153 research outputs found

    Optical multiple access techniques for on-board routing

    Get PDF
    The purpose of this research contract was to design and analyze an optical multiple access system, based on Code Division Multiple Access (CDMA) techniques, for on board routing applications on a future communication satellite. The optical multiple access system was to effect the functions of a circuit switch under the control of an autonomous network controller and to serve eight (8) concurrent users at a point to point (port to port) data rate of 180 Mb/s. (At the start of this program, the bit error rate requirement (BER) was undefined, so it was treated as a design variable during the contract effort.) CDMA was selected over other multiple access techniques because it lends itself to bursty, asynchronous, concurrent communication and potentially can be implemented with off the shelf, reliable optical transceivers compatible with long term unattended operations. Temporal, temporal/spatial hybrids and single pulse per row (SPR, sometimes termed 'sonar matrices') matrix types of CDMA designs were considered. The design, analysis, and trade offs required by the statement of work selected a temporal/spatial CDMA scheme which has SPR properties as the preferred solution. This selected design can be implemented for feasibility demonstration with off the shelf components (which are identified in the bill of materials of the contract Final Report). The photonic network architecture of the selected design is based on M(8,4,4) matrix codes. The network requires eight multimode laser transmitters with laser pulses of 0.93 ns operating at 180 Mb/s and 9-13 dBm peak power, and 8 PIN diode receivers with sensitivity of -27 dBm for the 0.93 ns pulses. The wavelength is not critical, but 830 nm technology readily meets the requirements. The passive optical components of the photonic network are all multimode and off the shelf. Bit error rate (BER) computations, based on both electronic noise and intercode crosstalk, predict a raw BER of (10 exp -3) when all eight users are communicating concurrently. If better BER performance is required, then error correction codes (ECC) using near term electronic technology can be used. For example, the M(8,4,4) optical code together with Reed-Solomon (54,38,8) encoding provides a BER of better than (10 exp -11). The optical transceiver must then operate at 256 Mb/s with pulses of 0.65 ns because the 'bits' are now channel symbols

    Modulation and coding technology for deep space and satellite applications

    Get PDF
    Modulation and coding research and development at the Jet Propulsion Laboratory (JPL) currently emphasize Deep Space Communications Systems and advanced near earth Commercial Satellite Communications Systems. The Deep Space Communication channel is extremely signal to noise ratio limited and has long transmission delay. The near earth satellite channel is bandwidth limited with fading and multipath. Recent code search efforts at JPL have found a long constraint, low rate convolutional code (15, 1/6) which, when concatenated with a ten bit Reed-Solomon (RS) code, provides a 2.1 dB gain over that of the Voyager spacecraft - the current standard. The new code is only 2 dB from the theoretical Shannon limit. A flight qualified version of the (15, 1/6) convolutional encoder was implemented on the Galileo Spacecraft to be launched later this year. An L-band mobile link, use of the Ka-band for personal communications, and the development of subsystem technology for the interconnection of satellite resources by using high rate optical inter-satellite links are noted

    Design of FPGA-Implemented Reed-Solomon Erasure Code (RS-EC) Decoders With Fault Detection and Location on User Memory

    Get PDF
    Reed–Solomon erasure codes (RS-ECs) are widely used in packet communication and storage systems to recover erasures. When the RS-EC decoder is implemented on a field-programmable gate array (FPGA) in a space platform, it will suffer single-event upsets (SEUs) that can cause failures. In this article, the reliability of an RS-EC decoder implemented on an FPGA when there are errors in the user memory is first studied. Then, a fault detection and location scheme is proposed based on partial reencoding for the faults in the user memory of the RS-EC decoder. Furthermore, check bits are added in the generator matrix to improve the fault location performance. The theoretical analysis shows that the scheme could detect most faults with small missing and false detection probability. Experimental results on a case study show that more than 90% of the faults on user memory could be tolerated by the decoder, and all the other faults can be detected by the fault detection scheme when the number of erasures is smaller than the correction capability of the code. Although false alarms exist (with probability smaller than 4%), they can be used to avoid fault accumulation. Finally, the fault location scheme could accurately locate all the faults. The theoretical estimates are very close to the experiment results, which verifies the correctness of the analysis done.This work was supported in part by the National Natural Science Foundation of China under Grant 61501321, in part by the China Postdoctoral Science Foundation and Luoyang Newvid Technology Company, Ltd., and in part by the ACHILLES Project PID2019-104207RB-I00 funded by the Spanish Ministry of Science and Innovation

    A systolic array implementation of a Reed-Solomon encoder and decoder.

    Get PDF
    A systolic array is a natural architecture for the implementation of a Reed- Solomon (RS) encoder and decoder. It possesses many of the properties desired for a special-purpose application: simple and regular design, concurrency, modular expansibility, fast response time, cost- effectiveness, and high reliability. As a result, it is very well suited for the simple and regular design essential for VLSI implementation . This thesis takes a modular approach to the design of a systolic array based RS encoder and decoder. Initially, the concept of systolic arrays is discussed followed by an introduction to finite field theory and Reed- Solomon codes. Then it is shown how RS codes can be encoded and decoded with primitive shift registers and implemented using a systolic architecture. In this way, the reader can gain valuable insight and comprehension into how these entities are coalesced together to produce the overall implementation.http://archive.org/details/systolicarrayimp00mckeLieutenant, United States NavyApproved for public release; distribution is unlimited

    Tutorial on Reed-Solomon error correction coding

    Get PDF
    This tutorial attempts to provide a frank, step-by-step approach to Reed-Solomon (RS) error correction coding. RS encoding and RS decoding both with and without erasing code symbols are emphasized. There is no need to present rigorous proofs and extreme mathematical detail. Rather, the simple concepts of groups and fields, specifically Galois fields, are presented with a minimum of complexity. Before RS codes are presented, other block codes are presented as a technical introduction into coding. A primitive (15, 9) RS coding example is then completely developed from start to finish, demonstrating the encoding and decoding calculations and a derivation of the famous error-locator polynomial. The objective is to present practical information about Reed-Solomon coding in a manner such that it can be easily understood

    Multiple Cell Upsets Correction for OLS Codes

    Get PDF
    ABSTRACT: An Error Correction code with Parity check matrix is implemented which is other type of the One Step Majority Logic Decodable (OS-MLD) called as Orthogonal Latin Squares (OLS) codes. It is a concurrent error detection technique for OLS codes encoders and syndrome computation because of the fact that when ECCs are used, the encoder and decoder circuits can also suffer errors.These OLS codes are used to correct the memories and caches. This can be achieved due to their modularity such that the error correction capabilities can be easily adapted to the error rate or to the mode of the operation.OLS codes typically require more parity bits than other codes to correct the same number of errors. However, due to their modularity and the simple low delay decoding implementation these are widely used in Error Correction. All the errors that affect a single circuit node are detected by the parity prediction scheme. The area and latency values are monitored

    Π”Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹Π΅ Π²Π·Π²Π΅ΡˆΠ΅Π½Π½Ρ‹Π΅ ΠΊΠΎΠ΄Ρ‹ с суммированиСм Π² ΠΊΠΎΠ»ΡŒΡ†Π΅ Π²Ρ‹Ρ‡Π΅Ρ‚ΠΎΠ² ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ M=4

    Get PDF
    The paper describes research results of features of error detection in data vectors by sum codes. The task is relevant in this setting, first of all, for the use of sum codes in the implementation of the checkable discrete systems and the technical means for the diagnosis of their components. Methods for sum codes constructing are described. A brief overview in the field of methods for sum codes constructing is provided. The article highlights codes for which the values of all data bits are taken into account once by the operations of summing their values or the values of the weight coefficients of the bits during the formation of the check vector. The paper also highlights codes that are formed when the data vectors are initially divided into subsets, in particular, into two subsets. An extension of the sum code class obtained by isolating two independent parts in the data vectors, as well as weighting the bits of the data vectors at the stage of code construction, is proposed. The paper provides a generalized algorithm for two-module weighted codes construction, and describes their features obtained by weighing with non-ones weight coefficients for one of data bits in each of the subvectors, according to which the total weight is calculated. Particular attention is paid to the two-module weight-based sum code, for which the total weight of the data vector in the residue ring modulo M = 4 is determined. It is shown that the purpose of the inequality between the bits of the data vector in some cases gives improvements in the error detection characteristics compared to the well-known two-module codes. Some modifications of the proposed two-module weighted codes are described. A method for calculating the total number of undetectable errors in the two-module sum codes in the residue ring modulo M = 4 with one weighted bit in each of the subsets is proposed. Detailed characteristics of error detection by the considered codes both by the multiplicities of undetectable errors and by their types (unidirectional, symmetrical and asymmetrical errors) are given. The proposed codes are compared with known codes. A method for the synthesis of two-module sum encoders on a standard element base of the single signals adders is proposed. The classification of two-module sum codes is presented.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования особСнностСй обнаруТСния ошибок Π² ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… ΠΊΠΎΠ΄Π°ΠΌΠΈ с суммированиСм. Π’ Ρ‚Π°ΠΊΠΎΠΉ постановкС Π·Π°Π΄Π°Ρ‡Π° Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Π°, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго, для использования ΠΊΠΎΠ΄ΠΎΠ² с суммированиСм ΠΏΡ€ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½Ρ‹Ρ… дискрСтных систСм ΠΈ тСхничСских срСдств диагностирования ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ². ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ ΠΊΡ€Π°Ρ‚ΠΊΠΈΠΉ ΠΎΠ±Π·ΠΎΡ€ Ρ€Π°Π±ΠΎΡ‚ Π² области построСния ΠΊΠΎΠ΄ΠΎΠ² с суммированиСм ΠΈ описаниС способов ΠΈΡ… построСния. Π’Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ ΠΊΠΎΠ΄Ρ‹, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π΅Π΄ΠΈΠ½ΠΎΠΆΠ΄Ρ‹ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ значСния всСх ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… разрядов ΠΏΡƒΡ‚Π΅ΠΌ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ суммирования ΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ вСсовых коэффициСнтов разрядов, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΠ΄Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΌ Ρ€Π°Π·Π±ΠΈΠ΅Π½ΠΈΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° подмноТСства, Π² частности Π½Π° Π΄Π²Π° подмноТСства. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ класса ΠΊΠΎΠ΄ΠΎΠ² с суммированиСм, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… Π·Π° счСт выдСлСния Π΄Π²ΡƒΡ… нСзависимых частСй Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…, Π° Ρ‚Π°ΠΊΠΆΠ΅ взвСшивания разрядов ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° этапС построСния ΠΊΠΎΠ΄Π°. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ построСния Π΄Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹Ρ… Π²Π·Π²Π΅ΡˆΠ΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ описаны особСнности Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΈΠ· ΠΊΠΎΠ΄ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈ взвСшивании Π½Π΅Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΌΠΈ вСсовыми коэффициСнтами ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌΡƒ разряду Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΠΏΠΎΠ΄Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ осущСствляСтся подсчСт суммарного вСса. ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ Π΄Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹ΠΌ Π²Π·Π²Π΅ΡˆΠ΅Π½Π½Ρ‹ΠΌ ΠΊΠΎΠ΄Π°ΠΌ с суммированиСм, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… опрСдСляСтся суммарный вСс ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π² ΠΊΠΎΠ»ΡŒΡ†Π΅ Π²Ρ‹Ρ‡Π΅Ρ‚ΠΎΠ² ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ M=4. Показано, Ρ‡Ρ‚ΠΎ установлСниС нСравноправия ΠΌΠ΅ΠΆΠ΄Ρƒ разрядами ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях Π΄Π°Π΅Ρ‚ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ Π² характСристиках обнаруТСния ошибок ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с извСстными Π΄Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠΎΠ΄Π°ΠΌΠΈ. ΠžΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Ρ… Π΄Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹Ρ… Π²Π·Π²Π΅ΡˆΠ΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ². ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ способ подсчСта ΠΎΠ±Ρ‰Π΅Π³ΠΎ числа Π½Π΅ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… ошибок Π² Π΄Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ΄Π°Ρ… с суммированиСм Π² ΠΊΠΎΠ»ΡŒΡ†Π΅ Π²Ρ‹Ρ‡Π΅Ρ‚ΠΎΠ² ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ M=4 с ΠΎΠ΄Π½ΠΈΠΌ Π²Π·Π²Π΅ΡˆΠ΅Π½Π½Ρ‹ΠΌ разрядом Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· подмноТСств. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ характСристики обнаруТСния ошибок рассматриваСмыми ΠΊΠΎΠ΄Π°ΠΌΠΈ ΠΊΠ°ΠΊ ΠΏΠΎ кратностям Π½Π΅ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… ошибок, Ρ‚Π°ΠΊ ΠΈ ΠΏΠΎ ΠΈΡ… Π²ΠΈΠ΄Π°ΠΌ (ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½Ρ‹Π΅, симмСтричныС ΠΈ асиммСтричныС ошибки). ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ сравнСниС с извСстными ΠΊΠΎΠ΄Π°ΠΌΠΈ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ способ синтСза ΠΊΠΎΠ΄Π΅Ρ€ΠΎΠ² Π΄Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ² с суммированиСм Π½Π° стандартной элСмСнтной Π±Π°Π·Π΅ сумматоров Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… сигналов. Π”Π°Π½Π° классификация Π΄Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ² с суммированиСм

    Π”Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹Π΅ Π²Π·Π²Π΅ΡˆΠ΅Π½Π½Ρ‹Π΅ ΠΊΠΎΠ΄Ρ‹ с суммированиСм Π² ΠΊΠΎΠ»ΡŒΡ†Π΅ Π²Ρ‹Ρ‡Π΅Ρ‚ΠΎΠ² ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ M=4

    Get PDF
    ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования особСнностСй обнаруТСния ошибок Π² ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… ΠΊΠΎΠ΄Π°ΠΌΠΈ с суммированиСм. Π’ Ρ‚Π°ΠΊΠΎΠΉ постановкС Π·Π°Π΄Π°Ρ‡Π° Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Π°, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго, для использования ΠΊΠΎΠ΄ΠΎΠ² с суммированиСм ΠΏΡ€ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½Ρ‹Ρ… дискрСтных систСм ΠΈ тСхничСских срСдств диагностирования ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ². ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ ΠΊΡ€Π°Ρ‚ΠΊΠΈΠΉ ΠΎΠ±Π·ΠΎΡ€ Ρ€Π°Π±ΠΎΡ‚ Π² области построСния ΠΊΠΎΠ΄ΠΎΠ² с суммированиСм ΠΈ описаниС способов ΠΈΡ… построСния. Π’Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ ΠΊΠΎΠ΄Ρ‹, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π΅Π΄ΠΈΠ½ΠΎΠΆΠ΄Ρ‹ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ значСния всСх ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… разрядов ΠΏΡƒΡ‚Π΅ΠΌ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ суммирования ΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ вСсовых коэффициСнтов разрядов, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΠ΄Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΌ Ρ€Π°Π·Π±ΠΈΠ΅Π½ΠΈΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° подмноТСства, Π² частности Π½Π° Π΄Π²Π° подмноТСства. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ класса ΠΊΠΎΠ΄ΠΎΠ² с суммированиСм, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… Π·Π° счСт выдСлСния Π΄Π²ΡƒΡ… нСзависимых частСй Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…, Π° Ρ‚Π°ΠΊΠΆΠ΅ взвСшивания разрядов ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° этапС построСния ΠΊΠΎΠ΄Π°. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ построСния Π΄Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹Ρ… Π²Π·Π²Π΅ΡˆΠ΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ описаны особСнности Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΈΠ· ΠΊΠΎΠ΄ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈ взвСшивании Π½Π΅Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΌΠΈ вСсовыми коэффициСнтами ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌΡƒ разряду Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΠΏΠΎΠ΄Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ осущСствляСтся подсчСт суммарного вСса. ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ Π΄Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹ΠΌ Π²Π·Π²Π΅ΡˆΠ΅Π½Π½Ρ‹ΠΌ ΠΊΠΎΠ΄Π°ΠΌ с суммированиСм, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… опрСдСляСтся суммарный вСс ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π² ΠΊΠΎΠ»ΡŒΡ†Π΅ Π²Ρ‹Ρ‡Π΅Ρ‚ΠΎΠ² ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ M=4. Показано, Ρ‡Ρ‚ΠΎ установлСниС нСравноправия ΠΌΠ΅ΠΆΠ΄Ρƒ разрядами ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях Π΄Π°Π΅Ρ‚ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ Π² характСристиках обнаруТСния ошибок ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с извСстными Π΄Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠΎΠ΄Π°ΠΌΠΈ. ΠžΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Ρ… Π΄Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹Ρ… Π²Π·Π²Π΅ΡˆΠ΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ². ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ способ подсчСта ΠΎΠ±Ρ‰Π΅Π³ΠΎ числа Π½Π΅ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… ошибок Π² Π΄Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ΄Π°Ρ… с суммированиСм Π² ΠΊΠΎΠ»ΡŒΡ†Π΅ Π²Ρ‹Ρ‡Π΅Ρ‚ΠΎΠ² ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ M=4 с ΠΎΠ΄Π½ΠΈΠΌ Π²Π·Π²Π΅ΡˆΠ΅Π½Π½Ρ‹ΠΌ разрядом Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· подмноТСств. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ характСристики обнаруТСния ошибок рассматриваСмыми ΠΊΠΎΠ΄Π°ΠΌΠΈ ΠΊΠ°ΠΊ ΠΏΠΎ кратностям Π½Π΅ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… ошибок, Ρ‚Π°ΠΊ ΠΈ ΠΏΠΎ ΠΈΡ… Π²ΠΈΠ΄Π°ΠΌ (ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½Ρ‹Π΅, симмСтричныС ΠΈ асиммСтричныС ошибки). ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ сравнСниС с извСстными ΠΊΠΎΠ΄Π°ΠΌΠΈ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ способ синтСза ΠΊΠΎΠ΄Π΅Ρ€ΠΎΠ² Π΄Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ² с суммированиСм Π½Π° стандартной элСмСнтной Π±Π°Π·Π΅ сумматоров Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… сигналов. Π”Π°Π½Π° классификация Π΄Π²ΡƒΡ…ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ² с суммированиСм

    Бпособ построСния сСмСйства ΠΊΠΎΠ΄ΠΎΠ² с суммированиСм с наимСньшим ΠΎΠ±Ρ‰ΠΈΠΌ количСством Π½Π΅ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… ошибок Π² ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…

    Get PDF
    The research results of the methods for formation of separable sum codes with the minimum number of undetectable errors in data vectors are presented. A formula for counting the number of undetectable errors in data vectors and codes family properties are given. A universal method for formation of such codes is shown, which makes it possible for each value of the data vector length to obtain a whole family of codes that also have different distributions of undetectable errors by type and multiplicity. An example of codes formation, methods for analyzing characteristics, code comparison are presented. A method for synthesizing coders of developed sum codes is suggested.Β Π˜Π·Π»ΠΎΠΆΠ΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований способов построСния Ρ€Π°Π·Π΄Π΅Π»ΠΈΠΌΡ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ² с суммированиСм с наимСньшим ΠΎΠ±Ρ‰ΠΈΠΌ количСством Π½Π΅ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… ошибок Π² ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ подсчСта числа Π½Π΅ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… ошибок Π² ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… ΠΈ свойства Π΄Π°Π½Π½ΠΎΠ³ΠΎ класса ΠΊΠΎΠ΄ΠΎΠ². ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΉ способ построСния Ρ‚Π°ΠΊΠΈΡ… ΠΊΠΎΠ΄ΠΎΠ², Π΄Π°ΡŽΡ‰ΠΈΠΉ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ значСния Π΄Π»ΠΈΠ½Ρ‹ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ получСния Ρ†Π΅Π»ΠΎΠ³ΠΎ сСмСйства ΠΊΠΎΠ΄ΠΎΠ², ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… ΠΊ Ρ‚ΠΎΠΌΡƒ ΠΆΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ распрСдСлСниями Π½Π΅ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… ошибок ΠΏΠΎ Π²ΠΈΠ΄Π°ΠΌ ΠΈ кратностям. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ построСния ΠΊΠΎΠ΄ΠΎΠ², мСтодология Π°Π½Π°Π»ΠΈΠ·Π° ΠΈΡ… характСристик, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄Π°Π½ΠΎ сравнСниС ΠΊΠΎΠ΄ΠΎΠ² ΠΌΠ΅ΠΆΠ΄Ρƒ собой. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ синтСза ΠΊΠΎΠ΄Π΅Ρ€ΠΎΠ² Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ² с суммированиСм
    • …
    corecore