing of variables among parallel

atomic goals and messages in the body of a DLO clause occurs� Only atoms in

the body of a DLO clause that are executed sequentially can share variables�

To this purpose� we have introduced the sequential operator � to make explicit

the sequential composition of atoms in the body of a clause� The logical

meaning of the parallel conjunction p�X�� q�X� �where X is unbound� in the

body of a DLO clause is the following� �X p�X� � �Y p�Y �� In other words�

the scope of a variable in a parallel conjunction is the single atomic goal as in

��
� provided that the variable is not bound to a ground term� This simplify

the underlying computational model and� as a consequence� its distributed

implementation�

With regard to the communication mode� it can be either synchronous or

asynchronous� depending on the kind of goal composition� In fact� in case of

a parallel goal �i�e�� belonging to a parallel composition� the communication

is asynchronous� while in the other case �i�e�� sequential goals� the communi�

cation is synchronous�

For a DLO clause to �re� all its consumable �respectively� read�only� heads

have to unify �resp�� match� with some messages sent and some state values

of the target object� Moreover� the guard evaluation must succeed� When the

clause �res� all the messages and the atoms uni�ed with mutable heads are

consumed� Then� during the body execution� new goals are possibly created

and new messages sent�

Example ��� Let us consider the following example� where we adopt the

standard Prolog notation for variables�

class point��

�projx�� ��� �y�Y�� � true � y����

�projy�� ��� �x�X�� � true � x����

�trans�Dx�Dy��� ��� �x�X��y�Y�� �

X	 is X
Dx� Y	 is Y
Dy �

x�X	�� y�Y	��

�print�� �x�X��y�Y��� �� � true �

printer�print values��X�Y���

It represents the code of class point of bi�dimensional points� The �rst clause

projects a point on the x�axis� The second clause projects the target point on

the y�axis� The third clause applies a rectilinear translation of vector �Dx�Dy�

to the target point� Notice that to obtain the state change �e�g�� setting to

zero the y coordinate of the target point�� the state variables of the target

point �e�g�� y�Y�� to be modi�ed by the method �e�g�� projx� must occur both

in the head �as mutable atom� and in the body of the clause� The �recursive�

occurrence of the state variables in the body thus plays the role of the become

�



Ciampolini et al�

primitive of Actor languages ����
�

The last clause serves a print request by raising� in its turn� a print values

request to the printer object which is a system object
�
� Notice that the

coordinates X and Y of the target point are simply read in the �multi��head

but not consumed� therefore they do not need to be reinstated in the body of

the clause�

Thanks to the intrinsic nondeterminism of logic programming languages�

di�erent clauses can be written for the same method� At run�time� the adop�

tion of a committed�choice behavior for clause applications will ensure that

only one of the de�nitions is used to serve a method request� For instance�

suppose the following clause is added to the class point of example ����

�print�� �x�X��y�Y�� � true �

laser printer�print values��X�Y���

When a print message is sent to a target point� only one of the two de�nitions

�and therefore only one of the two printers� will nondeterministically serve the

request�

The committed�choice behavior of DLO ensures that at most one clause �

among those which modify the state variables of an object � will �re� Thus�

mutual exclusion is automatically guaranteed in accessing the mutable object

state� On the other hand� if the state does not change �the atoms are read�

only in the head of clauses� no synchronization is enforced and thus neither is

sequentiality�

Distributed Logic Objects have some powerful features usually not present

in procedural object�oriented languages� which are inherited from the under�

lying logic and the logic porgramming paradigm�

� Input and output parameters for methods are not statically �xed but are

determined at run�time by using uni�cation� This feature makes DLO

methods more reusable and �exible�

� Intensional messages can be easily supported� A message of the kind

O�print� where O is an unbound variable� is broadcasted to each object

of the system� Furthermore� the syntax can be easily extended in order to

support multicasting to all the objects of a class� Let us newly consider

example ���� A message class�point�O��print� where O is an unbound

variable� would be sent to each object of class point� Notice that for each

message sent �intensional or not� exactly one object will serve the request�

due to the committed�choice behavior of method de�nitions
�
� For instance�

the intensional message class�point�O��print is sent to every instance

of the point class but only the �rst point that commits will produce the

� We suppose that there are some globally available objects representing system devices�

identi�ed in the program by Prolog constants�
� This avoids to keep intensional messages pending for a long time� In fact� an intensional

message cannot be discarded because new objects which may consume the message can

be created later� However� in DLO this message pending must be performend until the

commit� thus normally being limited in time�

�



Ciampolini et al�

printing of its state� This feature can be compared to a particular form

of pattern�directed communication present in Actor systems ��
� where an

actor can send a message to a single arbitrary member of a group�

� Multi�named methods can be de�ned in the style of Maude ��
� Multi�

named methods can be implemented as multi�head clauses with more than

one method name in the head� This kind of clauses express a communi�

cation event in which di�erent messages from distinct objects participate

and synchronize in order to possibly modify the state of a target object and

send new messages� For example� the following multi�named method added

to the class point of example ����

�projx� projy�� � �� �x�X�� y�Y�� � true � x���� y����

synchronizes two messages �projx and projy� in order to simultaneously

set the value of the coordinates of a point to the origin of the x and y axis�

DLO classes can be connected into hierarchies in order to favour non�

replication of behavior� A DLO class can inherit part of its instance speci��

cation �state variables and behavior� from more general classes �called super�

classes�� In the following� we will not focus on inheritance �see ��
��

� Operational Semantics

DLO operational semantics can be given in accordance with the true concur�

rent model ���
 in a way very similar to that presented in ��
� The key idea is

to represent the distributed state as a multiset of object states and messages

that evolves by concurrent application of rewriting rules� Thus� this semantic

description outlines the concurrent distributed nature of the language�

In particular� the state of the system is denoted by a multiset of couples of

type O � A �where O is an object name and A is an atom� representing both

messages and object state variables� A �renamed apart� multi�head clause� C�

of an object O with the form�

hM�� � � � �Mni� hR�� � � � � Rki� hS�� � � � � Smi � GjO� � m�� � � � � Oj � mj� S
�

�
� � � � � S �

q
�

where q � m� and Pred�S �

�
� � � � � S �

q
� � Pred�S�� � � � � Sm�� is interpreted as a

rewriting rule� This rule is triggered by a set of messages sent toO and unifying

with the method patterns M�� � � � �Mn in the head of C� Moreover� read�only

state variables �R�� � � � � Rk� in the head of C and mutable state variables

�S�� � � � � Sm� have to be matched and uni�ed with the current values of the

variables of the object O� representing �part of� the current distributed state of

the system� Finally� the guard G must be successfully evaluated� The outcome

of the application of clause C is that messages unifying with M�� � � � �Mn and

state variables unifying with S�� � � � � Sm disappear� the state of the object O

changes according to the structure of the new state variables S �

�
� � � � � S �

q
� and

new messages �O� � m�� � � � � Oj � mj� are sent �after the application of the

unifying substitution��

The following rewriting rule describes the behavior of the object oriented

system when a clause is applied� Let kOk denote the code of an object� b c

multisets� and �� n multiset union and di�erence respectively� Let Cl� l �

�



Ciampolini et al�

�� � � � � q and Bj� j � �� � � � � k denote state variables of object O� and Ap� p �

�� � � � � n be some messages sent to O during the computation� We have�

bO � A�� � � � � O � An� O � C�� � � � � O � Cq� c � bO � B�� � � � � O � Bkc
��r

bO� � m�� � � � � Ok � mk� O � S �

�
� � � � � O � S �

qc�� � bO � B�� � � � � O � Bkc

if the following conditions hold�

� � a �renamed apart� clause C belonging to the object O �C � kOk��

� � � mgu��A�� � � � � An� B�� � � � � Bk� C�� � � � � Cq��

�M�� � � � �Mn� R�� � � � � Rk� S�� � � � � Sq��

� Eval�G�� � �� where Eval denotes the evaluation of the guard G yielding

a computed substitution ��

Notice that the application of substitutions is component�wise� The substitu�

tion �� is not applied to the atoms B�� � � � � Bk to avoid the creation of bindings

for their unbound arguments�

Even if the state of the computation is represented by one single multiset�

the rewriting rule applies to a subpart of this multiset which contains elements

related to a single object� In this respect� each object constitutes in practice

a separate context in a way similar to Linear Objects ��
�

The computation can be de�ned in terms of applications of the rewriting

rules to disjoint subparts of the current state� Concurrency emerges from

the fact that more than one rewriting rule is applied at each step of the

computation� The condition to be satis�ed in order to simultaneously apply

several rewriting rules is that their left� hand sides apply to disjoint sets of

mutable elements and messages�

The following rule states how the multiset S representing the current state

of the computation changes because of clause application� Let S be partitioned

into disjoint subparts� Xi� i � �� � � � � h� and possibly overlapping subparts�

Ri� i � �� � � � � h �disjoint from Xi�� Intuitively� the idea is to permit the

parallel application of k clauses �with k � h� to disjoint subparts of the current

state �Xi� which are consumed and rewritten �into subparts Yi� according to

rule ��r and to possibly overlapping subparts of the current state �Ri� which

are accessed in read�only mode� and left unchanged by clause application�

This behavior is represented more formally by the following rule�

Xi �Ri ��r Yi � Ri �i � �� � � � � k�

�S �� S n �X� � � � � �Xk�� � �Y� � � � � � Yk�

where Ri� Xi � S for i � �� � � � � k�

Mutual exclusion on the mutable state of an object is automatically guar�

anteed by the above rule which allows the parallel reduction of clauses only if

they do not compete for the same data structure in the current state of the

computation�

�



Ciampolini et al�

��� Relation with Rewriting Logic

DLO clauses can be interpreted as rewrite rules ��
� The outlined DLO

operational semantics� in fact� corresponds to deduction rules of Rewriting

Logic� In Rewriting Logic deduction is performed by concurrent rewriting

modulo structural axioms�

Di�erent types of rewriting are usually considered ���
�

� term rewriting� where data structures to be rewritten are terms�

� graph rewriting� where data structures to be rewritten are labeled graphs�

� object�oriented rewriting� where data structures to be rewritten are ob�

jects that interact with each other via asynchronous message�passing�

All these forms of rewriting are supported in the Maude language� which

integrates in a very simple and natural manner functional� object�oriented�

relational and concurrent programming�

In DLO� instead� we consider only object�oriented rewriting� As shown in

���
� when Rewriting Logic is used for object�oriented programming� the struc�

tural axioms are associativity� commutativity and identity of a multiset union

operator that builds up the con�guration of objects and messages� These ax�

ioms are implicit in our case� since the order of atoms and messages in a DLO

clause head is� in practice� not relevant and there exists the identity element

true with respect to composition of elements in a clause head� Furthermore�

as for object�oriented systems based on Rewriting Logic� we model the state

of the computation as a multiset�

It is worth to notice that� di�erently from �concurrent� term rewriting

������
 and object�oriented systems based on Rewriting Logic ���
� we adopt

uni�cation instead of matching for consumable atoms occurring in a clause

head� In the case of read�only atoms we use a matching algorithm�

Furthermore� di�erently from Rewriting Logic �and term rewriting sys�

tems�� in our system congruence in rewriting terms is not present� In fact� in

DLO it does not happen that rewriting applies to a proper subterm� We use

standard uni�cation �or matching� in the case of read�only atoms� algorithm

for rewriting terms� thus avoiding the sharing of �nested� data between rewrit�

ing clauses which can be a problem in parallel distributed implementations of

rewriting systems �see ������
��

Like in the languageMaude �����
� which is based upon conditional rewrit�

ing logic� DLO clauses can be conditioned via guards� Thus� DLO guarded

clauses are equivalent to conditional rewriting rules� However� the commit

operator introduced in DLO is an extra�logical operator� In fact� through this

operator computations are made deterministic� This leads to incompleteness

of the resulting logic system� but notably simpli�es the implementation avoid�

ing the need for exploring all the alternative subparts of the current state that

can be rewritten�

Thanks to the committed�choice nature of DLO� each element of the cur�

rent state of the computation will be rewritten by using at most one clause�

Therefore� it is not necessary to follow alternative paths originated by the

�



Ciampolini et al�

application of di�erent clauses to rewrite the same element� Notice that each

clause application would possibly assign a di�erent value to the variables of

rewritten element�

��� Forms of Parallelism

DLO operational semantics outlines the potential parallelism present in the

language� The interesting feature is that parallelism has not to be explicitly

expressed by the programmer but it is implicitly exploited by the underly�

ing support� As many other concurrent logic programming languages� DLO

parallelism is �ne�grained� this usually implies abundance of potential paral�

lelism� The implicit forms of parallelism exploited inDLO can be summarized

as follows�

� inter�object parallelism� object instances �belonging to the same or to di�er�

ent classes� can execute in parallel since they apply to disjoint sets of atoms�

This form of parallelism is inherently related to the AND�parallelism of logic

programming�

� intra�object parallelism� di�erent threads of control can be simultaneously

active on the same object� In particular� di�erent methods can be executed

in parallel if they do not modify the value of the same state variables� i�e��

if they apply to disjoint sets of atoms to be consumed� This is always the

case if the object we consider is non�mutable� i�e�� all its methods access

the object�s state variables in read�only mode� In this case� even several

applications of the same method for di�erent requests are performed in par�

allel� If the object we consider is mutable� i�e�� some of its methods changes

the object�s state� the commit operator ensures that only one method at

a time changes the state of the object� For example� methods projx and

projy of example ��� can be applied in parallel for the same point instance

since they do not involve the same variable� The method trans� instead�

will be executed in mutual exclusion with respect to both projx and projy

since it shares with them part of the mutable state� However� even if two

methods cannot be executed in parallel� both multi�head uni�cation and

guard evaluation can be performed in parallel� The acceptances of the two

invocations of method trans and projx for an instance of the point class

are executed in parallel but� after commitment� only one of them will be

served�

How to practically support these di�erent forms of parallelism in a distributed

system is discussed in section ��

� DLO Distributed Implementation

In this section� we describe the main features of the DLO implementation

on a distributed memory architecture� Distributed memory parallel systems

are signi�cantly more problematic than shared memory ones� because of the

overhead present when reading and writing nonlocal variables�





Ciampolini et al�

The DLO programming system is organized into several levels� It allows

programs written in the DLO language to be compiled and executed on a

parallel transputer�based architecture� The distinct parts composing the ar�

chitectural scheme are�

� The mapping of DLO programs into concurrent logic programs� In fact�

DLO is implemented by following a transformational approach by mapping

DLO programs into Rose ��
 logic programs�

� The run�time environment� The Rose language support consists of a parallel

abstract machine which is an extension of the WAM ���
� The parallel

abstract machine of the Rose language has been speci�cally modi�ed to

better �t the needs of DLO programming� in particluar to support read�

only atoms in the head of clauses�

� The physical architecture� It is represented by the MIMD distributed mem�

ory architecture� in this case the transputer�based Meiko Computing Sur�

face�

As in ���
� the approach we consider for the implementation of DLO is

translation� The idea is to apply program transformation techniques which

are semantics� preserving� In this way� we can allow the full generality of

the language even if at the expense of e�ciency� The target language for

transforming DLO programs is a concurrent logic language �Rose ��
� with

multi�head clauses� In Rose� inter�process communication is performed via

multi�head clauses as in ������
� and AND�parallel goals do not share variables

in order to avoid centralization points� Rose has been implemented on a

parallel architecture based on the transputer technology ��
 by extending the

abstract machine for Prolog ���
 with new instructions and data structures

supporting distributed uni�cation� process creation and communication� and

control of non�determinism� In the resulting implementation of DLO� we map

each logic object into a set of Rose goals and clauses� messages between objects

into goal invocations� and object names into logic variables� Furthermore�

method de�nitions are translated into Rose clauses and inheritance is obtained

through the notion of clause union�

Example ��� Let us consider the class point of example ���� Its clauses are

transformed into the following Rose program P��

�

point�O�� projx�O�� y�O�Y� � true � y�O����

�

point�O�� projy�O�� x�O�X� � true � x�O����

�

point�O�� trans�O�Dx�Dy�� x�O�X�� y�O�Y� �

X	 is X
Dx� Y	 is Y
Dy � x�O�X	�� y�O�Y	��

�

point�O�� print�O��
�

x�O�X��
�

y�O�Y� � true �

print values�printer��X�Y���

where � is added for denoting read�only atoms�

Notice that objects are represented by Rose predicates �i�e�� the �class�

predicates and the predicates corresponding to the object state�� and state

change is still achieved by substituting values for the state variables in the

�	



Ciampolini et al�

recursive calls to these predicates� However� notice that if a method simply

accesses the state of an object for reading values but not for modifying them

�e�g�� method print in class point�� the predicates corresponding to the object

state in the resulting translation occur only in the head of the corresponding

Rose clause� being them read�only�

The translation approach is quite e�ective� and has been used in the past

to implement object�oriented systems on top of concurrent logic languages�

By translating distributed logic objects into Rose� we obtain a number of dis�

tinguishing features� In particular� since local and remote method invocations

are treated in a uniform way� it is possible to move objects at run�time among

the nodes of the distributed system� thus allowing dynamic load balancing�

This makes the real implementation scalable with the underlying architec�

ture� Moreover� object names being mapped into logic variables� intensional

messages are easily supported�

Parallelism and Granularity

The transformational approach supports all the forms of parallelism peculiar

to DLO� The inter�object parallelism is supported by the parallel execution of

Rose AND processes� object instances can execute in parallel� With regard to

intra�object parallelism� two methods corresponds to two Rose clauses which

are executed in parallel �at least after the commit phase�� provided that they

rewrite disjoint subparts of an object state� Therefore� after the commit phase�

both the clauses will be able to proceed and execute the method body in

parallel�

The adopted forms of parallelism are �ne grained� and can be e�ciently

supported by the tightly coupled parallel architecture considered� The grain

of parallelism and the relative need of collecting parallelism depends on the

features of the available architecture� On a loosely coupled architecture �e�g��

a network of workstations� an e�cient implementation might require a kind

of serialization� in order to combine multiple processes �allocated on the same

processor� into one and replace local message sends with predicate calls in a

way very similar to what has been done for Actors ��
�

Transparency

DLO objects are transparent with regard to parallelism and location� In fact�

when developing a DLO application the programmer has not to be aware of

the real degree of parallelism exploited� Parallelism is implicit� sequentiality

can be made explicit by using the sequential conjunctive operator� Mutual

exclusion in accessing the state variables of an object is directly guaranteed by

the underlying support provided that consumable atoms in the head of DLO

clauses are used�

Furthermore� it is not necessary to be aware of the physical location of an

object in order to send it a message� In particular� invoking a method of an

object residing on a remote node has exactly the same e�ect as if performed

locally� except for a performance penalty� Whenever an invocation is made�

the underlying implementation transparently determines the location of the

method that has to perform the task required�

��



Ciampolini et al�

Replication

Object code is contained in the class� possibly replicated on several nodes�

Each method is handled by a Rose manager process� If the method code is

replicated on several nodes then more manager processes exist� one for each

copy� Each manager process remains idle until some request is sent to it�

When a request for a method is sent� the method acceptance phase is exe�

cuted in parallel by all the manager processes of the invoked method� Finally�

the method will be served by the �rst manager process that successfully exe�

cutes the commit phase� Obviously� creating copies of classes on several nodes

is quite expensive� since each method request must be dispatched to all the

copies� In addition� all copies are expected to perform the same computation�

thus introducing an increasing of the global computational load� This over�

head is however limited to the method acceptance phase until the commit�

The advantage is that class code replication leads to the replication of the

object control thread� although limited to the method acceptance phase� The

acceptance phase can successfully terminate if there is a su�cient degree of

replication to provide the requested method on at least one working node�

thus achieving a limited form of fault tolerance� Notice that this feature does

not provide a complete form of fault tolerance since the object is not entirely

replicated� In fact� the state variables of an object accessed by a method in

a consumable way are replicated in each node where a manager process for

the method has been created but� after the commit� only one copy of these

state variables survives �i�e�� that allocated on the same node of the process

successfully completing the commit phase�� Therefore� object state variables

move from node to node depending on the selected methods� determining a

migration transparent to the user� and controlled by the commit operator�

Communication

When translating DLO programs into Rose� we map objects� names into logic

variables and this is a technique used in most implementations of logic objects�

In this way� the concept of message sending is quite far from message passing

in traditional object�oriented languages� A sender does not really send the

message to the receiver� but rather includes the identi�er of the receiver in

the message and posts the message to a blackboard�like structure �the set of

current goals� from which the receiver picks it up by using uni�cation� The

resulting communication mechanism is �exible� since no explicit communi�

cation pattern has to be established� Intensional messages can be directly

supported by using� in messages� logical variables in place of constants for

objects identi�ers� and exploiting broadcasting� This� however� has the draw�

back of introducing ine�ciencies� and motivated the adoption of a di�erent

approach based on a direct implementation� which is presented in the next

section�

The overhead deriving from broadcast communication and distributed uni�

�cation can be also reduced � as pointed out in ����
 � by applying static

analysis techniques based on abstract interpretation� In particular� they can

be suitable to avoid some uni�cation operations which are subject to failure

��



Ciampolini et al�

and useless communications�

Discussion

Some attempts have been done in order to implement systems based on

Rewriting Logic on special purpose machines �see� for instance� ���
�� Our pur�

pose� as in ���
� is di�erent since it consists in implementing DLO in general

purpose parallel machines� in particular MIMD distributed memory parallel

architectures like networks of Transputers� Other attempts of implementing

concurrent rewriting systems �and in particular the language SimpleMaude�

have been done also for SIMD and MIMD�SIMD architectures ���
�

The �rst prototype developed has allowed to experiment the expressive

power of DLO �and Rewriting Logic� and its impact on distribution� some

nice features of distributed object�oriented systems such as dynamicity� trans�

parency� migration and dynamic load balancing are directly provided and even

enhanced in our system� with no need for a special treatment at support level�

In this respect� our work can be considered a concrete attempt to implement

Rewriting Logic on an MIMD distributed memory architecture�

First experimental results have shown the viability of the approach and its

scalability� We have experimented DLO for implementing a computational�

intensive object�oriented real application in the �eld of low�level vision ��
�

Nonetheless� the translation approach su�ers the overheads due to the high

cost of dynamic creation of processes and their scheduling� plus the cost of

message broadcasting and the cost of distributed uni�cation�

Broadcasting arises because objects are mapped into logic variables and

thus this implementation does employ neither the object addresses nor the

inheritance structuring for introducing some kind of �indexing� in selecting

methods� In the following� we discuss how these sources of overhead can be

partially reduced by adopting a direct implementation for a subset of the DLO

language with single�named methods only�

� A Direct Implementation

As pointed out in the previous section� there is an e�ciency problem with the

translation approach� similar to the one present in the distributed implemen�

tation of a blackboard�like structure� The run�time support has to perform

multicasting �i�e�� sending a message to a selected group of machines� or even

broadcasting communications �i�e�� sending a message to all machines� even if

DLO messages are point�to�point�

In ��	
� Meseguer and Winkler introduced a subset of the Maude language

called SimpleMaude� SimpleMaude rules involve only �at most� one object and

one method in their left�hand side� This was mainly motivated by the need of

having an e�cient implementation� Having at most one object in the head of a

rule allows to treat object identi�ers as �rst class elements� and associate them

with speci�c addresses in the node where the object is located �see also ���
��

Moreover� messages can be sent to the object at the corresponding address�

thus avoiding broadcasting� Finally� having at most one message in the head

��



Ciampolini et al�

of a rule allows to introduce indexing on inherited clauses�

In this section we brie�y discuss a direct implementation for the subset of

DLO with single�named methods only� The fragment of Rewriting Logic here

considered corresponds� in practice� to that underlying SimpleMaude�

Object rei�cation

In order to limit broadcasting� we should represent object identi�ers as ma�

chine oriented e�ective address�like entities� This can be obtained by rei�ca�

tion� i�e�� the direct mapping of object identi�ers into process identi�ers of the

run�time support� The sending of messages to the object is performed by post�

ing messages at the corresponding address� The broadcasting is substituted

by point�to�point message exchanges�

Indexing on inherited clauses

In order to support some kind of �indexing� in selecting methods� we rely on

data structures similar to C�� virtual tables� In particular� we associate with

each class C a class virtual predicate table where the addresses of the methods

of C are stored� Each entry in the table is a method name� Associated

with a method� there is the address of the clause de�ning the method� If a

method is de�ned by several clauses� then more than one address is reported�

When classes are linked into hierarchies� inheritance can be implemented by

building one virtual predicate table for each class� The skeleton of each table

is determined during the compilation�

Discussion

The drawback of avoiding the broadcast of messages is a more complex imple�

mentation of intensional messages� Nonetheless� as in ��	
� one process can be

created to handle this kind of messages and to broadcast them to each object

in the system�

Moreover� the rei�cation of object identi�ers adopted by the direct imple�

mentation reduces the transparency of DLO objects with respect to both

parallelism and location� In fact� the state variables of an object O are still

mapped into parallel processes which possibly migrate during the computa�

tion� but both the server process associated with O and the manager processes

of O�s methods are allocated on speci�c nodes and do not migrate during the

computation�

� Conclusions

We have presented an object�oriented language based on Rewriting Logic�

and discussed its features with particular reference to its implementation on

a distributed parallel architecture� The implementation has been obtained

via translation on top of a concurrent logic language with committed�choice

multi�head clauses and restricted AND�parallelism� First experimental results

have shown the viability of the approach and its scalability� Nonetheless� the

translation approach su�ers of the overhead due to the high cost of dynamic

��



Ciampolini et al�

process creation� message passing among objects� plus the cost of scheduling

them� and the cost of distributed uni�cation� A direct implementation has

been also proposed for a subset of the language with single�named methods

only�

The �rst prototype developed has allowed to experiment the expressive

power of DLO and its impact on distribution� some nice features of dis�

tributed object�oriented systems such as dynamicity� transparency� migration

and dynamic load balancing are directly provided and even enhanced in our

system� with no need for a special treatment at support level� In this respect�

our work can be considered a concrete attempt to implement �a subpart of�

Rewriting Logic on an MIMD distributed parallel memory architecture�

References

��	 A�Ciampolini� E�Lamma� P�Mello� and C� Stefanelli� Distributed Logic Objects�
Technical Report DEIS� DEIS � University of Bologna� �

��

��	 G� Agha� Actors
 A Model of Concurrent Computation in Distributed Systems�
The MIT Press� �
��

��	 G� Agha� S� Frolund� W�Y� Kim� R� Panwar� A� Patterson� and D� Sturman�
Abstraction and Modularity Mechanisms for Concurrent Computing� IEEE

Parallel � Distributed Technology� ���������� �

��

��	 J�M� Andreoli� T� Castagnetti� and R� Pareschi� Abstract Interpretation
of Linear Logic Programming� In D� Miller� editor� Proceedings of IEEE

Symposium on Logic Programming ILPS��� The MIT Press� �

��

��	 J�M� Andreoli and R� Pareschi� Linear objects� logical processes with built�
in inheritance� In D�H�D� Warren and P� Szeredi� editors� Proc	 Seventh

International Conference on Logic Programming� pages �
������ The MIT
Press� �

��

��	 M� Bourgois� J�M� Andreoli� and R� Pareschi� Extending Objects with Rules�
Composition and Concurrency� The LO Experience� Technical Report TR�
��
��� ECRC� �

��

��	 A� Brogi� AND�parallelism without Shared Variables� In D�H�D� Warren
and Peter Szeredi� editors� Proc	 Seventh International Conference on Logic

Programming� pages �������� The MIT Press� �

��

�	 A� Brogi� A�Ciampolini� E�Lamma� and P�Mello� The Implementation of a
Distributed Model for Logic Programming based on Multiple�headed Clauses�
Information Processing Letters� ���������� �

��

�
	 J�S� Conery� Logical objects� In R� A� Kowalski and K� A� Bowen� editors�
Proc	 Fifth International Conference on Logic Programming� pages ��������
The MIT Press� �
�

���	 A� Davison� Polka� A Parlog Object�oriented Language� Technical Report
Internal report� Dept� of Computing� Imperial College� �
�

��



Ciampolini et al�

���	 P� Degano and U� Montanari� Concurrent Histories� A Basis for Observing
Distributed Systems� J	CSS� ����������� �
��

���	 M� Falaschi� G� Levi� and C� Palamidessi� A Synchronization Logic� Axiomatic
and Formal Semantics of Generalized Horn Clauses� Information and Control�
�������
� �
��

���	 J� A� Goguen� Claude Kirchner� and Jos�e Meseguer� Concurrent term rewriting
as a model of computation� In R� Keller and J� Fasel� editors� Proceedings of

Graph Reduction Workshop� volume ��
 of LNCS� pages ���
�� Santa Fe �NM�
USA�� �
�� Springer�Verlag�

���	 J� A� Gougen� The rewrite rule machine project� In Proceedings of the �nd

International Conference on Supercomputing� �
��

���	 K� Kahn� E�D� Tribble� M�S� Miller� and D� G�Bobrow� Objects in concurrent
logic programming languages� In Proceedings of OOPSLA��� ACM Press�
Portland �Oregon�� �
��

���	 Claude Kirchner and Patrick Viry� Implementing parallel rewriting� In
B� Fronh�ofer and G� Wrightson� editors� Parallelization in Inference Systems�
volume �
� of LNCS� pages ������� Springer�Verlag� �

��

���	 Patrick Lincoln� Narciso Mart���Oliet� and Jos�e Meseguer� Speci�cation�
transformation� and programming of concurrent systems in rewriting logic�
In G�E� Blelloch� K�M� Chandy� and S� Jagannathan� editors� Speci�cation

of Parallel Algorithms� pages ��
���
� DIMACS Series� Vol� �� American
Mathematical Society� �

��

��	 Patrick Lincoln� Narciso Mart���Oliet� Jos�e Meseguer� and Livio Ricciulli�
Compiling rewriting onto SIMD and MIMD�SIMD machines� In Proceedings

of PARLE���� �th International Conference on Parallel Architectures and

Languages Europe� pages ����� Springer LNCS ��� �

��

��
	 J� Meseguer� A Logical Theory of Concurrent Objects� In Proceedings of

OOPSLAECOOP��� pages �������� ACM Press� �

�s�

���	 J� Meseguer and T� Winkler� Parallel Programming in Maude� Technical
Report CSL�
���� SRI� �

��

���	 Jos�e Meseguer� A logical theory of concurrent objects and its realization in the
Maude language� In Gul Agha� Peter Wegner� and Akinori Yonezawa� editors�
Research Directions in Concurrent ObjectOriented Programming� pages ����
�
�� MIT Press� �

��

���	 L� Monteiro� Distributed Logic� A Theory of Distributed Programming in Logic�
Technical report� Universidade Nova de Lisboa� �
��

���	 E� Shapiro and A� Takeuchi� Object oriented programming in Concurrent
Prolog� New Generation Computing� ������� �
��

���	 D�H�D� Warren� An abstract Prolog instruction set� Technical Report TR ��
�
SRI International� �
��

��


