
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1985

A systolic array implementation of a Reed-Solomon

encoder and decoder.

McKenzie, Stephen Scott.

http://hdl.handle.net/10945/21576

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
A SYSTOLIC ARRAY IMPLEMENTATION OF A

REED--SOLOMON ENCODER AND DECODER

by

Stephen Scott McKenzie

June 19 8 5

Thesis; Adv isor: H. Fredricksen

Approved for public release; distribution is unlimited

T223866

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

A Systolic Array Implementation of a

Reed-Solomon Encoder and Decoder

5. TYPE OF REPORT & PERIOD COVERED
Master's Thesis;
June 19 8 5

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORS.)

Stephen Scott McKenzie
8. CONTRACT OR GRANT NUMBER*-

*.)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93943-5100

10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93943-5100

12. REPORT DATE

June 19 8 5

13. NUMBER OF PAGES

92
14. MONITORING AGENCY NAME & AODRESSf/l dillerent from Controlling Office) 15. SECURITY CLASS, (ol thle report)

Unclassified

15«. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION ST ATEMEN T (ol this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, II dltferent trom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If neceeaary and Identity by block number)

Systolic Arrays, Finite Fields, Reed-Solomon Codes,
RS Encoder, RS Decoder, Systolic Multiplier, Primitive
Polynomial, Primitive Shift Register, VLSI, Pipelining,
Parallelism

20. ABSTRACT (Continue on reverse aide II neceeaary and Identity by block number)

A systolic array is a natural architecture for the
implementation of a Reed-Solomon (RS) encoder and decoder.
It possesses many of the properties desired for a special-
purpose application: simple and regular design, concurrency,
modular expansibility, fast response time, cost-effectiveness,
and high reliability. As a result, it is very well suited
for the simple and regular design essential for VLSI
implementation

.

dd ,;
FORM ,...,
AN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S N 0102- LF- 014- 6601
SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntared)

SECURITY CLASSIFICATION OF THIS PAGE (Whrni Dmtm Bntrntrnd)

20 (Continued)

This thesis takes a modular approach to the design of a
systolic array based RS encoder and decoder. Initially, the
concept of systolic arrays is discussed followed by an
introduction to finite field theory and Reed-Solomon codes.
Then it is shown how RS codes can be encoded and decoded
with primitive shift registers and implemented using a
systolic architecture. In this way, the reader can gain
valuable insight and comprehension into how these entities

s are coalesced together to produce the overall implementation

S N 0102- LF- 014-6601

SECURITY CLASSIFICATION OF THIS PAGE(Tf>»n Dmtm Entmrmd)

I
Approved for public release; distribution is unlimited

A Systolic Array Implementation of a
Reed- Solomon Encoder and Decoder

by

Stephen Scott McKenzie
Lieutenant, United States Navy

B.S., United States Naval Academy, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 19 85

ABSTRACT

A systolic array is a natural architecture for the

implementation of a Reed- Solomon (RS) encoder and decoder.

It possesses many of the properties desired for a special-

purpose application: simple and regular design, concurrency,

modular expansibility, fast response time, cost- effective-

ness, and high reliability. As a result, it is very well

suited for the simple and regular design essential for VLSI

implementation

.

This thesis takes a modular approach to the design of a

systolic array based RS encoder and decoder. Initially, the

concept of systolic arrays is discussed followed by an

introduction to finite field theory and Reed- Solomon codes.

Then it is shown how RS codes can be encoded and decoded with

primitive shift registers and implemented using a systolic

architecture. In this way, the reader can gain valuable

insight and comprehension into how these entities are

coalesced together to produce the overall implementation.

TABLE OF CONTENTS

I. INTRODUCTION . 10

II. SYSTOLIC ARRAYS 13

A. BACKGROUND 13

B. PRINCIPLE OF OPERATION 17

III. FINITE FIELD THEORY 19

A. BACKGROUND 19

B. AN EXAMPLE OF THE CREATION OF A FIELD 21

IV. REED- SOLOMON CODES 23

A. BACKGROUND 23

B. GENERIC ARCHITECTURE 24

V. IMPLEMENTATION THEORY 33

A. BACKGROUND 3 3

B. PRIMITIVE BINARY SHIFT REGISTER DESIGN 33

C. CODING THEORY 38

D. MINIMAL POLYNOMIALS 40

E. SYSTOLIC ARRAY MULTIPLIER 46

VI. IMPLEMENTATION 5 4

A. BINARY ENCODER 54

1. Encoding Process 54

2. Single- Error- Correcting Binary Encoder ... 56

3. Double- Error- Correcting Binary Encoder ... 56

B. REED- SOLOMON ENCODER 5 8

C. BINARY DECODER 60

1. Decoding Process 62

2. Single- Error- Correcting Binary Decoder ... 62

3. Double- Error- Correcting Binary Decoder ... 74

D. REED- SOLOMON DECODER 80

VII. CONCLUSION 83

LIST OF REFERENCES 90

BIBLIOGRAPHY 91

INITIAL DISTRIBUTION LIST 92

LIST OF TABLES

I. REPRESENTATION OF GF(2 4
) 22

II. REGISTER CONTENTS AFTER SUCCESSIVE CLOCK SIGNALS. . 36

III. CYCLOTOMIC COSETS 43

IV. MINIMAL POLYNOMIALS OF ELEMENTS IN GF(2 4
) 45

V. COMPUTATION OF P = AB + C IN GF(2 4) 50

VI. VERIFICATION OF THE CODE POLYNOMIAL 63

VII. SYNDROME CALCULATION USING LONG DIVISION 68

VIII. CORRECTION AND DECODING PROCESS 72

LIST OF FIGURES

2.1 Various Systolic Array Configurations 16

2.2 The Concept of a Systolic Processor Array 18

4.1 A Reed- Solomon Codeword 25

4.2 A Systolic Architecture 29

4.3 The Systolic Cell Structure 31

5.1 A 4-Stage Primitive Shift Register 35

5 .2 The Encoding Process 39

5.3 A Systolic Multiplier for the Finite Field
GF(2 4

) 51

5 .4 The Circuit of the Cell Lj_ 52

6.1 A Single- Error-Correcting Binary Encoder 57

6.2 A Double- Error- Correcting Binary Encoder 59

6.3 The RS Encoder 61

6.4 The Error Detection Register 65

6.5 The Error Correction Register 67

6.6 The Initial Single- Error-Correcting Binary
Decoder 69

6.7 The Complete Single- Error- Correcting Binary
Decoder 71

6.8 Stage I: The Syndrome Generator 76

6.9 Stage II: The Central Galois Field Processor ... 77

6.10 Stage III: The Chien Searcher 78

6.11 The Complete Double- Error- Correcting Binary
Decoder 79

6.12 The RS Decoder Architecture 86

6.13 The RS Decoding Timing Chart 87

I. INTRODUCTION

In this very volatile and technological age, it is

imperative that communication links and computer memories

transmit information reliably and quickly. However, in many

cases this is virtually impossible because noise causes the

received data to differ significantly from the original

data. In order to rectify this situation error-correcting

codes have been developed to enable a system to continually

maintain a high degree of reliability despite the presence

of noise. To accomplish the error correction, in addition

to the data or information bits that are transmitted, some

additional redundant-check bits or parity bits are also

transmitted. In this way, although the noise may introduce

some errors in either the transmitted data bits or the

transmitted check bits, there are usually still enough

uncorrupted bits available to the receiver to allow a

sophisticated decoder to correct the errors. In fact, only

a modest amount of redundancy is actually needed to ensure

that the probability of the decoding error is negligibly

small. [Ref. 1]

Nonetheless, unlike the encoders and decoders of the

1950 's and 1960's which were constrained by digital hardware

costs and virtually nonexistent chip technology, today's

10

encoders and decoders coupled with significant improvements

in their associated algorithms have become, and will con-

tinue to be, increasingly attractive from an economic

viewpoint.

One such class of error-correcting codes which is very

popular in the communication circles and is paramount in

this author's discussion of systolic array encoders and

decoders are the Reed- Solomon (RS) codes. These codes can

correct both random and burst errors over a communication

channel, and as such are ideal for the very low error pro-

babilities needed for reliable space communications. Still,

the RS codes are only as effective as the complexity of the

encoder that produces them and the decoder by which errors

are corrected. The encoder complexity is directly propor-

tional to the error- correcting capability of the code, the

speed of the encoding process, and the interleaving level

used, i.e., the number of original codewords which are

multiplexed together to increase the immunity of codes to

burst errors [Ref. 1], In fact, for truly reliable space

communications there is a bonafide need to use RS codes with

a large error-correcting capability and an equally large

interleaving level. As a result, one is especially

interested in decreasing or minimizing the complexity of an

RS encoder while simultaneously ensuring maximum performance

and high reliability. Clearly, what is needed for this type

of application is a special- purpose system which compliments

11

the for ernent ioned attributes. Therefore, a systolic array

is a natural architecture for the simple, regular, and cost-

effective implementation of an RS encoder and decoder.

In an effort to assist the reader in simplicity and

comprehension, this author has taken the pertinent informa-

tion vital to the thesis and created a chapter for each.

After systolic arrays are introduced in Chapter II the

necessary fundamentals of finite fields for an understanding

of Reed-Solomom codes is discussed in Chapters III and IV.

In Chapter V a systolic array multiplier for finite fields

is discussed and finally in Chapter VI the encoder and

decoder for binary codes is described as well as the encoder

and decoder for RS codes.

12

II. SYSTOLIC ARRAYS

A. BACKGROUND

It is clear today that developments in microelectronics

have made a revolutionary impact on computer design

[Ref. 2]. For example, integrated circuit technology has

made a significant increase in the number and complexity of

components that can now fit on a chip or a printed circuit

board. In fact, with the component density presently

doubling every one- to- two years, the notion of the million-

transistor chip will soon be a reality [Ref. 3]. Commen-

surate with this major increase in chip density is the

utilization of highly parallel computing structures which,

almost by definition, implies a basic computational element

repeated hundreds or thousands of times. This architectural

style, which has structural properties suitable for VLSI

implementation, reduces the design problem by several orders

of magnitude. As a result, we are interested in high-

performance parallel structures that can be implemented

directly via very economical hardware devices [Ref. 2]. In

other words, cost-effectiveness has always been, and will

continue to be, a major concern in designing special- purpose

VLSI systems; their cost must be low enough to justify their

limited applicability. Furthermore, if a structure can

truly be decomposed into a few types of building blocks

13

which are used repetitively with simple interfaces, tremen-

dous savings can be achieved.

This is especially true for VLSI designs where a single

chip usually comprises hundreds of thousands of identical

components. Clearly, in order to overcome this

complexity, simple and regular designs are essential. In

fact, VLSI systems which are based on simple, regular lay-

outs are very likely to be modular and therefore adjustable

to various performance levels. Still, with the technological

indication of a diminishing growth rate for component speed,

any major improvement in computation speed must come from

the concurrent use of many processing elements. [Ref. 3]

The degree of concurrency in a VLSI computing structure

is largely determined by the underlying algorithm.

Consequently, massive parallelism can be achieved if the

algorithm is designed to exploit high degrees of pipelining

and multiprocessing. For instance, when a large number of

processing elements work simultaneously, coordination and

communication become significant—especially with VLSI tech-

nology where routing costs dominate the power, time, and

area required to implement a computation. Thus, the

requirement is to design algorithms that support high

degrees of concurrency, and at the same time to employ only

simple, regular communication and control to ensure effi-

cient implementation. [Ref. 4]

14

Clearly, what is required is a special-purpose design

which employs simple and regular communication paths for

multiprocessor structures in addition to pipelining as a

general method for utilizing these structures. In short,

systolic arrays provide a realistic model of computation

which captures these concepts of pipelining, parallelism,

and interconnection structures.

According to Kung and Leiserson [Ref. 2]:

A systolic array is a collection of relatively simple
processing units, usually of the same type, which are
connected together by a simple communication network and
that operate in parallel, as depicted in Figure 2.1.
The performance advantage of a systolic array architec-
ture is that it uses each datum retrieved from memory
numerous times without having to store and retrieve
intermediate results, thus allowing significant speedups
relative to the memory bandwidth. Thus, a systolic
system is a network of processors which rhythmically
computes and passes data through the system. The
analogy is to the rhythmic contraction of the heart
which pulses blood through the circulatory system of the
body. Each processor in a systolic network can be
thought of as an element through which multiple streams
of data are pumped. The regular beating of these
parallel processors maintains a constant flow of data
throughout the entire network. As data items are pumped
through the network some constant-time computation is
performed and, depending on the operation, updates of
some of the items may occur. However, unlike the
closed-loop circulatory system of the body, a systolic
computing system usually has ports into which inputs
flow, and ports from which the results of the computa-
tion are received. Thus, a systolic system can be
viewed as a pipelined system—one in which input and
output occur with every pulsation.

As a result, this makes it extremely attractive for a

wide class of compute-bound computations where multiple

operations are performed on each data item in a repetitive

manner

.

15

(a). ONE-DIMENSIONAL LINEAR ARRAY

(c) TWO-DIMENSIONAL SQUARE ARRAY

(b) TRIANGULAR ARRAY

(d) TWO-DIMENSIONAL HEXAGONAL ARRAY

Figure 2.1 Various Systolic Array Configurations

16

B. PRINCIPLE OF OPERATION

The basic principle of a systolic array is illustrated

in Figure 2.2. As stated earlier, by replacing a single

processing element (PE) with an array of processing

elements, a higher computation throughput can be achieved

without increasing the memory bandwidth.

Suppose each processing element in Figure 2.2 operates
with a clock period of 100 nanoseconds (ns). The con-
ventional memory-processor organization in Figure 2.2a
has at most a performance of 5 million operations per
second (MOPS). With the same clock rate, the systolic
array processor will result in 30 MOPS performance.
This gain in processing speed can also be justified with
the fact that the number of pipeline stages has been
increased six times in Figure 2.2b. Being able to use
each input data item a number of times is just one of
the many advantages of the systolic approach. Other
advantages include modular expansibility, simple and
regular data and control flows, use of simple and
uniform cells, elimination of global broadcasting,
limited fan-in and fast response time. [Ref. 3]

With the above criteria a systolic array is a natural

architecture for the implementation of an RS encoder and

decoder which will become apparent after our introduction of

Reed-Solomon codes in Chapter IV.

17

MFMORY S
Vs

^ PE^

(a) THE CONVENTIONAL PROCESSOR

MEMORY

5> PE PE PE PE

<

PE PE

(b) A SYSTOLIC PROCESSOR ARRAY

Figure 2.2 The Concept of a Systolic Processor Array

III. FINITE FIELD THEORY

A. BACKGROUND

Finite or Galois fields (named after the nineteenth

century French mathematician Evariste Galois) play many

important and diverse roles in numerous applications ranging

from digital signal processing to switching theory. How-

ever, in this thesis we are concerned with their use in the

construction of Reed- Solomon error- correcting codes. We

begin with a general analysis of the pertinent facts

regarding finite fields. In the next chapter the necessary

facts about Reed-Solomon codes are discussed.

A field is a set of elements, including and 1, any

pair of which may be added or multiplied (denoted by + and

*, respectively) to give a unique result in the field. The

addition and multiplication are associative and commutative,

and multiplication distributes over addition in the usual

way: u* (v+w)=u*v+u*w. Every field element u has a unique

negative -u such that u+(-u)=0. Every nonzero field element

u has a unique reciprocal field element 1/u, such that

u*(l/u)=l. For every field element u, 0+u=u=l*u, and 0*u=0.

Thus the numbers and 1 are the additive and multiplicative

identities, respectively. [Ref. 5]

The order of a field is the number of elements in the

field. If the order is infinite, we call the field an

19

infinite field. The rational numbers, the real numbers, and

the complex numbers are all examples of infinite fields. If

the number of elements is finite we call the field a finite

field [Ref . 5]

.

For any prime p and any positive integer m a Galois

field denoted GFfp™) or GF(q) exists. We can construct a

field containing p^ elements as an algebra of polynomials

modulo an irreducible polynomial over GF(p) of degree m.

Addition is bit- by-bit modulo p addition.

The multiplicative group of the nonzero field elements

is cyclic, i.e., it is a group that consists of all the

powers of one of its elements, 3. Multiplication is defined

as 3^* 3 J = 3^-+ D where i+j is computed modulo (p111-!) and g is a

generator of this group. A generator of this multiplicative

group, called a primitive element , is a root of an irre-

ducible polynomial over the prime field GF(p). This

irreducible polynomial, called a primitive polynomial , is

the minimal polynomial of the primitive element, i.e., the

polynomial of least degree with the primitive element 3 as a

root. Generally speaking, an irreducible polynomial is

analogous to a prime number: it has no nontrivial factors.

Lastly, the Galois fields that can be created by taking

residue or equivalence classes of polynomials modulo an

irreducible polynomial over GF(p) are said to be fields of

characteristic p. Thus, GF(pm) i s a field of characteristic

p for each choice of positive integer m [Ref. 6]

.

20

B. AN EXAMPLE OF THE CREATION OF A FIELD

Consider the Galois field GF(2 4). It has 2 4 elements

and may be constructed as the field of polynomials over

GF(2) modulo the irreducible polynomial 1+x+x4 . If we let g

represent a root of 1+x+x4 , then it is also a primitive

element of the field. Field addition of the elements is

bit-by-bit modulo 2 addition while multiplication of the

elements is described using the primitivity of the element

3. Thus, $i* $3 = $i+ i where i+j is reduced modulo 15/ if

necessary. For example, given the field elements pi 3 and

$1 two of the 15 nonzero field elements listed in

Table I, we can easily demonstrate both operations:

3l3+39 =
(g3+ 32+1)+(33 + 3) =2 g3+

g

2+ 3+1=32+

3

+i= 3IO while gl3*39 =

313+9 = 322 = 322-15 = 37 = 33+3+1.

21

TABLE I

REPRESENTATION OF GF (2)

FIELD
ELEMENT BETA POLYNOMIAL 4-TUPLE

B°-l 1 10

6
1
=B 6 10

6
2
=B

2
e
2 10

3 3
6 =B B

3 00 1

6
4
=6+l 1+6 110

5 4
6 =6(6) 6 + B

2 110
6 5

3 =B(3) s
2

B
3 11

e
7
=e (3

6
) 1+6 + 6

3 110 1

Z
8
=Z(Z

7
) 1 + B

2 10 10

$
9
=&($

8
) 6 + B

3 10 1

$
10

=&{$
9

) 1 + 6 + B
2 1110

B
l:L

= B(6
10

) 6- + s
2

B
3 111

12 11
1 + 6 + B

2
+ B

3 1111
13 12

1 + B
2

B
3 10 11

14 13
6 =e (b) 1 + B

3 10 1

22

IV. REED- SOLOMON CODES

A. BACKGROUND

Reed- Solomon (RS) codes are Bose-Chaudhur i-Hocquenghem

(BCH) codes over GF(q) of length q-1. They are error-

correcting codes which are used in many special- purpose

applications ranging from deep- space communications and

spread spectrum to digital audio disk systems and secure

data transmissions [Ref. 7]. These codes can correct both

random and burst errors over a communication channel and

hence are ideal for the numerous, real-time, and reliable

applications demanded by these applications. The complexity

of RS encoders and decoders is proportional to the error-

correcting capability of the code, the speed of the decod-

ing, and the interleaving depth used [Ref. 8]. For truly

reliable communications there is a very strong tendency to

use RS codes with a large error-correcting capability and an

equally large interleaving level. Hence, one is especially

interested in minimizing the complexity of RS encoders and

decoders for communications and other pertinent applica-

tions. Toward this end, there is a considerable interest in

systolic array construction and eventual VLSI implementation

of RS encoders and decoders which yield significant savings

in size, weight, and power consumption while simultaneously

providing high reliability.

23

In this chapter we look at a generic construction and

architecture of an RS encoder developed by Johl [Ref. 9]

and use this design as a foundation for the subsequent

discussion and implementation in the later chapters. This

implementation utilizes a systolic architecture of identical

cells arranged in a linear array, .each executing a finite-

field multiplication and addition in a pipelined manner;

thereby, significantly increasing the throughput rate.

Also, since the layout of the cell need only be done once

and then replicated, it is extremely attractive for eventual

VLSI implementation.

B. GENERIC ARCHITECTURE

The RS code is a block code which consists of symbols of

more than one bit. When each symbol is J-bits wide, an RS

codeword has (2J-1) symbols. As depicted in Figure 4.1, an

RS code can be designed to be capable of correcting E errors

with each codeword consisting of I information symbols,

together with 2E parity or check symbols. As an example,

given the irreducible polynomial 1+3+3^=0 and its corre-

sponding finite field as described in Table I we are able to

establish an important foundation vital to the development

of a generic RS encoder. This RS code consists of a total of

15-four bit symbols for each codeword. If this particular

code should correct one error, it would need two parity

symbols and therefore would contain thirteen information

24

in

H

yV

en

o
S
0)

CM

T3
S-i

O

<u

tJ
o
u
c
o
E
o
rH

O
CO

I

(U

0)

Pi

CD

5-1

P
Cn
•H
EH

25

symbols. This representation is known as an RS (15,13)

code, where the first integer depicts the total number of

symbols in the codeword, and the second integer indicates

the number of information symbols. It is the responsibility

of the encoder to use the information symbols to generate

the check or parity symbols for the codeword. The informa-

tion symbols are treated as coefficients of a polynomial

f(x),

2J-i-2E

f(x) =

i=l

2J-l-i

where f^ is the i tn transmitted information symbol. The

corresponding generator polynomial is known as g(x).

2E

g(x) = (x+B 1
)

i = l

Then, the 2E parity symbols are defined as the coefficients

of the remainder of f(x)/g(x). Therefore, in the RS (15,13)

code previously mentioned

g(x) =

i=0.

(x+eM

(x+6 1)(x+3 2
)

x 2 +(3
1 +6 2)x+3 3

x 2+B 5 x+0 3

26

Furthermore, let us assume that the thirteen information

symbols are 3
6

/ 3
1

/ S
8

, S
2

/ 3
4

3
5

/ 3
12

/ S
7

1 3
9

, S
11

/ B
14

/

3
3

, 3
13

. Then,

13

f.x
15 ' 1

1

i=l

= f1 x
14+f 2 x

13+f3X12 f4X11+f5X10 + f6 x5 + f7 x
8+f g x

7+f9x6+f10 x5

+ fll x4+f12 x3 + f13 x2

= 36x14+31 x13+S8 x12+e2 x11+e4 x 10+s5 x9 +e12 x8 + g7 x7 + 3
9 x6 + B

ll x5

+ 3
14 x4+33 x3+ e

13 x 2

Performing the required division, f(x)/g(x)

3x +3x +3x +...+ 3 x+3x+0
2^.5 io3L6 14^ 1 13^ 8 12^ L 14 4^ 3 3^ „13 2x+3x+3l3x + 3 x + 3 x +...+ 3 x + 3 x + 3 x

6 14^ 11 13 9 123x +3 x + 3 x
6 13 12 12^ 2 113x +3 x +3x
6 13^,11 12^ 9 113x +3 x + 3 x

o iTTJl lr a 103x +3 x +3x
12 L 5 11 3 103x +3x +3x

,
14 4 X 14 3 13 2

I x + 3 x + 3 x

,
14 4 ^ n4 3 L 2 2

? x + 3 x + 3 x

9 3^ 14 2^n
3 x +3 x +0 x

9 3 L 14 2^ 123x +3 x+3 x

«12
3 x

x

3
12

x+0

27

Hence, the remainder we seek is B^, and thus the corre-

sponding 15- symbol codeword is 3
6

e
1

$8 b
2

3
4

35 312 S
7 39 6

11
S
14 3

3I3 gl2o where the first thirteen symbols represent the

information symbols and the last two symbols represent the

parity symbols. [Ref. 9]

The architecture of the systolic implementation consists

of a regular array of identical cells. Division is per-

formed in a pipelined manner by simultaneously entering the

highest order of terms of the f(x) and g(x) polynomials on

the left most cell and generating the appropriate codeword

on the far right, as depicted in Figure 4.2. In fact, a

codeword can immediately follow the previous one without any

interruption in the pipeline flow. Likewise, the control is

also systolic. One control bit pipeline path will signal

the start of a new codeword; another will signal the start

of the division operation. Meanwhile, each cell of the

array will hold one term of the quotient. As a result, if d

represents the difference in degrees between two poly-

nomials, then

d=[deg f(x)-deg g(x)]

and thus d+1 cells are required. For example,

deg f(x) = 14

deg g(x) =2

d = 12 (degree of quotient)

28

u

A

U
P
+J

U
<U

•P
•H
Xi
O
M
<C

u
-H

X 7F"

o
•P
CO

CN

03

5-1

P
tn
•H
En

M-l

^X

en

29

From our previous calculation, the quotient was ($ x±2+ $6x11

+ gO x10+ . . # + gl4 x 2+ 39 x+o) . Since it consists of thirteen

terms, thirteen cells would be needed. In general,

deg f(x) = 2^-2

deg g(x) = 2E

d = 2J-2E-2

and so the total number of cells required is d+1 or 2 J-2E-1.

[Ref. 9]

The operation of each cell is simple and regular.

Essentially, it accomplishes one line of the normal division

by initially determining the specific term of the quotient,

multiplying by the divisor, subtracting the result from the

dividend, and finally passing along the divisor and partial

result to the next cell. More specifically, there are three

J-bit data paths and two 1-bit control paths, as shown in

Figure 4.3. The function of the C data path is to allow the

information symbols to pass through the array unchanged

while the other two data paths, A and B, are for the

dividend and divisor, respectively. The register Q is set

at the start of the division, and remains the same through-

out the polynomial division of one block. The register B is

used as a temporary storage device. While a control bit

accompanies the first byte of information to signal the

start of a new codeword a preceding start bit, one-half the

rate of the control bit, initiates the division operation in

30

in

B .

in

C ..

in

CONTROL .

START
in

in >

out

out

> c out

CONTROL
out

^ START
-^ out

A: USED FOR DIVIDEND
B: USED FOR DIVISOR
C: USED FOR INFORMATION SYMBOLS
Q: DIVISION REGISTER
S: START REGISTER
CONTROL: USED TO START DIVISION

t
FINITE FIELD MULTIPLIER
FINITE FIELD ADDER

Figure 4.3 The Systolic Cell Structure

31

each cell. In short, the above architecture is simply a

pipelined parallel processor which is composed of a systolic

array of identical cells, each performing a finite-field

multiplication and addition. Since the layout is simple and

regular, it is easily replicated and economical to produce.

[Ref. 9]

In Chapter VI the encoder and decoder for an RS code are

described in greater detail with the encoding and decoding

process carried out for a specific example.

32

V. IMPLEMENTATION THEORY

A. BACKGROUND

In this chapter we look at the theoretical concepts

behind the systolic implementation of an encoder and

decoder. We then apply these concepts to the actual imple-

mentation in the subsequent chapter. There, the binary case

is initially presented because of its simple architecture

and ease of understanding. It is then followed by the more

intricate and complex Reed- Solomon case.

We also, in this chapter, discuss in-depth the design of

a systolic array multiplier used in the RS encoder. Unlike

the binary case which deals only with the elements and 1

in the complete codeword, the Reed- Solomon codeword will

contain symbols which lie in a larger field than GF(2). As

a result, the systolic array multiplier is increasingly more

detailed and complicated than in the binary design which

simply uses a primitive binary shift register scheme.

B. PRIMITIVE BINARY SHIFT REGISTER DESIGN

A primitive binary shift register is a series of regis-

ters each capable of containing a zero or a one. The

contents of the register all shift on a designated time

signal via use of an external clock. The contents of the

newest stage of the register is defined as a function of the

33

current contents of the register. Because these shift

registers utilize this feedback property they are commonly

referred to as feedback shift registers or primitive shift

registers since the feedback is usually described by a

primitive polynomial [Ref. 10]. For example, the diagram in

Figure 5.1 describes a primitive shift register composed of

four registers, labeled 1, x, x^ , x^ and one modulo 2 adder

situated between registers 1 and x. Each register is

capable of storing one bit of binary information, i.e., a

"1" or a "0". The all zero contents of the register is

typically prohibited. This restriction is placed on the

primitive shift register to ensure a change of state when a

new clock signal is received. The register is allowed to

step from state to state, therefore the length of a primi-

tive cycle is independent of its initial state and is equal

to 2 in-l . The primitive shift register of Figure 5.1 will

move through 15 distinct binary patterns before repeating

(see Table II). This primitive shift register is said to

have a cycle length of 2^-1 or 15. Moreover, since all

nonzero patterns are included in the cycle, it is called a

maximum- length cycle. In general, a primitive shift regis-

ter composed of m stages will generate a maximum- length

cycle of period 2m-l. It is possible for each value of m to

determine a primitive feedback function for the shift

register so that a maximum- length shift register sequence of

period 2m-l is generated.

34

S-i

CD
+J

CO

•H
tn
CD

«
+J

•H

w
CD

>
•H
-P
•H
g
•H

Ph

CD

(0
+J

en
i

LT)

CD

a
ex.

•H

35

TABLE II

REGISTER CONTENTS AFTER SUCCESSIVE CLOCK SIGNALS

REGISTER CONTENTS BETA POLYNOMIAL

10 1

10 B

10 B
2

1 B
3

110 B
4

110 B
5

11 S
6

110 1 B
7

10 10 B
8

10 1 B
9

1110 B
10

111 B
11

1111 B
12

10 11 B
13

10 1 B
14

10 B
15

TIME (t)

t ss

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 8

t = 9

t = 10

t = 11

t = 12

t = 13

t = 14

t — 15

36

Maximum- length cycles and maximum- length sequences have

broad applications in data communication systems and com-

puter simulation while primitive shift registers designed as

division circuits have applications in coding theory

[Ref. 10]. It is the objective of this chapter to utilize

the concepts of the latter to propose an RS encoder and

decoder

.

In order to generate a maximum- length cycle or sequence

we need to understand the necessary component connections

given a primitive polynomial. That is, given an arbitrary

primitive polynomial, how do we design the shift register?

For the example of Figure 5.1, assume p(x)=l+x+x4 is a

primitive polynomial over GF(2). We can consider GF(2^) as

an algebra of polynomials modulo p(x)=l+x+x^ and design a

register to produce a pattern cycle of length 2^-1. Using

four delay units (since we need a register unit for the

coefficient of each term x fc with 0<t<3) we need only decide

how the primitive polynomial affects the feedback to know

where to place the modulo 2 adder components and where to

make the necessary circuit connections. The feedback is the

coefficient of x^ , but in this polynomial algebra x^=l+x.

Thus, the feedback goes to the registers which contain the

coefficients of the x^ and x^ terms. Making these connec-

tions and supplying the modulo 2 adder component where we

have two inputs to the register, we arrive at the shift

register given in Figure 5.1. Then each step of the

37

register is equivalent to multiplying the contents of the

register by the primitive element g. Thus, the sequence of

contents are the powers of g modulo (l+g+g4). in this way

multiplication of the elements of the field is produced

simply as described in Chapter III and the powers of g are

as given as in Table I of Chapter III.

C. CODING THEORY

Suppose that we wish to transmit a sequence of binary

digits across a noisy channel. If we send a one a one will

probably be received and if we send a zero a zero will also

probably be received. Occasionally, the channel noise will

cause a transmitted one to be received as a zero or a trans-

mitted zero to be received as a one. Although we are unable

to prevent the channel from generating such errors, we can

reduce their undesirable effects with the use of coding

[Ref. 5]. The basic idea is simple. A set of k message

digits which we wish to transmit is concatenated to r check

digits. The entire block of n=k+r channel digits then forms

the transmitted codeword. Assuming that the channel noise

changes sufficiently few of these n transmitted channel

digits, the redundancy afforded by r check digits provides

the receiver with sufficient information to detect and

correct the channel errors. Figure 5.2 illustrates the

basic idea of the encoding process for an (n,k) encoder with

n=15 and k=ll. The codeword is constructed in such a way

38

>

H
< E-i

to h

W H
£ Q

in

w
<u

o
o
S-l

Cm

en
c
•H

U

W
CD

Eh

cm

ld

0)

U
P
0^
•rH

CO
Eh

H
o

> w
u
<
CO
00

39

that the message digits appear at the far right. The error

correcting capability of the generated code depends upon the

number of check bits added. To illustrate, the binary code

constructed using the encoder of Figure 5 .2 is capable of

correcting one error when, for example, n=2m-l, k=2 m-l-m for

each integer m > 2, the so called Hamming single-error-

correcting code.

D. MINIMAL POLYNOMIALS

In order for a code to correct every pattern of t or

fewer channel errors, the codewords must be generated by a

polynomial whose length is the product of at least t

distinct minimal polynomials [Ref. 5]. Occasionally, extra

error correcting capability is possessed by words of

a code beyond the designed capacity ' of the code. To

understand this situation and the general error correcting

capacity of the code, it is necessary that we discuss

some of the mathematical concepts and properties that

comprise minimal polynomials before discussing the actual

implementation

.

A minimal polynomial for a primitive element 3 over

GF(p) is the lowest degree irreducible monic (has leading

coefficient 1) polynomial M(x) with coefficients from GF(p)

such that M(3)=0 [Ref. 11]. For example, the Galois field

GF(24) i s constructed using the primitive element 3, the

root of the irreducible polynomial 1+x+x4
. Then the minimal

40

polynomials for the elements 3, g3 r g5 f and g7 are given in

the following table.

Element Minimal Polynomial

x

1 1+x

3 1+x+x4

3
3 l+x+x2+x3 + x4

35 1+x+x2

3
7 l+x3 + x4

Furthermore, in GF(2m)
3* and 3

2 * have the same minimal

polynomial. In general, if 3
1 is a root of a minimal poly-

nomial then so is 3P 1 (where p is the characteristic of

the ground field GF(p); in this case p=2) . To illustrate,

let us substitute the elements 3 and 3
2 into our minimal

polynomial 1+x+x4
. Upon substitution of 3 we obtain 1+ 3+

g

4
.

Thus in GF(2 4
) 3

4 =3+l and M(3)=0 . Likewise, upon sub-

stituting 3
2 for x in the same minimal polynomial we obtain

1+

3

2+ 38 , which in GF(2 4
) is also zero as can be seen in

Table I of Chapter III. Elements of the field with the same

minimal polynomial are called conjugates. In the same way,

the imaginary roots i and -i are referred to as conjugate

complex numbers— they both have the same minimal polynomial

x 2+l over the reals [Ref. 11].

From our preceding discussion, it is clear that 3, 3
2

,

(32)
2 = 3

4
, (34)2 = 38 an have the same minimal polynomial

41

l+x+x4 . Likewise $3 t 36 r
3I2

f
g24=^9 also have the same

minimal polynomial l+x+x^+x^+x^ . We see that the powers of

3 fall into disjoint sets, called cyclotomic cosets . In

fact, all 3J which are elements of the same cyclotomic coset

have the same minimal polynomial. The cyclotomic coset

containing 3
s consists of the following powers of 3:

2 3
m
s"

1

\ S f A S / Z S/ Z. Sf •••/ Z S j

m
where m s is the smallest positive integer such that 2 s e

s(mod 2m-l) [Ref. 11]. For example, the cyclotomic cosets

over GF(2 4
) are:

c = {0}

Cl = {1,2,4,8}

C3 = {3,6,12,9}

C5 = {5,10 }

c 7
= {7,14,13,11}

Other cyclotomic coset decompositions for various values of

m are listed in Table III.

If we let M(i)(x) represent the minimal polynomial of

3
;i-eGF(pm), it follows that if i is in the cyclotomic coset

C s , then

M(i) (x) =

jeC,
(x+3J)

42

TABLE III

CYCLOTOMIC COSETS

OVER GF(2 3
) OVER GF(2 5

)

C = (0} C = {0}

Ci = {1,2,4} Ci = {1,2,4,8,16}

C 3
= {3,6,5} C 3 = {3,6,12,24,17}

C 5 = {5,10,20,9,18}

C 7 = {7,14,28,25,19}

Cii = {11,22,13,26,21}

C 15 = {15,30,29,27,23}

OVER GF(2 6
)

C = {0}

Ci = {1,2,4,8,16,32}

C 3
= {3,6,12,24,48,33}

C 5
= {5,10,20,40,17,34}

C 7
= {7,14,28,56,49,35}

C 9
= {9,18,36}

Cn = {11,22,44,25,50,37}

C 13
= {13,26,52,41,19,38}

C 15 = {15,30,60,57,51,39}

C 2 i
= {21,42}

C 23
= {23,46,29,58,53,43}

C 2 7 = {27,54,45}

C31 = {31,62,61,59,55,47}

43

which is analogous to the generator polynomial g(x) in our

generic architecture of the previous chapter. Moreover, by

utilizing various techniques beyond the scope of this

thesis, we may determine all the minimal polynomials of

elements in GF(2 4), as depicted in Table IV. Using this

table we may construct all the Reed- Solomon codes of block

length 15 which correct t or fewer channel errors. These

codes have the following generator polynomials:

t=l g(x)=M(D (x)=l+x+x4

t=2 g(x)=M(D (x)*M(3) (x) =l+x4 + x6+x7 + x 8

t=3 g(x)=MU) (x)*M(3) (x)*M(5)=i+ x+x2+x4 + x5 + x 3+x10

Hence, the t-error correcting RS code of block length n is

then the cyclic code whose generator polynomial is the

product of the distinct minimal polynomials of g, g
2

f g3 f

..., p2t-l
/

g2t [Ref. 5]. Of noteworthy interest is the

fact that an RS code over GF(2^) which is designed to

correct up to 4 errors is also able to correct 5 errors.

This is because M(9)(x), the minimal polynomial of $, is

identical to M(5)(x), the minimal polynomial of & . Simi-

larly, the 6 error-correcting RS code is identical to the 7

error-correcting code just as the 8-to-14 error correcting

codes of length 31 are all identical to the 15 error-

correcting code. In a similar way, codes over GF(2^) and

GF(2 7
) are sometimes able to correct more errors than they

are designed to correct. The ability to correct these extra

44

TABLE IV

MINIMAL POLYNOMIALS OF ELEMENTS IN GF(2 4
)

M(D(x) = M(2)(X) = M(4)(X) = M(8)(X) = 1+x+x4

M(3)(X)
= M(6)(X) = M(12)(X) =M(9)(x) = l+x+x 2+x3+x4

M(5)(X)
= M(10)(X) = 1+x+x2

M(7)(X)
= M(14)(X) = M(13)(X) = m(H)(x) = l+x3 + x4

45

error patterns depends upon finding higher powers of 3 which

belong to cyclotomic cosets for the smaller powers of 3

which belong to the code for the designed error correcting

distance. The tables of cyclotomic cosets for GF(25),

GF(2 6
) show that 3

9 belongs to 3
5

, 3
17 belongs to 3^ and 3

19

belongs to 3^3, etc. See [Ref. 11] for further discussion

of the error correcting capabilities of given error

correcting codes.

E. SYSTOLIC ARRAY MULTIPLIER

As mentioned earlier in this chapter, the systolic array

multiplier used in the generation of Reed- Solomon codewords

is much more complex than in the binary case. In this

section, we discuss the design of a systolic array multi-

plier developed by Yeh, Reed, and Truong [Ref. 7] to assist

us in our implementation of an RS encoder.

According to [Ref. 7] several circuits have been pro-

posed to realize multiplication in GF(2m). Unfortunately,

these circuits are not suited for use in VLSI systems, due

to irregular wire routing, complicated control problems,

nonmodular structure and lack of concurrency. The systolic

array multiplier of [Ref. 7] performs the multiplication in

the field GF(2 m) which overcomes some of these unwanted

attributes.

The systolic architecture is developed for performing

the product- sum computation, AB+C, in the finite field

46

GF(2m) of 2m elements, where A, B, and C are arbitrary

elements of the field. The multiplier is a serial- in,

serial-out, one-dimensional systolic array which requires m

basic cells. To perform an isolated computation the multi-

plier requires 3m time units, however, the average time per

computation is only m time units if a number of computations

are carried out consecutively. Because the architecture is

simple and regular and possesses the desirable properties of

concurrency and modularity, it is well suited for VLSI

implementation. [Ref. 7]

Consider the nonzero elements of GF(2m). They can be

represented as the powers of 3, a primitive element of

the field as discussed in Chapter III. Since F(3)=0,

3
m=fm_l 3^"^-+ . . . + f]_ 3+fg , where the coefficients fi are

determined by the polynomial f(x) which 3 satisfies.

Therefore an element of GF(2m) is of the form

am-l 3
m_1+. . . + ai 3+3q where ai e GF(2) for < i < m-1. In

the following discussion, the polynomial representation is

used to represent the finite field GF(2 m).

Let A=am_]_ $™~1+ . . . + a]_ 3+a and B=bm_ 1 3
m" 1 + . . , + b! 3+b be

two elements in GF(2m). Then A+B=Sm-1 3^-1+ . . , + S± 3+S ,

where Si=ai+bi (mod 2) for < i < m-1. Therefore addition

in GF(2 4
) is realized easily by m independent Exclusive-OR

gates

.

Suppose P=pm_i 3
m~ 1+. . . + Pi 3+Pq is the product of A and B,

i.e., P=AB. Then P can be written as follows:

47

m-1 m-1 m-1

- zl^x- X <2Z a
n
(kV)b

*
k=0 k=0 n=0

(1)
m-1 m-1

c> *J*\>e
n=0 n=0

where an
(k) is the coefficient of 3

n in A 3^, i.e., A 3k =

am_i (k)

3

m_1+
. • .+ai(k

) 3+ao^ k ^ for < k < m-1. From equation

(1) we obtain pn=an (°)b +an (1)bj + . . .+an (m~ 2

)

bm_2+ an (m
" 1 ^m-l

.

The computation of A 3k can be performed recursively on k

for < k < m-1. Initially for k=0, A3^=A f i.e., an (0)=an

for < n < m-1. For 1 < k < m-1,

m-1

* „k /7V k-1. > (k-1) n+1A3 = (A3) 3 = y/ a
n

v

3

n=0

m-1

(k-1) m \ (k-1) n
= a ,

v 3+/ a, v '3
m-1 M ^ n-1

n=l

(2)

Substituting 3
m=fm-i

3

m_1+
• . .+fi 3+f into equation (2),

yields

m-1

A3*=V (a
(k-D +a (k-D f)6n + a

(k-1)

/_ n-1 m-1 n m-1 u v

n=l

48

From equation (3), we obtain

an
(k) = an-l

(k" 1) + am-l
(k~ 1)fn for 1 < n < m-1

(4)

ao< k > = a^i^-DfQ

Table V indicates the step- by- step procedure for comput-

ing P=AB+C in GF(2 4). In Table V an (
k), bn , c n , fn , and

pn are the n- th bits of A£k , B, C, F, and P, respectively,

where F is the primitive polynomial and Pn^ 1 ^ is tne partial

sum of pn .

Figure 5.3 depicts the systolic multiplier for our given

finite field. The primitive polynomial is F=f3 g^+f^ &^+f± 3*

f . Input d n receives the bit bn of B. The n- th bits c n ,

an and fn , of C, A, and F, respectively, are received

serially at inputs en , gg , and hg . Two control signals,

START (0001) and END (0111) are used in the design with

inputs rg and tg receiving the signals, respectively.

Output e4 serially transmits the n- th bit, pn , of the

result P out of the system. The order of the inputs and the

outputs is also shown in Figure 5.3. The flip-flops (FF)

associated with inputs tg and hg are used for the purpose of

synchronization

.

The circuit of cell Lj^ is shown in Figure 5.4. The

operation of the flip-flops in the system is synchronized

implicitly by a clock signal. When ri*=i, ui=g i
* a t the

next time unit (through switch SW) . Additionally, when

49

TABLE V

COMPUTATION OF P = AB + C IN GF (

2

4
)

STEP
NUMBER OPERATIONS

1 p3 (0) = c 3 a 3
(0) = a 3

p3 (D = p3 (0)+a 3
(0)b , a 2 (°) = a 2

2

p2 (0) = c?

p2
(l) = p2 (°) + a 2 (°)b , ax(°) = a x

3

Pl (0) = c-, a^d) = a 9 (0)+ a^(0)f^

p3
(2) = p3 (°)+a 3

(!)b^ , ag (°) = ag

4 Pl (D = Pi(°)+a1 (0)b , a 2 U) = a 1 (0) + a 3 (0)f 2

PO (0) = cn

p2 (2) = p2
(l)+a2 (l) bl/ ai (l) = a (0)+a 3 (0)f 1

5

pn (D = p (0)+an (0)bn , a 3 (2) = a 2 (1)+a 3 U)f 3

p3
(3) = p3 (2) + a3 (2) b2f a (D = a 3 (0)f

6

Pl (2) = pt (D + ai (!)bi , a? (2) = a-| U)+ar* (1)f 2

p2 (3) = p2 (2) + a2 (2) b2/ ai (2) = ao (l)+a3 (l)f1
7

pn (2) = Po (l) + af) (lJb-L
f a 3 (3) = a? (2) + a 3 (2) f^

p3
= p3

(4) = p3 (3) + a 3
(3)b 3 , a (2) = a 3

(Df
8

Pt(3) = Pl (2) + ai (2)b 2 , a 2 (3) = a ^ (2) + a 3 (2) f 2

p2 = p2 (4) = p2 (3)+a 2
(3)b 3 , a x

(3) = a (2)+a 3
(2) fx

9

p (3) = Po (2)+an (2)b2/

10 Pl = px (4) = p1 (3) + a 1 (3)b 3 , a (3) = a 3 (2)f (

11 PO = P0 (4) = Po(3 >+a (3) b3,

50

n
ft
CN

ft

ro

X!

ft

ft°f f A A /N

^ ^t •«j ^ ^r
<u -P Cn £ m

co

T3

N ro

/

/ < / V / \ A A

ro ro c f ro
0) P C" 43 M

CN

CN
>

/ ^ / V / \ / ^ y ^

CN CN CN CN CN
<U 4-> tP X! u

r-\

T3

X>

~7
V / \ ; ^ / \ / s

m H iH r- i—

1

(U +J tji X! U

o
T3

S O-/

O O V
df

V /O * A \
<u -P Cn & U

ro cM ro 'M

c 1-1 ro h
CM CM
U J ^

ro

rV ^ r.
u rH <0 m oo rH O CN o
u O ro m o

rH

CN

fa

rH

CU

•H
fa

<D
+J

•H
c
•H
fa

4->

o

CD

•H
H
a
•H
4J

H

U
•H
H
o
-P
cn

>i

in

Q)

U
a
cn
•H
fa

m
51

H

fa
fa

7\

fa
fa

6 o
X

T3

>

Q)

fa
fa

fa
fa

~7tr

r\

•H

Cn

^ o
x

fa
fa

Q

fa
fa

7F

£
wO

fa
fa

fa
fa

fa
fa

fa
fa

u

o

u

•H
U
0)

Eh

in

CD

a

•H
fa

52

ri*=0 , Ui retains its value. Two principle operations of

the system are the following

:

e i+1 < (9i*di) © ei*

9i+l* < (uihi*)© (gi*ti*)

where < i < 3, ©denotes Exclusive-OR operation, i.e.,

modulo-2 addition, and the backwards arrow denotes the sub-

stitution operation.

A comparison of the procedure in Table V and the

structure in Figures 5.3 and 5.4 yields the following facts:

The signal u^ in L^ is equal to a3

(

1
) in Agi. The signal

gi is equal to an (
1) in A3 1 for some n. The signal e^* is

equal to the partial sum AB+C.

The multiplier in Figure 5.3 can be generalized to the

finite field GF(2m) by simply concatenating m identical

cells. Furthermore, additional registers and control sig-

nals would be required if the b^'s are fed serially into the

system in the same manner as the a^'s. [Ref. 7]

53

VI. IMPLEMENTATION

A. BINARY ENCODER

In this section we discuss the encoding process for a

binary code and utilize a primitive shift register design to

implement both a single-error-correcting binary encoder and

a double-error-correcting binary encoder.

1 . Encoding Process

As discussed in Chapter V, an (n,k) code can be

generated with a polynomial of degree n-k. If the poly-

nomial is primitive of degree r and n=2 r-l, the code can be

encoded and decoded with primitive shift registers. Hence,

we restrict our attention solely to the case of primitive

polynomials

.

We illustrate this procedure by generating the

(15,11) binary code using the primitive polynomial p(x)=

1+x+x 4
. Here n-k=4 , r-4 , n=2 4-l=15 , and k=ll. The encoding

process for the 11-bit message 10101010101 proceeds as in

the example below.

Example of Encoding Process:

Message = 10101010101

1) Represent the message m(x)=l+x2+x4+x^+x3+xl0
as a polynomial

.

2) Multiply m(x) by xn" k x 4 m(x) =x4+x6+ x8+x 10+x12+x14
to shift the message
digits to the far right.

54

3) Calculate the remainder r(x)=l+x+x3

when xn~^m(x) is
divided by p(x) .

4) Form the code c (x)=l+x+x3+x4+x 6+x8

polynomial as the sum +xl0+ x12+ x14

x n~^m(x)+r (x) , a

multiple of p(x).

Code Word = 110110101010101

Note that codewords in this code are formed as multiples of

the primitive generating polynomial p(x). As p(x) is of

degree r there are n-r=k information symbols which can be

chosen freely and then r check symbols are chosen so that

the resulting codeword satisfies this criteria, namely that

the codewords are multiples of the generator polynomial. In

other words, the check digits are the coefficients of the

remainder r(x) upon division of x n"^m(x) by p(x) as shown

below.

xl Q + x 8+x7 + x5 + x4 + x 3 + l

4^ _li I 14^ 12^ 1(1 8^ 6^ 4
X +X+1 |x +x +x +x + x +x

14^ 11 10
X +x +x

12^ 11 8
X +x +x
12^ 9 A 8

X +x + x

H^. ^^ 6
X +x +x

9.. 8^ 7 _,_ 6^ 4
X +x +x +x + x

x
9
+ + x

6
+ x

5

x
8 + x

7+ x
5 + x

4

8 .5,4
X +x + x

x
7

x
7 + x

4+ x
3

x
4
+ x

3

4
X +X+1

X + X+1

55

2 . Single- Error- Correcting Binary Encoder

By utilizing the previously discussed concepts, we

may now describe the encoding process of the binary (15/11)

code as implemented in a primitive shift register shown in

Figure 6.1. By simply feeding in the message m(x) at the

x^- stage we are able to simulate the effect of multiplying

m(x) by x^ . The switch remains in position 1 as m(x) is fed

completely into the shift register. The shift register

computes the remainder when x^m(x) is divided by p(x) as the

shift register is in essence a division circuit. The

register contents after the information bits have all been

fed into the register is the remainder after division of the

information polynomial by the generator polynomial p(x). In

the example the remainder is 1101=l+x+x3. The switch is

then changed to position 2 to allow the check digits to

follow the message digits producing the coded output

110110101010101 for the example given. [Ref. 10]

3 . Double- Error- Correcting Binary Encoder

To design a double-error-correcting binary encoder

to correct up to two errors, additional redundancy must be

added. Since we are now concerned with correction of up to

two errors the generator polynomial is the product of the

two distinct minimal polynomials m(1)(x) and Mw)(x) as

described in the previous chapter. Their product is the

polynomial l+x 4 + x6 + x"7 + x8 . The implementation of the encoder

is carried out in essentially the same manner as its

56

m(x)

TIME (t)

t = INITIAL

REGISTER CONTENTS

c(x)

OUTPUT

t

t

t

t

t

t

t

t

t

t

t

1

2

3

4

5

6

7

8

9

10

11

SWITCH IN

POSITION 1

110
110

1111
10 11

10 1

1110
10 11

10 1

10

10

110 1

1

1

1

1

1

1

t

t

t

t

12

13

14

15

SWITCH IN

POSITION 2

110
11

1

1

1

1

Figure 6.1 A Single-Error-Correcting Binary Encoder

57

single-error counterpart. The encoder is presented in

Figure 6.2. Now n=15 and k=15-8=7 so that there are a

smaller number of codewords (2^) in this more powerful code.

As the error correcting capability of the code increases,

the number of information bits correspondingly decreases.

B. REED-SOLOMON ENCODER

In this section we draw upon the work of Liu [Ref. 8]

and our acquired knowledge of finite field theory and Reed-

Solomon codes to produce an RS encoder.

As discussed in Chapter IV, an RS codeword has (2 J-1)

symbols each of which is J-bits wide. Of the (2J-1) symbols

there are (2^-l-2E) information symbols and 2E parity-check

symbols, where E is the number of symbol-errors the RS code

is able to correct. If we treat the (2 J-1-2E) information

symbols as the coefficients of the polynomial

2J-1- 2E

a s \ c 2
J
-l-i c 2

J
-2^ . 2

J
-3^ .- 2E

f X = / f.x = f,x + f x +...+f , XC^ L 1 2
2
J-1-2E

1 = 1

then the 2E parity-check symbols can be obtained as the

coefficients of the remainder of f(x)/g(x) where g(x) is the

generator polynomial of the code. Usually, g(x) is defined

as

2E 2E

g(x) = (x+e
1

) = > g^ 3

i=l j=0

58

u

u

'O
o
o
c
w
>1
u

c
•H
m
en
c
•H
•P

CD

O
u
I

u
o
M
J-i

H
I

Q)

i-H

£1
D
O
Q

CM

<0

CD

U

Cn
•H

59

where 3 is a primitive element of the Galois field GF (

2

J
)

and g.'s are the coefficients of g(x) with g 2
=1.

A diagram of the RS encoder which generates the

remainder of f(x)/g(x) is given in Figure 6.3. It is

composed of 2E systolic array multipliers, 2E "exclusive-or"

adders, and 2E shift registers. The coefficients of the

generator polynomial g(x) are fed into their respective

systolic multipliers where the finite field multiplication

A*B occurs, as discussed in Chapter V. Upon completion the

partial product is "exclusive-or ' ed" with the contents of C

of the previous shift register and distributed down the line

to the next shift register in a pipeline fashion. The

switches are normally in the "ON" position until the last

information symbol goes into the encoder. At this moment

all the switches are turned to the "OFF" position and the

encoder behaves like a long shift register. The output of

the encoder is then taken from the output of the last shift

register. [Ref. 8]

C. BINARY DECODER

In this section we discuss the decoding process and

design a single-error-correcting binary decoder and a

double-error-correcting binary decoder both of which can be

used in conjunction with the binary encoders of Section A of

this chapter.

60

I

H
en
D
O

2
8
fa

E-"

fa

cu en

u

En

D
0*
Eh

P
O

Q

En

X
fa
z

o
o
c
fa

en
K
0)

X!
Eh

m

CD

u
p
en
•H
fa

^
rH fa
=*= fa«
o

3:
en

2
O

Eh

D

) CO

fa
fa
o

61

1

.

Decoding Process

The decoding process is, in general, much more

complicated than the encoding process. Not only must we

deal with the detection of errors but also with their

correction. As a result, we must be able to design a

decoder which simultaneously detects and corrects errors.

Error detection is usually much easier than error

correction. Recall that a code polynomial is a multiple of

the generating polynomial p(x). In other words, the

received polynomial u(x) will be a code polynomial if and

only if the remainder upon division of u(x) by p(x) is zero,

i.e., u(x) = modulo p(x). An example is given in

Table VI. The register contents after u(x) is fed com-

pletely into the detecting division register will contain

u(x) modulo p(x). If any of the register contents are

nonzero, u(x) is not a valid codeword. Thus the shift

register acts as an error detector by performing a division

of u(x) by p(x). In fact, the nonzero contents not only

indicate that an error has occurred in transmission, but

those contents also indicate the error pattern needed to

correct the error and the location of the error in the

transmitted codeword. [Ref. 10]

2

.

Single-Error-Correcting Binary Decoder

Because of the complexity of the decoding process,

we will initially design an error detection register

followed by its error correction counterpart and then

62

TABLE VI

VERIFICATION OF THE CODE POLYNOMIAL

HT 8 _,_ 7 A 5^ 4^ 3^,
X +x + x +x +x +x +1

x
4
+ x+l|x 14+x12+ x

10
+ x

8
+ x

6
+ x

4
+ x

3
+ x+ l

14^ lr 8
X +x + x

12^ 11 8
x +x +x
12^ 9 _,_ 8

X + x + x

11^ 9^ 6
X +x +x
11^ 8^ 7

X +x +x
9^ 8^ 7^ 6^ 4

X +x +x +x +x
9 6, 5

X X +x

x
8+x7+x5 +x4+x 3

8 _,_ 5^ 4
X +x + x

X +x +x
7^ 4 L 3

X +x +x
4

x +x+l

x +x+l

63

synthesize them together to implement the complete decoder.

To begin, we utilize the error detection register of Figure

6.4. It is identical to the encoding register of Figure 6.1

except that the received codeword is input to the decoder at

the left end of the register. If the received word is

110111101010101, then the nonzero contents 0110 after

division indicate that an error has occurred in trans-

mission. In order to correct the received word we need to

know the error position.

The received word can be viewed as a polynomial u(x)

which can be written as the sum of the code polynomial c(x)

and an error polynomial e(x), namely u(x) = c(x) + e(x).

The error polynomial e(x) has ones in its error positions

and zeros elsewhere, and addition is term by term modulo 2.

Since the codewords c(x) are generated as multiples

of the generator polynomial g(x) and since 3 is a root of

g(x), the code polynomials evaluated at B are equal to zero,

namely c(g) = 0. Thus u(B) = c(3) + e(B) = e(g). Since we

assume in this sub-section that only single errors have

occurred in transmission we can also assume that if an error

occurs then e(x) is a power of x, say e(x) = xi for some i.

Thus u(B) = e(B) = $i
.

In order to correct the error we need to compute

u(B) which is called the syndrome of the received word and

then find the specific value i for which u(B) = B
1

* The

value i will indicate the error position. We need then only

64

u(x)-><

TIME (t)

t =

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 8

t = 9

t = 10

t = 11

t = 12

t = 13

t = 14

t = 15

REGISTER CONTENTS

10

10

10 10

10 1

110
11

10 1

1110
1111

11

10 1

110
11

10 1

110= ERROR

Figure 6.4 The Error Detection Register

65

set c(x) = u(x) + x 1 to obtain the code polynomial c(x) a

multiple of p(x) which is "nearest" to the received poly-

nomial u(x). The primitive shift register facilitates this

task because while it is computing u(x) modulo p(x) it also

leaves the coefficients of u(e) = B
1 in the shift register.

[Ref. 10]

For example, in Figure 6.5 the primitive shift reg-

ister computes u(x)=1+x+x3+x4+x5+x6+x8+x10+x12+ x14 modulo

p(x)=l+x+x 4 and the syndrome is 0110 = x+x 2
. Note from

Table I of Chapter III that 0110 is the 4-digit represen-

tation of 3^. Hence the error in the received polynomial

occurs in the position of x^ . Therefore, the code poly-

nomial is c(x)= u(x)+e(x)=(l+x+x 3+x 4+x 5+x 6+x8 +x10 +x12+x14)

+x 5 = l+x+x 3 +x4+x 6 +x8 +x 10 +x12+x14 . The corrected codeword

is 110110101010101 and the corrected information symbols are

10101010101. The same procedure is also illustrated in

Table VII by the actual long division process.

We now examine the primitive shift register decoding

process which performs the error correction. After the

syndrome is computed by the primitive shift register

division process, an additional primitive shift register of

the same type can be used to correct the error without

reference to a table of powers of the primitive element 0.

The correcting register shown in Figure 6.6 is basically the

same primitive shift register used throughout this chapter

with the exception that there are output lines leading from

66

>

>

•>

^

+J

en

H
Oi

&
c
o
•H
+J

o
CD

S-)

o
u
u
o
u
u
w

Eh

in

CD

5-1

tn
•H

67

TABLE VII

SYNDROME CALCULATION USING LONG DIVISION

10 8 7 5 4 3

X +X +X + X + X +X + X+1

x^x+ l|x
14

+ x
12

+ x
10

+ x
8
+ x

6
+ x

5
+ x

4
+ x

3
+ x+ l

14^ 11 10
X 4-X +X

12^ 11 8
X +x +x
12^ 9^8

X + x +x
11^ 9^ 6

X +x + x

11 8^ 7
X + x +x

9 8 7 6 5
x +x +x +x +x
9 A 6^ 5

X + x + x

8^ 1 ^ 4
X +x +x
8^ 5^ 4

X +x + x

x
7
+ x

5
+ x

3

x
7
+ x

4
+ x

3

5, 4^
X +x +x

X + x + x

4^ 2^,
X +x +1

X +x +1

2^
X +x

SYNDROME: x+x 2 =0110 = 35

1 3 B
2

3
3

3
4

B
5

3
6

3
7

B
8

3
9

3
1Q

3
11

3
12

B
13

3
14

110111101010101 = ERROR
CODEWORD

110110^101010101 = CORRECTED
CODEWORD

68

3Z
1

31

la
£
1

IE

u,

u

u,

u.

u

u F

u,

JL
u

m-u
^_

u
t

JL

u

u

u

u

10

11

12

13
j>kL

u
14

4-

CORRECTING REGISTER

1 X
2

X
3

X

• 1

1 1

< 1

5

i

i

i

5

i

i

1

2X. 2k.

DETECTOR FOR
STATE 100

Figure 6.6 The Initial Single-Error-Correcting Binary Decoder

69

each of the four registers. If the correcting register

is set initially at 0100, the 4-digit representation for

the element 3, then, as it shifts, the output is the same

cycle as the 4-digit representation listing of the

$i
(i=l , 2 , 3 , . . . ,15) in Table I since a shift in the primitive

shift register is the same as multiplication by 3. No

matter which state the register is set to initially the

correcting register will output elements of that maximum-

cycle in the same cycle order as long as the register

continues to shift. If the register is set at 3
1

/ it will

be in state B
i+ J after j shifts. [Ref. 10]

Figure 6.7 (the complete single-error-correcting

binary decoder) shows the received word of our example,

namely 110111101010101 whose polynomial form is l+x+x^+x^+x^

+x6+x8+x!0+xl2+ x14 in a storage register and the syndrome

0110 in the correcting register. From our previous dis-

cussion we know that the error occurs in U5 . Thus, if the

detector register has output 1 as U5 leaves the storage

register and otherwise, the word 110111101010101 will be

corrected after fifteen shifts to read 110110101010101. We

illustrate how the correcting register is used to accomplish

this task by listing the new states of the correcting

register, and the outputs from the storage register and

decoder after each shift. The states are depicted in

Table VIII.

70

RECEIVED WORD

u(x) 5€H~le-
u

±k

_^

^L
1

Su.

u.

u.

u.

u

u.

u,

u.

UJ u 8

[0 | u
9

3l

A.

u

u

u

u

10

11

12

13

u
14

CODE WORD

->

x

ILL

€>-

_^

^

^Iz j^

DETECTOR FOR
STATE 10

x

^

ilZ_

Figure 6.7 The Complete Single-Error-Correcting Binary Decoder

71

CQ

CO
CO
w
yo
cm
Oi

C5

H
Q
O
CJ
Cd
Q
Q
2
<

oM

CJ
w
Pd
oi

o
CJ

OS

Q
O
CJ
M
Q

Eh

P-,

Eh
L3
O
W
o

o
Eh
C/3

Eh
D
CU
Eh
D
O
Pi

o
Eh

CJ
w
Eh

W
Q

<
rH

o
2
X
J
O
CM

<
Eh

W
ca

—I O H O
II II II II

i-H

3

m
H
3

CN
rH
3 3

CTi

3
00
3 3 3 3

m
ca

CO
00
ca

CN
ca

co
ca

+

+
CN
ca

m
ca

+
CN ca.

+
+
ca

CN
ca

ro
ca

+
ca

CN
ca

+
ca

CN
ca

ro
ca

+
ca

CN
ca

+H +
-H

+
ca

+H +
ca

+H +
i—

i

+H r-

1

II II II II II II II II II II II

O h CN CO •>* m
ID
ca ca ca

00
ca ca

H
ca

H
ca

rH
ca

H
ca

rH
ca

rH
ca

T3
a;

-u

o
cu

u
u
o
u

CO
4J

o
4J

a;

ro

OT

SJ

O

u
CU

CC
•H
J->

•H
c

CO

4->

6

U-l

'O
cu

CJ

cu

u
u
o
u

CO

Cd
J
a.

D
Eh

I

Eh

H
3C
C/3

H H o «H

rH O rH O
O <H O H
O H rH O

o
o

o
O
o

CN ro LD *X> CO en

lO
3

IU •

CU o
-u>

CO CU

-H 4J

C7> <TJ

CU 4-)

Oi w

••

u
Eh

O
2

72

Note from Table VIII that the incorrect digit 115

leaves the storage register when the correcting register is

in state 1000. If the detector is made to produce an output

1 when it detects 1000 and otherwise, then U5 will be

properly corrected. In general, if the syndrome is 3
1

, then

the error occurs in the coefficient of x 1
, namely u^, where

the received polynomial has the form

n-1

u(x) = ? Uix*

i=0

If j is such that un_j = ui, then ui leaves the storage

register when the correcting register is in state 3
1+ J as

shown below:

State Output

3
i+1 un_!

3
i+2 un- 2

1+j U n_j=Ui

Since 3
i+ j=3n=l, the detector will correct the digit Uj[and

the received word will be corrected to the nearest code word

after the decoder completes this process. [Ref. 10]

73

To recapitulate the correction process, the detect-

ing register computes the syndrome of the received word. As

each digit of u(x) enters the detecting register it simul-

taneously enters the storage register. When the syndrome is

determined, it is transferred to the correcting register for

the error-correcting procedure just described.

3 . Double-Error-Correcting Binary Decoder

To implement a double-error-correcting binary

decoder we begin with a general analysis of the three stages

that comprise decoding. The first stage is the Syndrome

Generator stage. The syndrome is defined as the nonzero

remainder of the received polynomial when it is divided by

the given primitive shift register. The second stage or the

Central Galois Field Processor finds the error locator

polynomial a(z) (usually accomplished by using Berlekamp's

iterative algorithm or Massey's linear feedback shift

register synthesis algorithm) . At this stage the polynomial

is determined which defines the location of the errors that

have occurred in transmission. Finally, the third stage or

the Chien Searcher stage finds the roots of a(z) to deter-

mine which digits should be corrected. Note, in the binary

code, correction is trivial when the location of the errors

is determined, i.e., the bit in error need only be

complemented. [Ref. 11]

Using our previous double-error-correcting generator

polynomial l+x^+x^+x^+x^ , which is the product of

74

(1+x+x4
) (l+x+x 2+x 3+x4) , we are able to produce Stage I of

the decoding process as illustrated by the division process

in Figure 6.8. Similarly, we are also able to produce

Stages II and III (Figures 6.9 and 6.10, respectively) along

with a block diagram of the complete decoder in Figure

6.11.

The operation of the decoder is relatively straight

forward as in the previous section. Utilizing a buffer

capable of storing 2n digits, the Chien Searcher is in the

process of computing a(z) in order to determine whether or

not the next digit to leave the buffer should be corrected.

The Syndrome Generator at the same time computes the

syndrome of the received word while the Central Galois Field

Processor finds the error- locator polynomial for the

buffered word. Once the coefficients of the error-locator

polynomial are read out of the Central Galois Field

Processor and into the Chien Searcher, the syndrome or the

nonzero remainder of the next block of received words is

read back into the Central Galois Field Processor for con-

tinual operation. See [Ref. 5] for further details of the

multiple error correction process.

If the Central Galois Field Processor operates so

fast that it is able to compute the error location before

all of the new received word arrives, then the buffer size

may be reduced. In general, the buffer is made big enough

to accommodate the expected worst case for the time to

75

CHANNEL TO STAGE III

V

V

3

\/

\/

DIVIDE BY
1+x+x 4

\

^

u.

u.

/
u.

^ u,

^ h±>i [4rT<±>-

v/

\/

\/

;^^

/
DIVIDE BY .

-> ~k 4
l+x+xz +x°+x

\
V.

-} V,

-»

-}

v.

V,

Figure 6.8 Stage I: The Syndrome Genera t6r

76

/N

<£>

&
7F

<2>

vi/

CO

T"

(N
CO

±

<£*

"7TT

\/

(^

co

^v

» «
+
5w

CO

M
O
en

CO

CD

o
O
u

H
cd

•H
En

CO

•H
oH
fd

O

+J

c
CD

u
CD

X!
Eh

H

Cn
(d
+J

CO

CD

U

Cn
•H
fa

77

Figure 6.10 Stage III: The Chien Searcher

78

OS
fa
co
D

f>
S/ En

O

f
W
£h

< ^
D-H
hq 8<~
> o
w

A A
>H

<C I
-

h cn

J D D
w
c

/
ffi N
o ~
fa G

> "V / S

2 s
Pi iH « ro

o w O CO
fa fa

S w S

A
H
S
§
K
CJ

H
H
H
fa

<
Eh
CO

fa
O
<c
Eh

CO

H
fa

Eh
CO

U
CD

CJ

CD

Q

a
•H
pq

en
a
•H

CJ

CD

u
u
o
U

I

u
o
Sh

5-i

fa
I

0)

H
P
O
Q
CD

-P

<L>

i—

i

Cu
g
o
u
<D

,G
Eh

<D

U

cn
•H
fa

79

compute the locations of the two errors. However, for

example, suppose that the Central Galois Field Processor is

able to compute the error locator in half the time required

for n digits to be received from the channel. In that case,

the buffer need only be capable of storing 3n/2 digits.

After a complete word is received, the central processor

computes its error location by the time the beginning of

this word is ready to leave the buffer. The error locator

is then fed into the Chien Searcher, and the central pro-

cessor sits idle until the rest of the incoming word is

received. See [Ref. 5] for details.

Although the above discussion pertains strictly to a

binary decoder capable of correcting two errors, it can be

generalized to correct t or fewer errors. By expanding the

hardware in Stages I and III to accommodate the additional

shift register size required by t distinct minimal poly-

nomials, we are able to implement the decoder with approxi-

mately the same effectiveness. Likewise, the same procedure

of utilizing the product of t distinct minimal polynomials

would also be used in the design of a multiple-

error-correction binary encoder.

D. REED-SOLOMON DECODER

As with any multiple-error detection and correction

process, the decoding of RS codes is very complex. As a

result, the known decoding procedures as discussed by Liu

80

[Ref. 12] will be presented in this section to obtain a re-

petitive and recursive technique which is suitable for sys-

tolic array development and eventual VLSI implementation.

Recall that the information symbols of an RS code are

treated as the coefficients of the polynomial f(x). If we

let

f(x) = fn+fix+. . .+fN_ixN_1

be the transmitted code vector (where N = codeword length),

and let

r(x) = ro+rix+. . .+r^_ixN_1

be the received code vector over a noisy channel, then the

error pattern added by the channel is

e(x) = r(x)-f(x) = eo+eix+. . .+eN-ixN
"* 1

.

The first step of the decoding procedure is to store the

received code vector rj into the buffer register and then

compute the syndrome S^ using the equation

N-l

c . k+1, > (k+i)j
S
i

= r()
= /" r . 3

J

N-l.

(5)

j=0

where < i < 2E-1 . Since rj = fj+e-j, equation (5) can be

expressed as

N-l

:i=y<fj+e.S< = > (f J+ ej)g
(k+i »3

N-l N-l

=X f
:

e(k+i)J +2Z e
3

g(k+i)J

j=0 D =0

= Fk+i + Ek+i (6)

In the above equation

N-l

***• =y"f.3 (k+i)j
k+ i Z 3

j=0

(7

and

N-l

.-I\+i =zLV
(k+1)]

(3)

j-0

Note that in equation (8) Eyi+ ± is the finite field transform

of the ej ' s.

The second step of the decoding procedure is to compute

a l for 1 < % < v (where v = number of errors) using the

equation

v

S. + / S. a =0 for < i < 2E-1
l /_ l- 9. %

1=1

82

from the syndromes computed in the previous step. This

can be accomplished using Berlekamp's iterative algorithm or

Massey's linear feedback shift register (LFSR) synthesis

algorithm. [Ref. 12]

Upon obtaining the o t 's, the third step of the decoding

procedure is to use the recursive equation

v

:+i /R. = / E, . a = Q for 2 E < i < N-

1

}<:+ i ^_ k+ l- i i

1=1

where

Ek+i = Ek+i-N for k+i > N

to compute the remaining Efc+ ^ for 2E < i < N-l.

After determining the transform of the error pattern

E]^
j_ for < k+i < N-l, by equation (8), we can then apply

the inverse transform to E^
j_

, to obtain the error pattern

r>2
N-l

-(k+i)j
e . = (N) / E, .

j
v

' £_ k+

1

k+i=0

for j=0 ,1 ,2 , . . . ,N-1 . Then the corrected codeword is

obtained by subtracting the error pattern ej from the stored

code vector rj in the buffer register.

83

In summary, the decoding of an RS code is composed of

the following five steps:

1) Compute the syndrome S^ using the equation

N-l

_ . k+ i . \ „ (k+ i
)

j

S
i

= r(3) = / r
.

e

v IJ

j=0

2) Use Berlekamp's iterative algorithm or Massey's
LFSR synthesis algorithm to determine the coefficients
of the error locator polynomial a A

from the known S-j_ =

Ek+i for i=0 ,1 ,2 , . . . ,2E-1 .

3) Compute the remaining E^+ ^ from the known S^ using the
equation

v

1=1

for 2E < i < N-l .

4) Compute the inverse transform

N-l

k+i=0

to obtain the error pattern, where (N)~l is the
inverse of N.

5) Subtract the error pattern ej from the received code
vector rj in the buffer memory to obtain the corrected
codeword

.

Note that in steps 1, 4, and 5, the processing time

is proportional to N*J, while in steps 2 and 3 the

84

processing time is proportional to 2E*J and (N-2E)*J,

respectively. Hence, a natural partition for pipeline

processing is to divide the decoder system into three pipe-

line stages. Stage 1 is used to perform step 1, stage 2 is

used to perform steps 2-4 , and stage 3 is used to perform

step 5 . To obtain a uniform throughput of one decoded

symbol per symbol clock cycle, each pipeline stage is

required to complete its computations in N symbol clock

cycles. As always, the throughput of the system is deter-

mined by the slowest stage in the pipeline. [Ref. 12]

The RS decoder architecture using the above pipeline

decoding technique is shown in Figure 6.12. The timing

chart of the decoder is shown in Figure 6.13. In both

figures, note that the first 2E input symbols of the inverse

transform, which are S , S]^ , ..., S2E-1* can be processed in

parallel with the Berlekamp/Massey LFSR synthesis algor-

ithm. The remaining N-2E input symbols of the inverse

transform are obtained from the remaining transform. Each

of these N-2E input symbols is processed by the inverse

transform circuit immediately after its generation. In

stage 3, the buffer memory is read out symbol- by- symbol and

" Exclusive-OR'ed" with the output of the inverse transform.

A triple-buffered memory is required to store the three

active codewords in the pipeline. [Ref. 12]

85

s
o s on Ph

z S o
H O Eh

^s
H O Eh

CO Cm M>
2 h < Ph CO D
H CO K > W 2 u

> < Ph
^

S < 2 2 K H
H Eh U

K Eh Q

^V

m
W
o
<
Eh
CO

CN SB
H

H iJ
OS U CJ\w rtl Ph

Ph Cm CO Eh V / H
2 J H
<C CO Eh

CO

of s* \
^ >H H H w SL J ?
W W k d S 7 \J CO Eh U
« CO Z Oh

H
hJ

W < >h H w
PQ S CO U Cm

H
7

i

s

>

rH

E-" H
D Ph o
Ph H O < PS

2 § Eh Eh PS W
H O <

Pi k
CO W E-

Ph CO
tf Q w Ph- &H M
s 2 2 iz D U
Q >H H H m w
o CO O J S
u H
w Ph
a / \ H / ^

Ph

S

Eh

D
Ph
Eh

P
O
Ph

W
Q
O
U

0)

U

-p

o
0)
+J

•H

o
u
<
u

O
o

Q
CO
Ph

<d

Eh

<N

CD

3
CPH
Cm

86

CO

o

CO

CO

o

>H

CO

CO

o

CO

o
z
Q
Pi

o
H
Q
O
U

m

o

Q
O
w
Q
O
U

CN

o
z
Q
Pi

O
W
Q
O
U

Q
Pi ro

O
S •

H O
Q Z
O
O

Q
Pi CN
o
s: •

W O
P 25
O
u

Q
Pi

O
H
Q
O
U

Q
Pi m
O
s •

H O
Q a
O
C>-

Q
Pi CN

O
2 •

w O
Q Z
O
U-

Q
Pi
O
H
Q
O
u.

ro

O
Z
Q
Pi

o
w
Q
O
u
CN

O
z
Q
Pi

o
w
Q
O
u

o
z
Q
Pi

o
w
Q
O
U

CN

o
z
Q
Pi

o
H
Q
O
U

O
Z
Q
Pi

o
w
Q
O
U

4J

U
rcj

U

H
gH
Eh

Di

CH
•a
o
u
CD

Q
CO
Pi

tt)

En

CO

O
a
s
>H

CO

c
Z
Q
Pi

O
W
Q
O
U

Z
o

§2
Q W
z z
>h w
co 3

>H

w
CO CO
CO H
<C CO

Pj E-t

S Z
< >H

« CO
w
J Pi
Pi co
w En

ffl J

zO 2 O S
Z 2 H Pi
H O Eh w o
Z fc < CO Ph

H CO Pi Pi CO
< z w w z

is2^2
K En 3 H En

Z
o
H
Eh

U
Pi

o s
Pi Pi
Pi o
H CJ

m

0)

S-l

•H
Pm

87

VII. CONCLUSION

In this thesis we have taken a modular approach to the

systolic implementation of a Reed- Solomon encoder and

decoder. By initially discussing the theory behind systolic

arrays and finite fields, we have shown how they play an

integral part in the overall implementation. The binary

case is presented first because of its simple architecture

and ease of understanding. It is then followed by a

design of a systolic multiplier and an RS encoder and

decoder .

The multiplier requires m basic cells for the finite

field GF(2m). Because of its simple-control methodology,

regular interconnection pattern, and modular structure it is

highly suited for VLSI implementation. The encoder using

the systolic multiplier offers the advantage of requiring

less power, minimal size, and high reliability. The decoder

being modular in design is also highly suited for a systolic

architecture, thus the decoding speed can easily be

increased by using a distributive processing scheme. In

this way, several decoders can operate in parallel simul-

taneously, while each individual decoder can operate in a

pipeline fashion.

The design of both the RS encoder and decoder is simple

and regular. They can be constructed using a systolic array

88

of identical cells with every interconnection path occurring

between adjacent cells. This makes implementation in VLSI

extremely attractive since the layout of the cell need only

be done once and then replicated.

It is hoped that with this thesis as a guide, an

interested electrical engineering student could implement

the encoder or decoder in hardware. By building the four

cell-binary encoder first, the student would establish a

firm foundation vital to the development of the more

complicated RS encoder. This process could then be expanded

to produce an encoder of eight or sixteen cells, or the more

general case of 2m .

89

LIST OF REFERENCES

1. Berlekamp, E. R. , "Technology of Error- Correcting
Codes," Proc. IEEE , Vol. 68, May 19 80, pp. 567-593.

2. Kung , H. T. and Leiserson, C. E., "Systolic Arrays
(for VLSI)," Sparse Matrix Proc. 197 8 , Society for
Industrial and Applied Mathematics, 1979, pp. 25 6-282.

3. Hwang, K. and Briggs, F. A., Computer Architecture and
Parallel Processing , McGraw-Hill, New York, 19 84, pp.
768-770 .

4. Kung, H. T. , "Why Systolic Architectures?" Computer ,

Vol. 15, pp. 37-46, January 19 82.

5. Berlekamp, E. R. , Algebraic Coding Theory , McGraw-Hill,
New York, 1968, pp. 87-88.

6. Peterson, W. W. , Error- Correcting Codes , Cambridge, MA:
MIT Press, 1961, pp. 97-100.

7. Yeh, C. S., Reed, I. S. , and Truong , T. K. , "A Systolic
Multiplier for Finite Fields of GF(2 m)," IEEE Trans.
Comput. , Vol. C-3 3, pp. 35 7-3 60, April 19 84.

8. Liu, K. Y. , "Architecture for VLSI Design of Reed-
Solomon Encoders," IEEE Trans. Comput ., Vol. C-31,
pp. 170-175, February 1982.

9. Johl , J. T. , "VLSI Design for Reed- Solomon Encoder,"
IEEE Proc. of the 1984 Custom Integrated Circuits
Conference , pp. 615-618, May 1984.

10. Fellin, J. A., "Primitive Shift Registers,"
Applications of Abstract Algebra and Finite Field
Theory to Computer Design and Data Communications
System , pp. 1-34, November 1981.

11. MacWilliams, F. J. and Sloane, N. J. A., The Theory of
Error-Correcting Codes , Nor th- Holland , New York, 1977,
pp. 294-295 .

12. Liu, K. Y. , "Architecture for VLSI Design of Reed-
Solomon Decoders," IEEE Trans. Comput. , Vol. C-3 3,
pp. 178-189, February 1984.

90

BIBLIOGRAPHY

Berlekamp, E. R. , "Bit-Serial Reed-Solomon Encoders," IEEE
Trans. Inform, Theory , Vol. IT-28, pp. 869-874, November
1982.

Blahut, R. E. , "Fast Decoding Algorithms for Reed- Solomon
Codes," Secure Digital Communications , G. Longo (ed.),
Spr inger-Verlag Wien-New York., November 19 83, pp. 281-316.

Brent, R. P. and Kung , H. T. , "Systolic VLSI Arrays for
Polynomial GCD Computation," CMU Technical Report , March
1982.

Bromley, K. , Symanski, J. M. , and Whitehouse, H. J.,
"Systolic Array Processor Developments," VLSI Systems and
Computations , H. T. Kung, R. F. Sproull, and G. L. Steele,
Jr., (eds.), Carnegie- Mellon University, Computer Science
Press, October 1981, pp. 273-284.

National Aeronautics and Space Administration Report
32-1275 , Error Correction for Deep Space Network Teletype
Circuits , by H. M. Fredricksen, 1 June 1963.

Laws, B. A. and Rushforth, C. K. , "A Cellular- Array
Multiplier for GF(2m), IEEE Trans. Comput. , Vol. C-20

,

pp. 1573-1578, December 1981.

Mandelbaum, D. , "On Decoding of Reed-Solomon Codes," IEEE
Trans. Inform. Theory , Vol. IT- 17 , pp. 70 7-712, November
1971.

Michelson, A., "A Fast Transform in Some Galois Fields and
an Application to Decoding Reed- Solomon Codes," Proc . IEEE
Int. Symp. Inform. Theory, p. 49, October 1976.

91

INITIAL DISTRIBUTION LIST

No. Copies

1 . Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93943-5100

3. Curricular Officer 1

Computer Technology Programs
Code 37
Naval Postgraduate School
Monterey, California 93943-5100

4. Prof. Harold M. Fredricksen 3

Code 5 3 Fs
Department of Mathematics
Naval Postgraduate School
Monterey, California 93943-5100

5 . LTCOL Alan A. Ross 1

Code 5 2Rs
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

6. LT Stephen S. McKenzie 2

2301-5 th Avenue, #4LL
New York, New York 100 3 7

92

ThesiThesis
M2239M2239
c.l cl

21^870

McKenzie
A systolic array im-

plementation of a Reed-

Solomon encoder and de-

coder.

22 . 32179

Thesis

M2239 McKenzie
c.l A systolic array im-

plementation of a Reed-

Solomon encoder and de-

coder.

m0

