161 research outputs found

    Transaction Chains: Achieving Serializability with Low Latency in Geo-distributed Storage Systems. In:

    Get PDF
    Abstract Currently, users of geo-distributed storage systems face a hard choice between having serializable transactions with high latency, or limited or no transactions with low latency. We show that it is possible to obtain both serializable transactions and low latency, under two conditions. First, transactions are known ahead of time, permitting an a priori static analysis of conflicts. Second, transactions are structured as transaction chains consisting of a sequence of hops, each hop modifying data at one server. To demonstrate this idea, we built Lynx, a geo-distributed storage system that offers transaction chains, secondary indexes, materialized join views, and geo-replication. Lynx uses static analysis to determine if each hop can execute separately while preserving serializability-if so, a client needs wait only for the first hop to complete, which occurs quickly. To evaluate Lynx, we built three applications: an auction service, a Twitter-like microblogging site and a social networking site. These applications successfully use chains to achieve low latency operation and good throughput

    ULTRA - A Logic Transaction Programming Language

    Get PDF
    Rule-based language for the specification of complex database updates and transactions. Formal treatment of the syntax and the declarative semanticsRegelbasierte Sprache zur Spezifikation komplexer Datenbank-Operationen und Transaktionen. Formle Behandlung von Syntax und deklarativer Semantik

    Practical database replication

    Get PDF
    Tese de doutoramento em InformáticaSoftware-based replication is a cost-effective approach for fault-tolerance when combined with commodity hardware. In particular, shared-nothing database clusters built upon commodity machines and synchronized through eager software-based replication protocols have been driven by the distributed systems community in the last decade. The efforts on eager database replication, however, stem from the late 1970s with initial proposals designed by the database community. From that time, we have the distributed locking and atomic commitment protocols. Briefly speaking, before updating a data item, all copies are locked through a distributed lock, and upon commit, an atomic commitment protocol is responsible for guaranteeing that the transaction’s changes are written to a non-volatile storage at all replicas before committing it. Both these processes contributed to a poor performance. The distributed systems community improved these processes by reducing the number of interactions among replicas through the use of group communication and by relaxing the durability requirements imposed by the atomic commitment protocol. The approach requires at most two interactions among replicas and disseminates updates without necessarily applying them before committing a transaction. This relies on a high number of machines to reduce the likelihood of failures and ensure data resilience. Clearly, the availability of commodity machines and their increasing processing power makes this feasible. Proving the feasibility of this approach requires us to build several prototypes and evaluate them with different workloads and scenarios. Although simulation environments are a good starting point, mainly those that allow us to combine real (e.g., replication protocols, group communication) and simulated-code (e.g., database, network), full-fledged implementations should be developed and tested. Unfortunately, database vendors usually do not provide native support for the development of third-party replication protocols, thus forcing protocol developers to either change the database engines, when the source code is available, or construct in the middleware server wrappers that intercept client requests otherwise. The former solution is hard to maintain as new database releases are constantly being produced, whereas the latter represents a strenuous development effort as it requires us to rebuild several database features at the middleware. Unfortunately, the group-based replication protocols, optimistic or conservative, that had been proposed so far have drawbacks that present a major hurdle to their practicability. The optimistic protocols make it difficult to commit transactions in the presence of hot-spots, whereas the conservative protocols have a poor performance due to concurrency issues. In this thesis, we propose using a generic architecture and programming interface, titled GAPI, to facilitate the development of different replication strategies. The idea consists of providing key extensions to multiple DBMSs (Database Management Systems), thus enabling a replication strategy to be developed once and tested on several databases that have such extensions, i.e., those that are replication-friendly. To tackle the aforementioned problems in groupbased replication protocols, we propose using a novel protocol, titled AKARA. AKARA guarantees fairness, and thus all transactions have a chance to commit, and ensures great performance while exploiting parallelism as provided by local database engines. Finally, we outline a simple but comprehensive set of components to build group-based replication protocols and discuss key points in its design and implementation.A replicação baseada em software é uma abordagem que fornece um bom custo benefício para tolerância a falhas quando combinada com hardware commodity. Em particular, os clusters de base de dados “shared-nothing” construídos com hardware commodity e sincronizados através de protocolos “eager” têm sido impulsionados pela comunidade de sistemas distribuídos na última década. Os primeiros esforços na utilização dos protocolos “eager”, decorrem da década de 70 do século XX com as propostas da comunidade de base de dados. Dessa época, temos os protocolos de bloqueio distribuído e de terminação atómica (i.e. “two-phase commit”). De forma sucinta, antes de actualizar um item de dados, todas as cópias são bloqueadas através de um protocolo de bloqueio distribuído e, no momento de efetivar uma transacção, um protocolo de terminação atómica é responsável por garantir que as alterações da transacção são gravadas em todas as réplicas num sistema de armazenamento não-volátil. No entanto, ambos os processos contribuem para um mau desempenho do sistema. A comunidade de sistemas distribuídos melhorou esses processos, reduzindo o número de interacções entre réplicas, através do uso da comunicação em grupo e minimizando a rigidez os requisitos de durabilidade impostos pelo protocolo de terminação atómica. Essa abordagem requer no máximo duas interacções entre as réplicas e dissemina actualizações sem necessariamente aplicá-las antes de efectivar uma transacção. Para funcionar, a solução depende de um elevado número de máquinas para reduzirem a probabilidade de falhas e garantir a resiliência de dados. Claramente, a disponibilidade de hardware commodity e o seu poder de processamento crescente tornam essa abordagem possível. Comprovar a viabilidade desta abordagem obriga-nos a construir vários protótipos e a avaliálos com diferentes cargas de trabalho e cenários. Embora os ambientes de simulação sejam um bom ponto de partida, principalmente aqueles que nos permitem combinar o código real (por exemplo, protocolos de replicação, a comunicação em grupo) e o simulado (por exemplo, base de dados, rede), implementações reais devem ser desenvolvidas e testadas. Infelizmente, os fornecedores de base de dados, geralmente, não possuem suporte nativo para o desenvolvimento de protocolos de replicação de terceiros, forçando os desenvolvedores de protocolo a mudar o motor de base de dados, quando o código fonte está disponível, ou a construir no middleware abordagens que interceptam as solicitações do cliente. A primeira solução é difícil de manter já que novas “releases” das bases de dados estão constantemente a serem produzidas, enquanto a segunda representa um desenvolvimento árduo, pois obriga-nos a reconstruir vários recursos de uma base de dados no middleware. Infelizmente, os protocolos de replicação baseados em comunicação em grupo, optimistas ou conservadores, que foram propostos até agora apresentam inconvenientes que são um grande obstáculo à sua utilização. Com os protocolos optimistas é difícil efectivar transacções na presença de “hot-spots”, enquanto que os protocolos conservadores têm um fraco desempenho devido a problemas de concorrência. Nesta tese, propomos utilizar uma arquitetura genérica e uma interface de programação, intitulada GAPI, para facilitar o desenvolvimento de diferentes estratégias de replicação. A ideia consiste em fornecer extensões chaves para múltiplos SGBDs (Database Management Systems), permitindo assim que uma estratégia de replicação possa ser desenvolvida uma única vez e testada em várias bases de dados que possuam tais extensões, ou seja, aquelas que são “replicationfriendly”. Para resolver os problemas acima referidos nos protocolos de replicação baseados em comunicação em grupo, propomos utilizar um novo protocolo, intitulado AKARA. AKARA garante a equidade, portanto, todas as operações têm uma oportunidade de serem efectivadas, e garante um excelente desempenho ao tirar partido do paralelismo fornecido pelos motores de base de dados. Finalmente, propomos um conjunto simples, mas abrangente de componentes para construir protocolos de replicação baseados em comunicação em grupo e discutimos pontoschave na sua concepção e implementação

    Distributed transaction processing in the Escada protocol

    Get PDF
    Replicação é uma técnica essencial para a implementação de bases de dados tolerantes a faltas, sendo também frequentemente utilizada para melhorar o seu desempenho. Infelizmente, quando critérios de consistência forte e a capacidade de actualização a partir de qualquer réplica são consideradas, os protocolos de replicação actualmente disponíveis nos gestores de bases de dados comerciais não apresentam um bom desempenho. O problema está relacionado ao custo produzido pelas interacções entre as réplicas no intuito de garantir a consistência, e pelos protocolos de terminação que procuram assegurar que todas as réplicas concordam com o resultado da transacção. De uma maneira geral, o número de “aborts”, “deadlocks” e mensagens trocadas cresce de maneira drástica, ao aumentar o número de réplicas. Em outros trabalhos, foi provado que a replicação de base de dados num cenário desses é impraticável. No intuito de resolver esses problemas, diversos estudos têm sido desenvolvidos. Inicialmente, a maioria deles deixou de lado os requisitos de consistência forte ou a capacidade de actualização a partir de qualquer réplica para conseguir soluções viáveis. Recentemente, protocolos de replicação baseados em comunicação em grupo foram propostos, nos quais os requisitos de consistência forte e actualização a partir de qualquer réplica são preservados e os problemas contornados. Neste contexto encontra-se o projecto Escada. Sucintamente, ele tem como objectivo estudar, projectar e implementar mecanismos de replicação transaccionais adequados para sistemas distribuídos de larga escala. Em particular, o projecto explora as técnicas de replicação parcial para fornecer critérios de consistência forte sem introduzir pesos significantes de sincronização e sem prejudicar o desempenho. Nesta dissertação, extendemos o projecto Escada com um modelo e um mecanismo de processamento de consultas distribuído, o que é um requisito inevitável num ambiente de replicação parcial. Além disso, explorando características dos protocolos, propomos um cache semântico para reduzir o peso gerado ao aceder a réplicas remotas. Também melhoramos o processo de certificação, ao procurar reduzir os “aborts”, utilizando informação semântica presente nas transacções. Finalmente, para avaliar os protocolos desenvolvidos pelo projecto Escada, o cache semântico e o processo de certificação utilizamos um modelo de simulação que combina código simulado e real, o que nos permite avaliar nossas propostas em diferentes cenários e configurações. Mais do que isso, ao invés de usar cargas fictícias, submetemos nossas propostas a cargas baseadas nos “benchmarks” TPC-W e TPC-C.Database replication is an invaluable technique to implement fault-tolerant databases, being also frequently used to improve database performance. Unfortunately, when strong consistency among the replicas and the ability to update the database at any of the replicas are considered, the replication protocols do not scale up. The problem is related to the number of interactions among the replicas in order to guarantee consistency and to the protocols used to ensure that all the replicas agree on transactions’ result. Roughly, the number of aborts, deadlocks and messages exchanged among the replicas grows drastically, when the number of replicas increases. In related works, it has been proved that database replication in such a scenario is impractical. In order to overcome these problems, several studies have been developed. Initially, most of them released the strong consistency and the update-anywhere requirements to achieve feasible solutions. Recently, replication protocols based on group communication were proposed, in which the strong consistency and update-anywhere requirements are preserved and the problems circumvented. This is the context of the Escada project. Briefly, it aims to study, design and implement transaction replication mechanisms suited to large scale distributed systems. In particular, the project exploits partial replication techniques to provide strong consistency criteria without introducing significant synchronization and performance overheads. In this thesis, we augment the Escada with a distributed query processing model and mechanism, which is an inevitable requirement in a partially replicated environment. Moreover, exploiting characteristics of its protocols, we propose a semantic cache to reduce the overhead generated while accessing remote replicas. We also improve the certification process, while attempting to reduce aborts using the semantic information available in the transactions. Finally, to evaluate the Escada protocols, the semantic caching and the certification process, we use a simulation model that combines simulated and real code, which allows to evaluate our proposals under distinct scenarios and configurations. Furthermore, instead of using unrealistic workloads, we test our proposals using workloads based on the TPC-W and TPC-C benchmarks.Fundação para a Ciência e a Tecnologia - POSI/CHS/41285/2001

    Online Schema Evolution is (Almost) Free for Snapshot Databases

    Full text link
    Modern database applications often change their schemas to keep up with the changing requirements. However, support for online and transactional schema evolution remains challenging in existing database systems. Specifically, prior work often takes ad hoc approaches to schema evolution with 'patches' applied to existing systems, leading to many corner cases and often incomplete functionality. Applications therefore often have to carefully schedule downtimes for schema changes, sacrificing availability. This paper presents Tesseract, a new approach to online and transactional schema evolution without the aforementioned drawbacks. We design Tesseract based on a key observation: in widely used multi-versioned database systems, schema evolution can be modeled as data modification operations that change the entire table, i.e., data-definition-as-modification (DDaM). This allows us to support schema almost 'for free' by leveraging the concurrency control protocol. By simple tweaks to existing snapshot isolation protocols, on a 40-core server we show that under a variety of workloads, Tesseract is able to provide online, transactional schema evolution without service downtime, and retain high application performance when schema evolution is in progress.Comment: To appear at Proceedings of the 2023 International Conference on Very Large Data Bases (VLDB 2023

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks
    corecore