4,602 research outputs found

    Ada as an implementation language for knowledge based systems

    Get PDF
    Debates about the selection of programming languages often produce cultural collisions that are not easily resolved. This is especially true in the case of Ada and knowledge based programming. The construction of programming tools provides a desirable alternative for resolving the conflict

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 90's cannot enjoy an increased level of autonomy without the efficient use of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real time demands are met for large expert systems. Speed-up via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial labs in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems was surveyed. The survey is divided into three major sections: (1) multiprocessors for parallel expert systems; (2) parallel languages for symbolic computations; and (3) measurements of parallelism of expert system. Results to date indicate that the parallelism achieved for these systems is small. In order to obtain greater speed-ups, data parallelism and application parallelism must be exploited

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited

    Some Notes on the Past and Future of Lisp-Stat

    Get PDF
    Lisp-Stat was originally developed as a framework for experimenting with dynamic graphics in statistics. To support this use, it evolved into a platform for more general statistical computing. The choice of the Lisp language as the basis of the system was in part coincidence and in part a very deliberate decision. This paper describes the background behind the choice of Lisp, as well as the advantages and disadvantages of this choice. The paper then discusses some lessons that can be drawn from experience with Lisp-Stat and with the R language to guide future development of Lisp-Stat, R, and similar systems.

    Strategic Directions in Object-Oriented Programming

    Get PDF
    This paper has provided an overview of the field of object-oriented programming. After presenting a historical perspective and some major achievements in the field, four research directions were introduced: technologies integration, software components, distributed programming, and new paradigms. In general there is a need to continue research in traditional areas:\ud (1) as computer systems become more and more complex, there is a need to further develop the work on architecture and design; \ud (2) to support the development of complex systems, there is a need for better languages, environments, and tools; \ud (3) foundations in the form of the conceptual framework and other theories must be extended to enhance the means for modeling and formal analysis, as well as for understanding future computer systems

    An engineering approach to automatic programming

    Get PDF
    An exploratory study of the automatic generation and optimization of symbolic programs using DECOM - a prototypical requirement specification model implemented in pure LISP was undertaken. It was concluded, on the basis of this study, that symbolic processing languages such as LISP can support a style of programming based upon formal transformation and dependent upon the expression of constraints in an object-oriented environment. Such languages can represent all aspects of the software generation process (including heuristic algorithms for effecting parallel search) as dynamic processes since data and program are represented in a uniform format

    Logic programming in the context of multiparadigm programming: the Oz experience

    Full text link
    Oz is a multiparadigm language that supports logic programming as one of its major paradigms. A multiparadigm language is designed to support different programming paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with equal ease. This article has two goals: to give a tutorial of logic programming in Oz and to show how logic programming fits naturally into the wider context of multiparadigm programming. Our experience shows that there are two classes of problems, which we call algorithmic and search problems, for which logic programming can help formulate practical solutions. Algorithmic problems have known efficient algorithms. Search problems do not have known efficient algorithms but can be solved with search. The Oz support for logic programming targets these two problem classes specifically, using the concepts needed for each. This is in contrast to the Prolog approach, which targets both classes with one set of concepts, which results in less than optimal support for each class. To explain the essential difference between algorithmic and search programs, we define the Oz execution model. This model subsumes both concurrent logic programming (committed-choice-style) and search-based logic programming (Prolog-style). Instead of Horn clause syntax, Oz has a simple, fully compositional, higher-order syntax that accommodates the abilities of the language. We conclude with lessons learned from this work, a brief history of Oz, and many entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic Programming

    A LISP-Ada connection

    Get PDF
    The prototype demonstrates the feasibility of using Ada for expert systems and the implementation of an expert-friendly interface which supports knowledge entry. In the Ford LISP-Ada Connection (FLAC) system LISP and Ada are used in ways which complement their respective capabilities. Future investigation will concentrate on the enhancement of the expert knowledge entry/debugging interface and on the issues associated with multitasking and real-time expert systems implementation in Ada

    Next generation software environments : principles, problems, and research directions

    Get PDF
    The past decade has seen a burgeoning of research and development in software environments. Conferences have been devoted to the topic of practical environments, journal papers produced, and commercial systems sold. Given all the activity, one might expect a great deal of consensus on issues, approaches, and techniques. This is not the case, however. Indeed, the term "environment" is still used in a variety of conflicting ways. Nevertheless substantial progress has been made and we are at least nearing consensus on many critical issues.The purpose of this paper is to characterize environments, describe several important principles that have emerged in the last decade or so, note current open problems, and describe some approaches to these problems, with particular emphasis on the activities of one large-scale research program, the Arcadia project. Consideration is also given to two related topics: empirical evaluation and technology transition. That is, how can environments and their constituents be evaluated, and how can new developments be moved effectively into the production sector

    A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    Get PDF
    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control
    corecore