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Abstract

This paper presents a logic language (called Distributed Logic Objects, DLO for
short) that supports objects, messages and inheritance. The operational semantics
of the language is given in terms of rewriting rules acting upon the (possibly dis-
tributed) state of the system. In this sense, the logic underlying the language is
Rewriting Logic. In the paper we discuss the implementation of this language on
distributed memory MIMD architectures, and we describe the advantages achieved
in terms of flexibility, scalability and load balancing. In more detail, the implemen-
tation is obtained by translating logic objects into a concurrent logic language based
on multi-head clauses, taking advantage from its distributed implementation on a
massively parallel architecture. In the underlying implementation, objects are clus-
ters of processes, objects’ state is represented by logical variables, message-passing
communication between objects is performed via multi-head clauses, and inheri-
tance is mapped into clause union. Some interesting features such as transparent
object migration and intensional messages are easily achieved thanks to the under-
lying support. In the paper, we also sketch a (direct) distributed implementation
supporting the indexing of clauses for single-named methods.

1 Introduction

Several ways of combining object-oriented and logic programming have been
proposed to achieve data abstraction, modularity and code reuse. Some pro-
posals have implemented logic objects on stream-based concurrent logic lan-
guages (e.g., [15,23,10]), but this choice is not the best for distribution and
scalability. Streams, in fact, behave like shared variables and thus introduce
a centralization point in the resulting computational model. In particular,
stream communication is programmed by having a producer writing messages

1 We thank the anonymous referees for their useful comments and the CNR coordinated
project on integration of logic and objects.
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into a difference list, whose head is read by a consumer. To merge multi-
ple streams, a chain of active merge processes is needed, thus requiring extra
process reductions and lengthening transmission delay.

In the meanwhile, Meseguer proposed a logic theory of concurrent ob-
jects in [19] by defining Rewriting Logic. Rewriting Logic is a very general
model of concurrency from which many other models can be obtained by spe-
cialization. In this logic, rewriting can take place modulo an arbitrary set
of structural axioms which could be undecidable. This suggests considering
subsets of Rewriting Logic to be efficiently implementable.

For instance, the Maude language integrates in a very simple and natural
manner functional, object-oriented, relational and concurrent programming by
supporting term rewriting, graph rewriting and object-oriented rewriting. In
particular, the general form of Maude rewrite rules “represents communication
events in an object-oriented system where it is possible for one, none, or several
objects to appear as participants in the left-hand side of rules” [21].

In a later work [20], Meseguer and Winkler introduce a subset of the Maude
language called SimpleMaude. SimpleMaude rules involve only (at most) one
object and one method in their left-hand side. This is mainly motivated by the
need of having an efficient implementation on a wide variety of parallel archi-
tectures, ranging from sequential, SIMD, MIMD, and MIMD /SIMD machines
(see [18]).

In this paper, we introduce the language of Distributed Logic Objects
(DLO, for short in the following), that is characterized by active, asyn-
chronously executing agents which communicate through message passing.
DLO can be considered a particular instance of the general theory of Rewrit-
ing Logic where only object-oriented rewriting is supported.

As in [21], the approach we consider for the implementation of DLO is
translation. The idea is to apply program transformation techniques which
are semantics-preserving. In this way, we can allow the full generality of
DLO even if at the expenses of some efficiency. The target language for
transforming DLO programs is a concurrent logic language (Rose [7]) with
multi-head clauses. In Rose, inter-process communication is performed via
multi-head clauses as in [12,22], and AN D-parallel goals do not share variables
in order to avoid centralization points. Rose has been implemented on a
parallel architecture based on the transputer technology [8] by extending the
abstract machine for Prolog [24] with new instructions and data structures
supporting distributed unification, process creation and communication, and
control of nondeterminism. In the resulting implementation of DLO, we map
each logic object into a set of Rose goals and clauses, messages between objects
into goal invocations, and object names into logic variables. Furthermore,
method definitions are translated into Rose clauses and inheritance is obtained
through the notion of clause union.

The translation approach is quite effective, and has been used in the past
to implement object-oriented systems on top of concurrent logic languages.
By translating distributed logic objects into Rose, we obtain a number of
distinguishing features. In particular, since local and remote method invoca-
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tions are treated in a uniform way, it is possible to move objects at run-time
among the nodes of the distributed system, thus allowing a sort of dynamic
load balancing. This makes the real implementation scalable with the under-
lying architecture. Moreover, object names being mapped into logic variables,
intensional messages are easily supported.

The major sources of overhead of the resulting implementation are due
to the dynamic creation of remote objects and the broadcasting of messages
exchanged through the network. In the transformational approach, broad-
casting arises because objects are mapped into logic variables and thus this
implementation does employ neither the object addresses nor the inheritance
structuring for introducing some kind of “indexing” in selecting methods. We
discuss how these sources of overhead can be partially reduced by adopting a
direct implementation for a subset of the DLO language which corresponds
to the fragment of Rewriting Logic where at most one object appears as par-
ticipant in the left-hand side of clauses.

2 Distributed Logic Objects

The language of Distributed Logic Objects aims at integrating the deductive
capabilities of logic programming with object-oriented features.

A DLO class is a set of (guarded) DLO clauses, each one serving some
method invocations. DLO clauses are multi-head (extended) clauses of the
kind:
<M1,...,Mn>,<R1,...,Rk>,<sl,...,sm> %G|01 : ml,...,Oj L myj, {,,S:]
where ¢ < m, Pred(S},...,S;) € Pred(Sy,...,Sn), | is the commit oper-
ator (thus introducing don’t care non-determinism), and the guard G is a
conjunction of system predicates.

The multi-head of a clause is composed of three multisets of atoms, each
one enclosed between angle brackets. The first is the set of atoms (Ms) for
methods; the second one (Rs) is for read-only state variables, i.e., state vari-
ables which do not change their values when the clause is applied; the third
one (Ss) is for mutable state variables, i.e., variables which possibly change
their values because of the clause application.

Atomic goals in the body of a clause (S7,...,5]) are used for modifying
the state of an object. In particular, a rule with a mutable atom in the head
and another atom with the same name in the body is a rule for modifying the
state of the object. Thus, state changing is obtained through recursive calls
to the state of an object. State variables mentioned in the head of a clause as
read-only cannot occur in the body, thus preventing their modification.

The introduction of read-only atoms is novel with respect to other pro-
posals grounding logic objects on multi-head clauses [9,5], and avoids passing
the state variables of an object to the reinstating recursive call if they are not
changed. This feature is not simply syntactic sugar (as in [19], for instance),
but it has been specifically introduced at the lower level of the implementa-
tion (see section 4) in order to reduce the number of processes created and
messages exchanged. It is worth noting, however, that although the DLO lan-
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guage provides explicit notation for read-only atoms, this optimization could
be automatically done at compile time, by statically analysing the code.

In the body of a clause explicit method invocations occur. A goal of the
kind O : M corresponds to sending a message M (which is an atom) to the
object instance with name O. selfmethod invocations have the form self : M.
In order to avoid centralization points, no sharing of variables among parallel
atomic goals and messages in the body of a DLO clause occurs. Only atoms in
the body of a DLO clause that are executed sequentially can share variables.
To this purpose, we have introduced the sequential operator & to make explicit
the sequential composition of atoms in the body of a clause. The logical
meaning of the parallel conjunction p(X), ¢(X) (where X is unbound) in the
body of a DLO clause is the following: 3X p(X) A 3Y p(Y). In other words,
the scope of a variable in a parallel conjunction is the single atomic goal as in
[7], provided that the variable is not bound to a ground term. This simplify
the underlying computational model and, as a consequence, its distributed
implementation.

With regard to the communication mode, it can be either synchronous or
asynchronous, depending on the kind of goal composition. In fact, in case of
a parallel goal (i.e., belonging to a parallel composition) the communication
is asynchronous, while in the other case (i.e., sequential goals) the communi-
cation is synchronous.

For a DLO clause to fire, all its consumable (respectively, read-only) heads
have to unify (resp., match) with some messages sent and some state values
of the target object. Moreover, the guard evaluation must succeed. When the
clause fires, all the messages and the atoms unified with mutable heads are
consumed. Then, during the body execution, new goals are possibly created
and new messages sent.

Example 2.1 Let us consider the following example, where we adopt the
standard Prolog notation for variables:

class point::

<projx>, <>, <y(Y)> < true | y(0).

<projy>, <>, <x(X)> + true | x(0).

<trans (Dx,Dy)>, <>, <x(X),y(Y)> «+
X1 is X+Dx, Y1 is Y+Dy |
x(X1), y(Y1).

<print>, <x(X),y(Y)>, <> < true |
printer:print_values([X,Y]).

It represents the code of class point of bi-dimensional points. The first clause
projects a point on the z-axis. The second clause projects the target point on
the y-axis. The third clause applies a rectilinear translation of vector (Dx,Dy)
to the target point. Notice that to obtain the state change (e.g., setting to
zero the y coordinate of the target point), the state variables of the target
point (e.g., y(Y)) to be modified by the method (e.g., projx) must occur both
in the head (as mutable atom) and in the body of the clause. The (recursive)
occurrence of the state variables in the body thus plays the role of the become
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primitive of Actor languages [2,3].

The last clause serves a print request by raising, in its turn, a print_values
request to the printer object which is a system object 2. Notice that the
coordinates X and Y of the target point are simply read in the (multi-)head
but not consumed, therefore they do not need to be reinstated in the body of
the clause.

Thanks to the intrinsic nondeterminism of logic programming languages,
different clauses can be written for the same method. At run-time, the adop-
tion of a committed-choice behavior for clause applications will ensure that
only one of the definitions is used to serve a method request. For instance,
suppose the following clause is added to the class point of example 2.1:

<print>, <x(X),y(Y)> ¢ true |
laser_printer:print_values([X,Y]).

When a print message is sent to a target point, only one of the two definitions
(and therefore only one of the two printers) will nondeterministically serve the
request.

The committed-choice behavior of DLO ensures that at most one clause —
among those which modify the state variables of an object — will fire. Thus,
mutual exclusion is automatically guaranteed in accessing the mutable object
state. On the other hand, if the state does not change (the atoms are read-
only in the head of clauses) no synchronization is enforced and thus neither is
sequentiality.

Distributed Logic Objects have some powerful features usually not present
in procedural object-oriented languages, which are inherited from the under-
lying logic and the logic porgramming paradigm:

e Input and output parameters for methods are not statically fixed but are
determined at run-time by using unification. This feature makes DLO
methods more reusable and flexible.

o Intensional messages can be easily supported. A message of the kind
0:print, where 0 is an unbound variable, is broadcasted to each object
of the system. Furthermore, the syntax can be easily extended in order to
support multicasting to all the objects of a class. Let us newly consider
example 2.1. A message class(point,0) :print, where 0 is an unbound
variable, would be sent to each object of class point. Notice that for each
message sent (intensional or not) exactly one object will serve the request,
due to the committed-choice behavior of method definitions ®. For instance,
the intensional message class(point,0) :print is sent to every instance
of the point class but only the first point that commits will produce the

2 We suppose that there are some globally available objects representing system devices,
identified in the program by Prolog constants.

3 This avoids to keep intensional messages pending for a long time. In fact, an intensional
message cannot be discarded because new objects which may consume the message can
be created later. However, in DLO this message pending must be performend until the
commit, thus normally being limited in time.
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printing of its state. This feature can be compared to a particular form
of pattern-directed communication present in Actor systems [3], where an
actor can send a message to a single arbitrary member of a group.

* Multi-named methods can be defined in the style of Maude [19]. Multi-
named methods can be implemented as multi-head clauses with more than
one method name in the head. This kind of clauses express a communi-
cation event in which different messages from distinct objects participate
and synchronize in order to possibly modify the state of a target object and
send new messages. For example, the following multi-named method added
to the class point of example 2.1:

<projx, projy>, < >, <x(X), y(Y)> < true | x(0), y(0).

synchronizes two messages (projx and projy) in order to simultaneously
set the value of the coordinates of a point to the origin of the x and y axis.

DLO classes can be connected into hierarchies in order to favour non-
replication of behavior. A DLO class can inherit part of its instance specifi-
cation (state variables and behavior) from more general classes (called super-
classes). In the following, we will not focus on inheritance (see [1]).

3 Operational Semantics

DLO operational semantics can be given in accordance with the true concur-
rent model [11] in a way very similar to that presented in [19]. The key idea is
to represent the distributed state as a multiset of object states and messages
that evolves by concurrent application of rewriting rules. Thus, this semantic
description outlines the concurrent distributed nature of the language.

In particular, the state of the system is denoted by a multiset of couples of
type O : A (where O is an object name and A is an atom) representing both
messages and object state variables. A (renamed apart) multi-head clause, C,
of an object O with the form:
<M1,...,Mn>,<R1,...,Rk>,<51,...,sm> %G|Ol : ml,...,Oj tmyj, {,,S:]
where ¢ < m, and Pred(S},...,S;) € Pred(Sy,...,Sy,), is interpreted as a
rewriting rule. This rule is triggered by a set of messages sent to O and unifying
with the method patterns M, ..., M, in the head of C. Moreover, read-only
state variables (Ry,...,Ry) in the head of C' and mutable state variables
(Si,...,Sm) have to be matched and unified with the current values of the
variables of the object O, representing (part of ) the current distributed state of
the system. Finally, the guard G must be successfully evaluated. The outcome
of the application of clause C' is that messages unifying with My, ..., M,, and
state variables unifying with Sy,...,S,, disappear, the state of the object O
changes according to the structure of the new state variables 57, ..., SL’I, and
new messages (O : my,...,0; : m;) are sent (after the application of the
unifying substitution).

The following rewriting rule describes the behavior of the object oriented
system when a clause is applied. Let ||O|| denote the code of an object, | |
multisets, and U, \ multiset union and difference respectively. Let C), | =
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1,...,qand B;, j =1,...,k denote state variables of object O, and A,, p =

1,...,n be some messages sent to O during the computation. We have:
O:A),...,0:4,,0:C,...,0:Cy, |U|O: By,...,0: By
HT‘

LOl:ml,...,Ok:mk,O:S{,...,O:S(’]JnyU LO:Bl,...,OinJ
if the following conditions hold:

* 3 a (renamed apart) clause C' belonging to the object O (C € ||O|));

* 9:mgu((Al,...,An,Bl,...,Bk,C'l,...,C'q),
(My, ..., My, Ry,..., R, S1,...,8,))

» FEval(GO) = v, where Eval denotes the evaluation of the guard G yielding
a computed substitution 7.

Notice that the application of substitutions is component-wise. The substitu-
tion #v is not applied to the atoms By, ..., By to avoid the creation of bindings
for their unbound arguments.

Even if the state of the computation is represented by one single multiset,
the rewriting rule applies to a subpart of this multiset which contains elements
related to a single object. In this respect, each object constitutes in practice
a separate context in a way similar to Linear Objects [5].

The computation can be defined in terms of applications of the rewriting
rules to disjoint subparts of the current state. Concurrency emerges from
the fact that more than one rewriting rule is applied at each step of the
computation. The condition to be satisfied in order to simultaneously apply
several rewriting rules is that their left- hand sides apply to disjoint sets of
mutable elements and messages.

The following rule states how the multiset S representing the current state
of the computation changes because of clause application. Let S be partitioned
into disjoint subparts, X;, ¢ = 1,...,h, and possibly overlapping subparts,
R;, i = 1,...,h (disjoint from X;). Intuitively, the idea is to permit the
parallel application of k clauses (with k£ < h) to disjoint subparts of the current
state (X;) which are consumed and rewritten (into subparts Y;) according to
rule —, and to possibly overlapping subparts of the current state (R;) which
are accessed in read-only mode, and left unchanged by clause application.
This behavior is represented more formally by the following rule:

X;,UR;, —, YUR; (Zzl,,k)
(§ — S\(X1U...UXy) UM u...UYy)

where R;, X; CSfori=1,... k.

Mutual exclusion on the mutable state of an object is automatically guar-
anteed by the above rule which allows the parallel reduction of clauses only if
they do not compete for the same data structure in the current state of the
computation.
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3.1 Relation with Rewriting Logic

DLO clauses can be interpreted as rewrite rules [19]. The outlined DLO
operational semantics, in fact, corresponds to deduction rules of Rewriting
Logic. In Rewriting Logic deduction is performed by concurrent rewriting
modulo structural axioms.

Different types of rewriting are usually considered [18]:

* term rewriting, where data structures to be rewritten are terms;
* graph rewriting, where data structures to be rewritten are labeled graphs;

* object-oriented rewriting, where data structures to be rewritten are ob-
jects that interact with each other via asynchronous message-passing.

All these forms of rewriting are supported in the Maude language, which
integrates in a very simple and natural manner functional, object-oriented,
relational and concurrent programming.

In DLO, instead, we consider only object-oriented rewriting. As shown in
[17], when Rewriting Logic is used for object-oriented programming, the struc-
tural axioms are associativity, commutativity and identity of a multiset union
operator that builds up the configuration of objects and messages. These ax-
ioms are implicit in our case, since the order of atoms and messages in a DLO
clause head is, in practice, not relevant and there exists the identity element
true with respect to composition of elements in a clause head. Furthermore,
as for object-oriented systems based on Rewriting Logic, we model the state
of the computation as a multiset.

It is worth to notice that, differently from (concurrent) term rewriting
[13,16] and object-oriented systems based on Rewriting Logic [17], we adopt
unification instead of matching for consumable atoms occurring in a clause
head. In the case of read-only atoms we use a matching algorithm.

Furthermore, differently from Rewriting Logic (and term rewriting sys-
tems), in our system congruence in rewriting terms is not present. In fact, in
DLO it does not happen that rewriting applies to a proper subterm. We use
standard unification (or matching, in the case of read-only atoms) algorithm
for rewriting terms, thus avoiding the sharing of (nested) data between rewrit-
ing clauses which can be a problem in parallel distributed implementations of
rewriting systems (see [16,18]).

Like in the language Maude [19,21], which is based upon conditional rewrit-
ing logic, DLO clauses can be conditioned via guards. Thus, DLO guarded
clauses are equivalent to conditional rewriting rules. However, the commit
operator introduced in DLO is an extra-logical operator. In fact, through this
operator computations are made deterministic. This leads to incompleteness
of the resulting logic system, but notably simplifies the implementation avoid-
ing the need for exploring all the alternative subparts of the current state that
can be rewritten.

Thanks to the committed-choice nature of DLO, each element of the cur-
rent, state of the computation will be rewritten by using at most one clause.
Therefore, it is not necessary to follow alternative paths originated by the
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application of different clauses to rewrite the same element. Notice that each
clause application would possibly assign a different value to the variables of
rewritten element.

3.2 Forms of Parallelism

DLO operational semantics outlines the potential parallelism present in the
language. The interesting feature is that parallelism has not to be explicitly
expressed by the programmer but it is implicitly exploited by the underly-
ing support. As many other concurrent logic programming languages, DLO
parallelism is fine-grained: this usually implies abundance of potential paral-
lelism. The implicit forms of parallelism exploited in DLO can be summarized
as follows:

o inter-object parallelism: object instances (belonging to the same or to differ-
ent classes) can execute in parallel since they apply to disjoint sets of atoms.
This form of parallelism is inherently related to the AN D-parallelism of logic
programming.

e intra-object parallelism: different threads of control can be simultaneously
active on the same object. In particular, different methods can be executed
in parallel if they do not modify the value of the same state variables, i.e.,
if they apply to disjoint sets of atoms to be consumed. This is always the
case if the object we consider is non-mutable, i.e., all its methods access
the object’s state variables in read-only mode. In this case, even several
applications of the same method for different requests are performed in par-
allel. If the object we consider is mutable, i.e., some of its methods changes
the object’s state, the commit operator ensures that only one method at
a time changes the state of the object. For example, methods projx and
projy of example 2.1 can be applied in parallel for the same point instance
since they do not involve the same variable. The method trans, instead,
will be executed in mutual exclusion with respect to both projx and projy
since it shares with them part of the mutable state. However, even if two
methods cannot be executed in parallel, both multi-head unification and
guard evaluation can be performed in parallel. The acceptances of the two
invocations of method trans and projx for an instance of the point class
are executed in parallel but, after commitment, only one of them will be
served.

How to practically support these different forms of parallelism in a distributed
system is discussed in section 4.

4 DLO Distributed Implementation

In this section, we describe the main features of the DLO implementation
on a distributed memory architecture. Distributed memory parallel systems
are significantly more problematic than shared memory ones, because of the
overhead present when reading and writing nonlocal variables.
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The DLO programming system is organized into several levels. It allows
programs written in the DLO language to be compiled and executed on a
parallel transputer-based architecture. The distinct parts composing the ar-
chitectural scheme are:

e The mapping of DLO programs into concurrent logic programs. In fact,
DLO is implemented by following a transformational approach by mapping
DLO programs into Rose [7] logic programs.

e The run-time environment. The Rose language support consists of a parallel
abstract machine which is an extension of the WAM [24]. The parallel
abstract machine of the Rose language has been specifically modified to
better fit the needs of DLO programming, in particluar to support read-
only atoms in the head of clauses.

e The physical architecture. It is represented by the MIMD distributed mem-
ory architecture, in this case the transputer-based Meiko Computing Sur-
face.

As in [21], the approach we consider for the implementation of DLO is
translation. The idea is to apply program transformation techniques which
are semantics- preserving. In this way, we can allow the full generality of
the language even if at the expense of efficiency. The target language for
transforming DLO programs is a concurrent logic language (Rose [7]) with
multi-head clauses. In Rose, inter-process communication is performed via
multi-head clauses as in [12,22], and AN D-parallel goals do not share variables
in order to avoid centralization points. Rose has been implemented on a
parallel architecture based on the transputer technology [8] by extending the
abstract machine for Prolog [24] with new instructions and data structures
supporting distributed unification, process creation and communication, and
control of non-determinism. In the resulting implementation of DLO, we map
each logic object into a set of Rose goals and clauses, messages between objects
into goal invocations, and object names into logic variables. Furthermore,
method definitions are translated into Rose clauses and inheritance is obtained
through the notion of clause union.

Example 4.1 Let us consider the class point of example 2.1. Its clauses are
transformed into the following Rose program P;:

*point(0), projx(0), y(0,Y) « true | y(0,0).
*point(0), projy(0), x(0,X) + true | x(0,0).
*point(0), trans(0,Dx,Dy), x(0,X), y(0,Y) «
X1 is X+Dx, Y1 is Y+Dy | x(0,X1), y(0,Y1).
*point(0), print(0), *x(0,X), *y(0,Y) ¢ true |
print_values(printer, [X,Y]).

where * is added for denoting read-only atoms.

Notice that objects are represented by Rose predicates (i.e., the “class”
predicates and the predicates corresponding to the object state), and state
change is still achieved by substituting values for the state variables in the
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recursive calls to these predicates. However, notice that if a method simply
accesses the state of an object for reading values but not for modifying them
(e.g., method print in class point), the predicates corresponding to the object
state in the resulting translation occur only in the head of the corresponding
Rose clause, being them read-only.

The translation approach is quite effective, and has been used in the past
to implement object-oriented systems on top of concurrent logic languages.
By translating distributed logic objects into Rose, we obtain a number of dis-
tinguishing features. In particular, since local and remote method invocations
are treated in a uniform way, it is possible to move objects at run-time among
the nodes of the distributed system, thus allowing dynamic load balancing.
This makes the real implementation scalable with the underlying architec-
ture. Moreover, object names being mapped into logic variables, intensional
messages are easily supported.

Parallelism and Granularity

The transformational approach supports all the forms of parallelism peculiar
to DLO. The inter-object parallelism is supported by the parallel execution of
Rose AND processes: object instances can execute in parallel. With regard to
intra-object parallelism, two methods corresponds to two Rose clauses which
are executed in parallel (at least after the commit phase), provided that they
rewrite disjoint subparts of an object state. Therefore, after the commit phase,
both the clauses will be able to proceed and execute the method body in
parallel.

The adopted forms of parallelism are fine grained, and can be efficiently
supported by the tightly coupled parallel architecture considered. The grain
of parallelism and the relative need of collecting parallelism depends on the
features of the available architecture. On a loosely coupled architecture (e.g.,
a network of workstations) an efficient implementation might require a kind
of serialization, in order to combine multiple processes (allocated on the same
processor) into one and replace local message sends with predicate calls in a
way very similar to what has been done for Actors [2].

Transparency

DLO objects are transparent with regard to parallelism and location. In fact,
when developing a DLO application the programmer has not to be aware of
the real degree of parallelism exploited. Parallelism is implicit, sequentiality
can be made explicit by using the sequential conjunctive operator. Mutual
exclusion in accessing the state variables of an object is directly guaranteed by
the underlying support provided that consumable atoms in the head of DLO
clauses are used.

Furthermore, it is not necessary to be aware of the physical location of an
object in order to send it a message. In particular, invoking a method of an
object residing on a remote node has exactly the same effect as if performed
locally, except for a performance penalty. Whenever an invocation is made,
the underlying implementation transparently determines the location of the
method that has to perform the task required.
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Replication

Object code is contained in the class, possibly replicated on several nodes.
Each method is handled by a Rose manager process. If the method code is
replicated on several nodes then more manager processes exist, one for each
copy. Each manager process remains idle until some request is sent to it.
When a request for a method is sent, the method acceptance phase is exe-
cuted in parallel by all the manager processes of the invoked method. Finally,
the method will be served by the first manager process that successfully exe-
cutes the commit phase. Obviously, creating copies of classes on several nodes
is quite expensive, since each method request must be dispatched to all the
copies. In addition, all copies are expected to perform the same computation,
thus introducing an increasing of the global computational load. This over-
head is however limited to the method acceptance phase until the commit.
The advantage is that class code replication leads to the replication of the
object control thread, although limited to the method acceptance phase. The
acceptance phase can successfully terminate if there is a sufficient degree of
replication to provide the requested method on at least one working node,
thus achieving a limited form of fault tolerance. Notice that this feature does
not provide a complete form of fault tolerance since the object is not entirely
replicated. In fact, the state variables of an object accessed by a method in
a consumable way are replicated in each node where a manager process for
the method has been created but, after the commit, only one copy of these
state variables survives (i.e., that allocated on the same node of the process
successfully completing the commit phase). Therefore, object state variables
move from node to node depending on the selected methods, determining a
migration transparent to the user, and controlled by the commit operator.

Communication

When translating DLO programs into Rose, we map objects’ names into logic
variables and this is a technique used in most implementations of logic objects.
In this way, the concept of message sending is quite far from message passing
in traditional object-oriented languages. A sender does not really send the
message to the receiver, but rather includes the identifier of the receiver in
the message and posts the message to a blackboard-like structure (the set of
current goals) from which the receiver picks it up by using unification. The
resulting communication mechanism is flexible, since no explicit communi-
cation pattern has to be established. Intensional messages can be directly
supported by using, in messages, logical variables in place of constants for
objects identifiers, and exploiting broadcasting. This, however, has the draw-
back of introducing inefficiencies, and motivated the adoption of a different
approach based on a direct implementation, which is presented in the next
section.

The overhead deriving from broadcast communication and distributed uni-
fication can be also reduced — as pointed out in [6,4] — by applying static
analysis techniques based on abstract interpretation. In particular, they can
be suitable to avoid some unification operations which are subject to failure
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and useless communications.

Discussion

Some attempts have been done in order to implement systems based on
Rewriting Logic on special purpose machines (see, for instance, [14]). Our pur-
pose, as in [16], is different since it consists in implementing DLO in general
purpose parallel machines, in particular MIMD distributed memory parallel
architectures like networks of Transputers. Other attempts of implementing
concurrent rewriting systems (and in particular the language SimpleMaude)
have been done also for SIMD and MIMD/SIMD architectures [18].

The first prototype developed has allowed to experiment the expressive
power of DLO (and Rewriting Logic) and its impact on distribution: some
nice features of distributed object-oriented systems such as dynamicity, trans-
parency, migration and dynamic load balancing are directly provided and even
enhanced in our system, with no need for a special treatment at support level.
In this respect, our work can be considered a concrete attempt to implement
Rewriting Logic on an MIMD distributed memory architecture.

First experimental results have shown the viability of the approach and its
scalability. We have experimented DLO for implementing a computational-
intensive object-oriented real application in the field of low-level vision [1].
Nonetheless, the translation approach suffers the overheads due to the high
cost of dynamic creation of processes and their scheduling, plus the cost of
message broadcasting and the cost of distributed unification.

Broadcasting arises because objects are mapped into logic variables and
thus this implementation does employ neither the object addresses nor the
inheritance structuring for introducing some kind of “indexing” in selecting
methods. In the following, we discuss how these sources of overhead can be
partially reduced by adopting a direct implementation for a subset of the DLO
language with single-named methods only.

5 A Direct Implementation

As pointed out in the previous section, there is an efficiency problem with the
translation approach, similar to the one present in the distributed implemen-
tation of a blackboard-like structure. The run-time support has to perform
multicasting (i.e., sending a message to a selected group of machines) or even
broadcasting communications (i.e., sending a message to all machines) even if
DLO messages are point-to-point.

In [20], Meseguer and Winkler introduced a subset of the Maude language
called SimpleMaude. SimpleMaude rules involve only (at most) one object and
one method in their left-hand side. This was mainly motivated by the need of
having an efficient implementation. Having at most one object in the head of a
rule allows to treat object identifiers as first class elements, and associate them
with specific addresses in the node where the object is located (see also [18]).
Moreover, messages can be sent to the object at the corresponding address,
thus avoiding broadcasting. Finally, having at most one message in the head
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of a rule allows to introduce indexing on inherited clauses.

In this section we briefly discuss a direct implementation for the subset of
DLO with single-named methods only. The fragment of Rewriting Logic here
considered corresponds, in practice, to that underlying SimpleMaude.

Object reification

In order to limit broadcasting, we should represent object identifiers as ma-
chine oriented effective address-like entities. This can be obtained by reifica-
tion, i.e., the direct mapping of object identifiers into process identifiers of the
run-time support. The sending of messages to the object is performed by post-
ing messages at the corresponding address. The broadcasting is substituted
by point-to-point message exchanges.

Indexing on inherited clauses

In order to support some kind of “indexing” in selecting methods, we rely on
data structures similar to C++ virtual tables. In particular, we associate with
each class C a class virtual predicate table where the addresses of the methods
of C are stored. Each entry in the table is a method name. Associated
with a method, there is the address of the clause defining the method. If a
method is defined by several clauses, then more than one address is reported.
When classes are linked into hierarchies, inheritance can be implemented by
building one virtual predicate table for each class. The skeleton of each table
is determined during the compilation.

Discussion

The drawback of avoiding the broadcast of messages is a more complex imple-
mentation of intensional messages. Nonetheless, as in [20], one process can be
created to handle this kind of messages and to broadcast them to each object
in the system.

Moreover, the reification of object identifiers adopted by the direct imple-
mentation reduces the transparency of DLO objects with respect to both
parallelism and location. In fact, the state variables of an object O are still
mapped into parallel processes which possibly migrate during the computa-
tion, but both the server process associated with O and the manager processes
of O’s methods are allocated on specific nodes and do not migrate during the
computation.

6 Conclusions

We have presented an object-oriented language based on Rewriting Logic,
and discussed its features with particular reference to its implementation on
a distributed parallel architecture. The implementation has been obtained
via translation on top of a concurrent logic language with committed-choice
multi-head clauses and restricted AND-parallelism. First experimental results
have shown the viability of the approach and its scalability. Nonetheless, the
translation approach suffers of the overhead due to the high cost of dynamic
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process creation, message passing among objects, plus the cost of scheduling
them, and the cost of distributed unification. A direct implementation has
been also proposed for a subset of the language with single-named methods
only.

The first prototype developed has allowed to experiment the expressive
power of DLO and its impact on distribution: some nice features of dis-
tributed object-oriented systems such as dynamicity, transparency, migration
and dynamic load balancing are directly provided and even enhanced in our
system, with no need for a special treatment at support level. In this respect,
our work can be considered a concrete attempt to implement (a subpart of)
Rewriting Logic on an MIMD distributed parallel memory architecture.
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