142 research outputs found

    Multiple bit error correcting architectures over finite fields

    Get PDF
    This thesis proposes techniques to mitigate multiple bit errors in GF arithmetic circuits. As GF arithmetic circuits such as multipliers constitute the complex and important functional unit of a crypto-processor, making them fault tolerant will improve the reliability of circuits that are employed in safety applications and the errors may cause catastrophe if not mitigated. Firstly, a thorough literature review has been carried out. The merits of efficient schemes are carefully analyzed to study the space for improvement in error correction, area and power consumption. Proposed error correction schemes include bit parallel ones using optimized BCH codes that are useful in applications where power and area are not prime concerns. The scheme is also extended to dynamically correcting scheme to reduce decoder delay. Other method that suits low power and area applications such as RFIDs and smart cards using cross parity codes is also proposed. The experimental evaluation shows that the proposed techniques can mitigate single and multiple bit errors with wider error coverage compared to existing methods with lesser area and power consumption. The proposed scheme is used to mask the errors appearing at the output of the circuit irrespective of their cause. This thesis also investigates the error mitigation schemes in emerging technologies (QCA, CNTFET) to compare area, power and delay with existing CMOS equivalent. Though the proposed novel multiple error correcting techniques can not ensure 100% error mitigation, inclusion of these techniques to actual design can improve the reliability of the circuits or increase the difficulty in hacking crypto-devices. Proposed schemes can also be extended to non GF digital circuits

    High-speed Hardware Implementations of Point Multiplication for Binary Edwards and Generalized Hessian Curves

    Get PDF
    In this paper high-speed hardware architectures of point multiplication based on Montgomery ladder algorithm for binary Edwards and generalized Hessian curves in Gaussian normal basis are presented. Computations of the point addition and point doubling in the proposed architecture are concurrently performed by pipelined digit-serial finite field multipliers. The multipliers in parallel form are scheduled for lower number of clock cycles. The structure of proposed digit-serial Gaussian normal basis multiplier is constructed based on regular and low-cost modules of exponentiation by powers of two and multiplication by normal elements. Therefore, the structures are area efficient and have low critical path delay. Implementation results of the proposed architectures on Virtex-5 XC5VLX110 FPGA show that then execution time of the point multiplication for binary Edwards and generalized Hessian curves over GF(2163) and GF(2233) are 8.62µs and 11.03µs respectively. The proposed architectures have high-performance and high-speed compared to other works

    High Speed and Low-Complexity Hardware Architectures for Elliptic Curve-Based Crypto-Processors

    Get PDF
    The elliptic curve cryptography (ECC) has been identified as an efficient scheme for public-key cryptography. This thesis studies efficient implementation of ECC crypto-processors on hardware platforms in a bottom-up approach. We first study efficient and low-complexity architectures for finite field multiplications over Gaussian normal basis (GNB). We propose three new low-complexity digit-level architectures for finite field multiplication. Architectures are modified in order to make them more suitable for hardware implementations specially focusing on reducing the area usage. Then, for the first time, we propose a hybrid digit-level multiplier architecture which performs two multiplications together (double-multiplication) with the same number of clock cycles required as the one for one multiplication. We propose a new hardware architecture for point multiplication on newly introduced binary Edwards and generalized Hessian curves. We investigate higher level parallelization and lower level scheduling for point multiplication on these curves. Also, we propose a highly parallel architecture for point multiplication on Koblitz curves by modifying the addition formulation. Several FPGA implementations exploiting these modifications are presented in this thesis. We employed the proposed hybrid multiplier architecture to reduce the latency of point multiplication in ECC crypto-processors as well as the double-exponentiation. This scheme is the first known method to increase the speed of point multiplication whenever parallelization fails due to the data dependencies amongst lower level arithmetic computations. Our comparison results show that our proposed multiplier architectures outperform the counterparts available in the literature. Furthermore, fast computation of point multiplication on different binary elliptic curves is achieved

    Efficient and Low-complexity Hardware Architecture of Gaussian Normal Basis Multiplication over GF(2m) for Elliptic Curve Cryptosystems

    Get PDF
    In this paper an efficient high-speed architecture of Gaussian normal basis multiplier over binary finite field GF(2m) is presented. The structure is constructed by using regular modules for computation of exponentiation by powers of 2 and low-cost blocks for multiplication by normal elements of the binary field. Since the exponents are powers of 2, the modules are implemented by some simple cyclic shifts in the normal basis representation. As a result, the multiplier has a simple structure with a low critical path delay. The efficiency of the proposed structure is studied in terms of area and time complexity by using its implementation on Vertix-4 FPGA family and also its ASIC design in 180nm CMOS technology. Comparison results with other structures of the Gaussian normal basis multiplier verify that the proposed architecture has better performance in terms of speed and hardware utilization

    Concurrent Error Detection in Finite Field Arithmetic Operations

    Get PDF
    With significant advances in wired and wireless technologies and also increased shrinking in the size of VLSI circuits, many devices have become very large because they need to contain several large units. This large number of gates and in turn large number of transistors causes the devices to be more prone to faults. These faults specially in sensitive and critical applications may cause serious failures and hence should be avoided. On the other hand, some critical applications such as cryptosystems may also be prone to deliberately injected faults by malicious attackers. Some of these faults can produce erroneous results that can reveal some important secret information of the cryptosystems. Furthermore, yield factor improvement is always an important issue in VLSI design and fabrication processes. Digital systems such as cryptosystems and digital signal processors usually contain finite field operations. Therefore, error detection and correction of such operations have become an important issue recently. In most of the work reported so far, error detection and correction are applied using redundancies in space (hardware), time, and/or information (coding theory). In this work, schemes based on these redundancies are presented to detect errors in important finite field arithmetic operations resulting from hardware faults. Finite fields are used in a number of practical cryptosystems and channel encoders/decoders. The schemes presented here can detect errors in arithmetic operations of finite fields represented in different bases, including polynomial, dual and/or normal basis, and implemented in various architectures, including bit-serial, bit-parallel and/or systolic arrays

    High-speed VLSI implementation of Digit-serial Gaussian normal basis Multiplication over GF(2m)

    Get PDF
    In this paper, by employing the logical effort technique an efficient and high-speed VLSI implementation of the digit-serial Gaussian normal basis multiplier is presented. It is constructed by using AND, XOR and XOR tree components. To have a low-cost implementation with low number of transistors, the block of AND gates are implemented by using NAND gates based on the property of the XOR gates in the XOR tree. To optimally decrease the delay and increase the drive ability of the circuit the logical effort method as an efficient method for sizing the transistors is employed. By using this method and also a 4-input XOR gate structure, the circuit is designed for minimum delay. The digit-serial Gaussian normal basis multiplier is implemented over two binary finite fields GF(2163) and GF(2233) in 0.18μm CMOS technology for three different digit sizes. The results show that the proposed structures, compared to previous structures, have been improved in terms of delay and area parameters

    Novel Single and Hybrid Finite Field Multipliers over GF(2m) for Emerging Cryptographic Systems

    Get PDF
    With the rapid development of economic and technical progress, designers and users of various kinds of ICs and emerging embedded systems like body-embedded chips and wearable devices are increasingly facing security issues. All of these demands from customers push the cryptographic systems to be faster, more efficient, more reliable and safer. On the other hand, multiplier over GF(2m) as the most important part of these emerging cryptographic systems, is expected to be high-throughput, low-complexity, and low-latency. Fortunately, very large scale integration (VLSI) digital signal processing techniques offer great facilities to design efficient multipliers over GF(2m). This dissertation focuses on designing novel VLSI implementation of high-throughput low-latency and low-complexity single and hybrid finite field multipliers over GF(2m) for emerging cryptographic systems. Low-latency (latency can be chosen without any restriction) high-speed pentanomial basis multipliers are presented. For the first time, the dissertation also develops three high-throughput digit-serial multipliers based on pentanomials. Then a novel realization of digit-level implementation of multipliers based on redundant basis is introduced. Finally, single and hybrid reordered normal basis bit-level and digit-level high-throughput multipliers are presented. To the authors knowledge, this is the first time ever reported on multipliers with multiple throughput rate choices. All the proposed designs are simple and modular, therefore suitable for VLSI implementation for various emerging cryptographic systems

    Efficient and Secure ECDSA Algorithm and its Applications: A Survey

    Get PDF
    Public-key cryptography algorithms, especially elliptic curve cryptography (ECC)and elliptic curve digital signature algorithm (ECDSA) have been attracting attention frommany researchers in different institutions because these algorithms provide security andhigh performance when being used in many areas such as electronic-healthcare, electronicbanking,electronic-commerce, electronic-vehicular, and electronic-governance. These algorithmsheighten security against various attacks and the same time improve performanceto obtain efficiencies (time, memory, reduced computation complexity, and energy saving)in an environment of constrained source and large systems. This paper presents detailedand a comprehensive survey of an update of the ECDSA algorithm in terms of performance,security, and applications
    • …
    corecore