
Dissertation

ULTRA { A Logic Transaction Programming Language

in englischer Sprache verfa�t von

Carl-Alexander Wichert

zur Erlangung des Dr. rer. nat. an der

Fakult�at f�ur Mathematik und Informatik

der Universit�at Passau

Juni 2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS - Volltextserver Universität Passau

https://core.ac.uk/display/35072992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ULTRA { A Logic Transaction Programming Language

Carl-Alexander Wichert

3

Contents

1 Introduction 5

1.1 Motivation . 5

1.2 Complex Operations in Information Systems . 6

1.3 The ULTRA Approach . 8

1.4 Contributions of this Thesis . 10

2 Open Problems and Research Issues 12

2.1 Relational Databases and SQL . 12

2.2 Imperative Programming Languages . 15

2.3 Logic Databases . 17

2.4 Logic-Based Approaches for Updates and Dynamics 19

2.5 Transaction Concepts . 25

3 The Update Language ULTRA 28

3.1 The Generic ULTRA Language . 28

3.2 Instantiating the Framework: ULTRA for Logic Databases 31

3.3 Instantiating the Framework: ULTRA for External Operations 34

4 Semantics of Formulas and Programs 36

4.1 Preliminaries and Preconditions . 36

4.2 Interpretation of Update Formulas . 40

4.3 Speci�c Semantics for Logic Databases . 43

4.4 Speci�c Semantics for External Operations . 51

4.4.1 States and Actions . 51

4.4.2 Partially Ordered Multi-Sets of Actions . 53

4.4.3 Execution of Finite Pomsets . 58

4.4.4 The ULTRA Instance based on Pomsets . 62

4.5 Other Instantiations of the Framework . 64

4.5.1 Cost Calculation for Complex Operations . 64

4.5.2 Combination of Instances . 66

4.5.3 Transitions and their Consistency . 68

4.6 Semantics of Update Programs . 69

4

5 Transactions and Serializability 85

5.1 Transactions in ULTRA . 85

5.2 Read-Isolation . 87

5.3 Isolation of Transactions . 88

5.4 Read-Isolation in Logic Databases . 96

5.5 Read-Isolation of Pomsets . 100

5.6 Read-Isolation and Stronger Constraints . 102

6 Semantical Properties of Language Constructs and Programs 104

6.1 Algebraic Properties of the Connectives . 104

6.2 Quanti�cations as Abbreviations . 106

6.3 Rewriting of Update Programs . 109

6.3.1 Auxiliary Rules for Complex Goals . 109

6.3.2 Normal Forms of Update Programs . 118

6.3.3 Instantiated Rules . 120

6.3.4 Elimination of Disjunction and Existential Quanti�cation 120

6.4 Semantics of Programs in Di�erent Initial States . 123

7 Relations between ULTRA and other Approaches 129

7.1 Essentials of the ULTRA Approach . 129

7.2 Abduction and View Updates . 129

7.3 ULTRA versus (Concurrent) Transaction Logic . 133

7.3.1 Sequential Operations . 133

7.3.2 Concurrency Concepts . 139

7.4 Monadic Programming in Functional Languages . 143

8 Implementation of the ULTRA Language 144

8.1 The Two-Phase Strategy based on Deferred Executions 144

8.2 Immediate Executions in a Nested Transaction Environment 148

8.3 Outlook . 151

8.4 Example Applications . 151

9 Conclusion 153

5

1 Introduction

1.1 Motivation

Since several years, information systems have been becoming more and more important. The

resource \information" is a signi�cant economical factor for modern business companies, and the

management of huge amounts of various information has meanwhile become a standard problem. In

earlier times, information systems were restricted to classical oÆce applications like bookkeeping

and address management. These applications could be established as small, isolated software

products. The increase of memory capacities and the better performance of the hardware has

made it possible to store and manipulate information beyond the conventional oÆce data. On the

one hand the extent and the heterogeneity of information has increased, and on the other hand

the combination of distributed data and the integration of multiple software systems has become

an issue. Figure 1 schematically shows an information system built upon one or more \core"

databases, which are surrounded by various other components from e-mail services, access to the

world-wide web, and graphical user interfaces up to complex software components and external

hardware devices.

E-Mail SAP Component

WWW

E-Commerce

Databases

External Devices

GUI

Figure 1: Today's information systems

It is obvious that such complex systems cannot be designed and implemented by one single developer

or a small developer team. Thus, it is necessary to �nd theoretically well-founded standards and

methods for software development. These concepts further must enable an incremental software

development over long time, since complex software is not created at once but re�ned, improved,

and extended with time. Note that software engineering is a broad research �eld [GJM91, Som96],

and we do not claim to provide an overall solution in this thesis. However, we will concentrate

on the question of how to specify complex operations, i.e. a form of dynamics, in a heterogeneous

environment. We are going to develop a platform- and system-independent language together

with a comprehensive formal semantics. By providing means to specify complex operations, we

complement the existing concepts related to data modeling and retrieval. Advanced modularization

and interface techniques, e.g. object-orientation, can easily be integrated with our approach, as they

behave orthogonally. This integration could be a topic of future work.

In the research about database management, the main emphasis was laid on the static aspects, i.e.

on the logical modeling and the physical representation of data as well as on the capabilities to

retrieve and deduce information. There exist well-founded concepts and languages which enable

the de�nition and exploration of data. We will discuss the SQL language [DD97] for relational

6

databases as the main representative of these languages. In addition to the static concepts, many

approaches for database dynamics, i.e. the change of data with time, have been developed and

implemented. But as we will see by a close look, the single approaches are rather limited and

cannot easily be combined to an overall concept. The SQL standard, for instance, o�ers statements

to change tuples in a single table, but simultaneous changes in multiple tables cannot be speci�ed.

There exist various extensions of SQL that allow procedural combinations of SQL statements, but

the semantics is purely operational in contrast to the declarative style of the core language. It is

possible to encapsulate multiple statements into transactions that maintain the consistency of the

database (see Section 1.2), but the de�nition of begin and end of the transactions is left to the

programmer and does not �t well with the modularization concepts.

Yesterday's database management systems were rather monolithic. It was impossible to communi-

cate with other database systems or external software using the built-in programming paradigms.

Of course, database systems could be called via an interface from a program written in a classical

language like C. But in this case, transaction and security problems about distributed operations,

i.e. operations that do not run within a single database system, had to be solved in the outer pro-

gramming layer. Modern database architectures are open to act together with other components.

Calls to external software are possible e.g. using new extensions of the SQL language, and interfaces

are standardized to be platform- and system-independent. In other words, the interoperability fea-

tures have been improved signi�cantly. However, there still remain many open problems about

complex operations and transactions. There exist no common languages for specifying operations

at an abstract level with a signi�cant amount of declarativity and with the possibility to do opti-

mizations. All known extensions look like a variant of a procedural language similar to Fortran, C,

or Java. They are quite suitable to program algorithms, but do not �t with the basic paradigms of

database systems.

1.2 Complex Operations in Information Systems

Now we want to characterize the research topic that has been chosen for this thesis. We are going

to illustrate the requirements and the open problems. Let us �rst have a look at an introductory

example.

Example 1.1 [Storage] We model a simpli�ed storage for transport devices like boxes, barrels,

buckets, etc. Workers that have access to the storage can take these devices, whenever they have

to perform some tasks. The stock of the transport items is checked regularly and, once a day,

items that have become low on stock are reordered from a central storage. In the near future, the

central storage will provide an e-commerce component which should be used in order to facilitate

the ordering and billing process. See Figure 2 for an illustrative overview.

From the technical point of view, there are two main operations in the system: the delivery of a

single item to a worker and the reordering of items having a low stock. Further, we assume that

all orders and deliveries have to be logged in a journal for revision purposes. Consequently, the

operations work at least on two base tables, one of them storing the stock amounts, the other one

storing the changes. When the e-commerce system is involved, the reordering operation becomes

more complex and cannot be handled by a database system alone. 2

As already mentioned in Section 1.1, we are going to develop a language for the speci�cation of com-

plex operations at an abstract level. This language will be called ULTRA. Now it is time to collect

7

Transport Devices
Storage of

Integration with
E-Commerce System

Order from Central Storage Delivery to Worker

Figure 2: Storage for transport devices

requirements that such a language should satisfy. Since the language is designed for programming

in the large, it must enable a modular construction of operations under encapsulation properties

and with the possibility of reuse. The meaning of complex operations, i.e. the e�ects during their

execution, can only be completely understood and veri�ed, if the speci�cation language is de�ned

together with a formal semantics. We aim at a declarative semantics that shows compositionality

and independence of a particular operational model. Based on this foundation, it is possible to

develop veri�cation methods for bigger composite systems as well as dedicated execution models

and optimization techniques at the operational level. Nevertheless, a declarative approach does

not mean that we exclude procedural constructs from the language. Sequential composition of

prede�ned operations is one concept known from classical programming languages. A sequential

operation naturally originates when one operation has to take changes of other operations into

account or when operations are supposed to be performed strictly one after the other. To handle

sequential operations at the semantical level, we construct a logical foundation that can incorpo-

rate multiple states. From a pragmatic view, it would be desirable to provide also a concurrent

composition as known from parallel programming languages, e.g. Occam 2 [Wex89]. For instance,

the ordering operation of Example 1.1 can be decomposed into two updates on the database and

the creation of a mail order, but it would be inadequate to require that these sub-operations are

processed sequentially. Thus, the sub-operations should be combined in a concurrent style. Even

though the process management has to be very explicit, since there exists no high-level construct

for the concurrent composition of statements, today's programming languages like Java allow the

speci�cation of concurrency. However, the non-restricted (interleaving) parallelism causes serious

problems for the semantics. Although the operational behaviour is rather simple to describe, the

overall semantics of composed operations is diÆcult to de�ne and verify. This is one reason for

the fact that parallel programming is a widely open research �eld. Even in the database context,

one of the principles w.r.t. dynamics is the automatic parallelization with a serialization-equivalent

e�ect (cf. Section 2.5). We have chosen a medium approach that features explicit concurrency and

guarantees compositionality. Briefly speaking, we allow simultaneous operations as long as they

work together in harmony and do not need to communicate with each other. This way, we are

not restricted to sequential programs and avoid the semantical problems of parallel programming

at the same time. The concurrent composition leaves space for optimizations and is applicable in

many database settings, e.g. for separated data objects. Another concept known from relational

8

databases is the simultaneous update of multiple tuples, called a bulk update. We generalize the

concepts established in the language SQL and feature the composition of a bulk update from a

(possibly already complex) single update. In Example 1.1, the reordering of all transport devices

that have a low stock is a bulk update. Note that the ordering of a particular item can be consid-

ered and implemented as a complex sub-operation. The prede�ned basic operations should not be

limited to database operations like insertions and deletions, because the integration with external

hard- and software components may require arbitrary basic operations, whose speci�c semantics

is not known at de�nition time of the program semantics. Thus, we develop an open concept for

the semantics and decided to formulate it as a framework . This enables a later re�nement of the

semantics w.r.t. a speci�c database setting or an external environment.

Operations as described in Example 1.1 typically should behave as transactions. In particular, the

ACID properties, which are well-known in database theory [BHG87, BN97, GR93], should hold.

These properties require that operations are performed either completely or not at all, that the

state of the system is kept consistent, that di�erent operations invoked concurrently do not interfere

with each other, and that changes of completed operations are made persistent. In more general

words, the ACID properties guarantee a de�ned and consistent behaviour of the system in case of

concurrently running operations and in case of arbitrary failures.

Example 1.2 [Storage (Cont.)] Let us consider the reordering operation of Example 1.1. Pro-

vided that the ACID properties are satis�ed, it is not possible that a mail order is sent via the

e-commerce system, while the entry in the journal or the modi�cation of the stock is omitted. Even

if the system crashes, a consistent state will eventually be reached. Next, assume that two workers

simultaneously take boxes from the storage and invoke the corresponding bookkeeping operation.

Then the ACID properties will ensure that the �nal amount of boxes is computed and saved well,

in particular, it does not come to a lost update. The setting becomes even more complicated, if

one of the concurrent operations is aborted in the mean time. 2

Transaction models and techniques to guarantee the ACID properties have been studied since a

long time. In Section 2.5 we will give a brief overview. With the ULTRA approach we do not invent

a new transaction model but a language to specify operations. However we keep an eye on the

objective that these operations should be executed as (possibly nested) transactions.

1.3 The ULTRA Approach

Logic programming languages [Llo87], in particular deductive database languages [Das92], are a

viable means to describe the static aspects of information systems. They are preferable due to the

mathematical and compact syntax, the intuitive clarity, the veri�ability with formal methods, etc.

Rule-based languages including negation/aggregation or nested term structures o�er a modeling

power that lies above that of the well-known database language SQL [DD97]. Recall that procedural

languages usually allow recursive de�nitions and modern programming paradigms feature more

general data types than just tuples. Thus, it is sensible to develop the ULTRA approach as an

extension of the broad concepts of logic (deductive) databases. We claim that the logic language

developed in this thesis can easily be tailored to a more user-friendly language like e.g. SQL. The

de�nition of restricted program classes, the augmentation of the language by \syntactical sugar",

and the development of precompiling techniques could be practical steps in this direction.

9

The pure concept of logic databases unfortunately cannot handle dynamics. Thus, a lot of ap-

proaches have been developed for the speci�cation of dynamic behaviour. We will give an overview

in Section 2.4, where we will also discuss their merits and shortcomings. It turns out that the

existing approaches { regarded in isolation { cannot handle the arising problems. One prominent

concept, Transaction Logic [BK94, BK96], will be investigated in more detail after the presentation

of our own approach.

The main objective of the ULTRA approach is to develop a language concept that allows the

speci�cation of (transactional) changes at a high logical level while featuring declarativity and

compositionality. In this case, as known from the data retrieval task, the mapping from the logical to

the physical layer can be performed and optimized transparently by a (suitably extended) database

management system. The separation of physical and logical layers will also lead to considerable

improvements within the software development process. After analyzing the existing approaches, we

de�ne a new speci�cation language for complex operations, which provides the features discussed in

Section 1.2. The language supports classical database operations like insertions and deletions as well

as arbitrary other actions (e.g. moving a robot arm, sending an e-mail) as basic operations. Complex

operations are de�ned by update rules that generalize the rules of deductive databases. This

technique also resembles the de�nition of procedures/functions in classical programming languages.

Constructs for concurrent composition, sequential composition, and bulk updates are provided in

form of logical connectives and quanti�ers.

The update language needs a formal semantics, such that operations de�ned in this language

get a unique and veri�able meaning. We are trying to keep a high amount of declarativity in

order to have space for di�erent evaluation strategies and optimizations. The abstraction from the

operational handling turned out to be viable in the setting of relational and deductive databases.

We formalize a semantics of update programs founded on the concept of deferred updates. A

deferred update is represented by a transition, which can be considered as an object containing

basic actions that have to be performed eventually to accomplish the corresponding operation. As

two or more transitions can be better combined than two or more di�erent database or system

states, the concept turns out to be well-suited for the representation of bulk updates, i.e. updates

simultaneously performed for a speci�c set of parameter instances. We are also able to formulate a

concurrent composition which is compositional, i.e. the semantics of the concurrent formula ';

is de�ned in terms of the semantics of both subformulas ' and . Compositionality is important for

modularization and avoids the well-known problems of interleaving parallelism provided by various

programming languages. In the simplest form we will discuss, the transitions are sets of insertions

and deletions. When read/write conicts must be dealt with and more general actions are involved,

the transitions become more sophisticated. In this case, they must store information about retrieval

and order dependencies between basic operations. We de�ne a generic ULTRA framework, which

abstracts from the particular notion of states and transitions. To develop a semantics for a speci�c

update language, that may deal with external operations, non-trivial basic operations in databases,

operations on main-memory data structures, or even a combination of all these features, the only

thing remaining to be done is to provide an adequate transition system including functions for the

sequential and the concurrent composition of transitions. If these functions have monoid properties

and some additional conditions are satis�ed, all the properties which we are going to prove for

our ULTRA framework, also hold for the instance. In particular, we get a declarative model-

theoretic semantics for update programs. This distinguishes ULTRA from other practical extensions

of database languages found in various database systems that only have operational meanings but

no overall semantics. Some additional properties concerning transactions and isolation hold, if

10

further an adequate read-isolation relation on the set of transitions can be constructed.

ULTRA Framework

Instantiation for Logic Databases

Instantiation for External Actions

Basic Operations Read-Isolation

Basic Operations Read-IsolationTransition System

Transition System

Figure 3: Sample instantiations of the ULTRA framework

Although the ULTRA concept is created with database applications in mind, it can be used as a

framework for a great variety of update languages. This is exempli�ed by presenting two specializa-

tions, one of which is conceived to extend logic databases and the other of which is well-suited for

the programming of external operations { as illustrated by a variation of the famous robot world

example that can be found in many papers, e.g. in [LRL+97, Rei95]. Despite major di�erences be-

tween the world of a robot arm and a database system, both update languages behave as instances

of the ULTRA framework, see Figure 3.

1.4 Contributions of this Thesis

To conclude the introduction, we would like to give a concise summary of our research contributions.

We will point out the signi�cant increments that we intend to add to the state of the art by working

out this thesis.

The main achievement will be the construction of a generic framework for rule-based update lan-

guages that serve for the speci�cation of complex operations at an abstract and thus platform- and

system-independent level. On the one hand, we allow the modular construction of complex opera-

tions using procedural elements known from imperative programming languages, on the other hand,

we are able to formulate a logical semantics for these operations. The logical semantics appears

compositional and independent of any particular operational model. Consequently, the bene�ts of

declarative languages can be exploited in the context of speci�cation languages that are oriented at

the procedural programming paradigm. This is a signi�cant di�erence to other approaches, which

are either de�ned only at the operational level or provide a declarative paradigm with a limited

practical relevance.

The framework we are going to present in this thesis cannot be implemented directly, since it

describes requirements but no implementable objects. Therefore, to make the framework operable,

an instance that provides the concrete objects and entails the required algebraic properties has

to be de�ned. We will exemplify the instantiation using two application domains for the generic

ULTRA concept. However, it should be noted that other instantiations are possible as well. The

instances presented in this thesis can be used as a starting point for new instances, i.e. they can

11

be extended, combined, or revised. This exibility allows the adaptation of the ULTRA language

and its semantics to various other environments. In contrast to ULTRA, related approaches de�ne

language and semantics in more concrete terms and thus merely for one application domain, e.g.

for a logic database setting.

A further contribution of this thesis is the discussion of problems and possible solutions that become

an issue when complex operations have to be executed as transactions. Transaction concepts are

well-known in the database community, but they have been neglected in the �eld of programming

languages for long time. We claim to narrow the gap between the di�erent �elds in an understand-

able way, although we leave out many details w.r.t. a concrete operational model for the ULTRA

language.

It should be emphasized that the contributions do not arise from the fact that we develop a logic

language. We have chosen a logic language, because the syntax is compact and the well-described

results in the �eld of logic databases can serve as the basis for our own work. The ULTRA language

de�ned below has procedural elements and might be considered as non-declarative from a pure

logical point of view. As already mentioned in Section 1.3, the mathematical syntax could easily

be replaced by a conventional and more user-friedly syntax. The decisive point is the de�nition

of a semantics that assigns to every program a unique meaning which explicitly describes the

e�ects of the programmed operations. This generates a solid foundation for veri�cation techniques,

transactional execution strategies, and run-time optimization. Hence, the theoretical work of this

thesis can be read as a collection of design principles for a transaction programming language.

12

2 Open Problems and Research Issues

The main objective of this section is to illuminate the research �eld and to give reasons for our

own work done in the context of this thesis. We will describe how information systems are usually

implemented using standard techniques and show some problems that typically occur during that

task. Later, we recall the basics of logic (or deductive) databases and briefly discuss important

work related to the ULTRA approach. Finally, we cite some work about transaction models and

their implementations.

2.1 Relational Databases and SQL

Relational database systems, e.g. ORACLE, are commonly used as the bottom-layer of many infor-

mation systems. Today, most database management systems provide a variant of SQL as a data

de�nition and data manipulation language (see [DD97] for a detailed description of the SQL/92

standard). The core of SQL consists of a highly declarative retrieval language. After a retrieval

task is speci�ed at the logical level (using the SELECT statement), the physical retrieval process is

automatically de�ned and optimized by the database management system. This leads to a great

eÆciency, in particular, when the database designer adds some more information about the physical

data layer, e.g. about indexing and clustering. The eÆciency and the abstract programming style

are some essential reasons to build an information system on top of an existing database software.

Simple update operations combining retrieval and tuple-oriented manipulations on base tables are

directly expressible in SQL by the statements INSERT, DELETE, and UPDATE. Such updates implicitly

behave set-oriented and often are called bulk updates. Complex database operations are usually

programmed in a host language accessing an SQL interface. This technique is called Embedded

SQL. Nevertheless, several database systems and even the SQL/92 standard consider procedural

extensions of the basic language. The procedural extensions usually allow to store program objects

inside the database (Stored Procedures/Modules), which may facilitate availability and security

issues. In contrast to the declarative core language, the procedural extensions are mostly de�ned

at the operational level. Moreover, some constructs may have di�erent semantics dependent on

their speci�c implementations.

The at transaction model (see Section 2.5) is supported by most database management systems

to guarantee that the database is always kept consistent. However, transactions must be handled

explicitly using transaction control commands like COMMIT and ROLLBACK.

Now we continue our introductory example. We will implement the storage application using the

concepts of SQL. In particular, we show the problems that arise when complex update operations

have to be speci�ed.

Example 2.1 [Storage (Cont.)] Recall the reordering operation of Example 1.1, which should

reorder all transport devices that are low on stock. In a relational database one might create a

base table store with attributes Item and Amount that relates each transport item Item to its

current stock Amount. The table store may have further attributes, e.g. the charging price of an

item. The selection of items that are low on stock can be encapsulated into a view low having the

attribute Item. The view de�nition may look as follows:

CREATE VIEW low AS

SELECT Item FROM store WHERE Amount<10;

13

In this setting, it is easy to implement the stock changes according to a reordering operation by

the following update statement:

UPDATE store SET Amount=Amount+20

WHERE Item IN (SELECT Item FROM low);

However, this statement alone does not express the whole operation. We also want to log the

reorderings in a second table journal having at least the attributes Item andAmount. For instance,

if box and bucket are the low items, then the tuples (box; 20) and (bucket; 20) should be inserted

into the journal table. Of course, this is possible using an INSERT statement that has the WHERE

clause of the UPDATE statement above as a subquery. But this programming style does not meet

the well-known requirements for software engineering. First, the condition of the WHERE clause is

duplicated, which causes redundancy and also may have negative consequences for the evaluation,

especially if the constraint Amount < 10 of the view is replaced by a more complex constraint.

Secondly, the value 20 is coded in both statements, but this could be handled using (global)

constants or variables. Thirdly, the set-oriented ordering operation is not modularly constructed

out of an ordering operation for single transport items. Although such a sub-operation naturally

exists in mind, it cannot be explicitly identi�ed in the composition of the two bulk statements.

An alternative implementation might use the Stored Procedures facilities. The following two pro-

cedures implement the reordering operation modularly:

PROCEDURE order low IS

CURSOR c low IS SELECT Item FROM low;

BEGIN

FOR c low rec IN c low LOOP

order0(c low rec.Item,20);

END LOOP;

END order low;

PROCEDURE order0(i VARCHAR2, a NUMBER) IS

BEGIN

UPDATE store SET Amount=Amount+a

WHERE Item=i;

INSERT INTO journal VALUES (i,a);

END order0;

We can realize a procedure order0 to order a pieces of item i and a procedure order low that

performs an iteration over a cursor on the view low and calls the procedure order0 in each step.

It should be mentioned that although the programming style is acceptable, the semantics does

not really harmonize with the declarative concepts of the core language. The bulk update feature

of SQL is not used, instead a stronger selection takes place in every step (compare the UPDATE

statements in the two examples). As the updates on both tables are interleaved, it is unlikely that

they will be optimized by the database management system. If the view low is sorted di�erently

from the base table store, an internal optimization becomes diÆcult, anyway.

One of the requirements discussed in Section 1 is the possibility to perform complex operations as

transactions. A procedure itself does not yet describe a transaction. The SQL standard, however,

provides a COMMIT statement to force the commit of an open transaction. This means that the

end of the transaction is reached and all changes made since the last COMMIT become persistent. A

corresponding ROLLBACK statement explicitly aborts a transaction by undoing the recent updates.

14

To perform operations as transactions, the transaction commands must be integrated into the

program code. In the �rst example, a COMMIT must be issued after the two bulk update statements.

It is not clear at all that this COMMIT operation refers only to the reordering operation. If a previous

operation has not been committed, yet, both operations fall into the same transaction sphere. In

the procedural environment, it is possible to use transaction commands as program statements.

However, this does not �t well with the modularization paradigm, since most systems do not support

a nesting of transactions. For instance, if a COMMIT statement is inserted into procedure order0,

the procedure order low cannot be performed as a transaction anymore, because one ordering can

complete and commit, while a second ordering can fail and abort. If the COMMIT statement is shifted

to procedure order low, then more complex operations using order low may su�er from the same

problem. Further, the direct call of order0 is not processed as a transaction at all, unless the caller

provides the control statements needed. It is obviously that the transaction control provided in the

SQL standard causes severe problems, which lead to unreadable and error-prone software. Note

that these problems become visible even in such small and simpli�ed examples as presented above.

Assume that the storage system is established as described above and we want to combine it

with an external e-commerce system. In contrast to the other sub-operations, the sending of mail

orders cannot be speci�ed as a bulk update in the SQL core language. If we are lucky, the pro-

cedural extensions of the particular database system in use allow the call of external actions. In

this case, we can extend the procedure order0 in a modular style. In conventional database sys-

tems, the only way is to specify the mail orders outside the database system. The following code

shows the use of Embedded SQL commands in a procedural language to call the external operation

send mail order(item; 20) for all items that are low on stock. The cursor concept facilitates the

explicit iteration over a set-oriented query result. Note that additional declarations and statements

are necessary to handle the connection to the database and the data transfer.

EXEC SQL DECLARE c low CURSOR FOR

SELECT Item FROM low;

EXEC SQL OPEN c low;

REPEAT

EXEC SQL FETCH c low INTO item;

...

send mail order(item,20);

...

UNTIL ...;

EXEC SQL CLOSE c low;

Of course, the Embedded SQL technique can be used in programming languages with modularization

constructs. In this case, the procedural extensions of SQL do not need to be used to specify complex

operations. Also transaction control is possible from the outside, but it causes the same problems

as discussed above.

Let us assume that the reordering operation is encapsulated into a transaction. In any case, the

external operation will lie outside the scope of the transaction. Whenever a reordering transaction

is committed, it is not clear that the mail order actions have been successful. In the Embedded

SQL approach, the database system does not know anything about the call to the e-commerce

system. In the other approach it does, but the conventional implementations are so rudimentary

that they do not support transactional features for external actions, which is indeed a diÆcult task

(see Section 8 for more details). 2

15

It is undoubted that SQL is a widely used standard language and that its facilities become more and

more improved. However, to support programming in the large, several problems, which have been

illustrated in Example 2.1, must be solved. In the pure SQL language, updates are not composable

to complex operations. The procedural extensions are powerful, but mostly operational and poorly

speci�ed. The transaction control features must be used explicitly, they do not harmonize with the

modularization concepts, and they are not applicable for external actions.

The language SQL has another disadvantage. It is partly verbose and has a lot of implicit elements.

Thus, it is quite unsuitable for a formal treatment.

Hopefully, the ULTRA approach and the results presented in this thesis help to advance the state

of the art towards a more declarative update paradigm.

2.2 Imperative Programming Languages

In this section we will refer to imperative programming languages. These languages can be used

to implement various applications with or without the integration of given database software.

In the example we show Java code, as Java is one major representative of today's programming

languages. A priori, an imperative programming language does not provide sophisticated data

structures and transactional concepts like a database management system. Modern concepts, e.g.

object-orientation and design patterns [GHJV98], facilitate the construction of well-founded and

extensible architectures. Nevertheless, the basics must be designed and implemented at least once.

The ULTRA approach can be seen as a collection of syntactical and semantical concepts saying how

a sophisticated architecture can be built. After the foundations are implemented, the applications

itself can be constructed at an abstract level.

In the following, we do not consider a prede�ned architecture. We show in an example how our

storage application can be built from scratch. Note that transactional features are missing. These

features would require an enormous additional e�ort.

Example 2.2 [Storage (Cont.)] Recall Example 1.1, in particular the reordering operation. The

application could be implemented as follows using the language Java (see also Figure 4 for a class

diagram).

� Data objects:

class StoreEntry f

public String item;

private int price;

private int amount;

public boolean low() f return amount<10; g

public void update(int a) f amount = amount+a; g

... g

class JournalEntry f

private String item;

private String amount;

... g

16

� Operations:

class MyApplication f

List store = new LinkedList();

List journal = new LinkedList();

public void order low() f

Iterator it = store.iterator();

while (it.hasNext()) f

StoreEntry e = (StoreEntry)it.next();

if (e.low()) f order(e,20); g g g

public void order(StoreEntry e, int a) f

e.update(a);

journal.add(new JournalEntry(e.item,a));

System.send mail order(e.item,a); g

... g

The classes StoreEntry and JournalEntry together with the prede�ned class LinkedList make

up the data structure, while the class MyApplication contains the desired complex operations as

methods. The programming style is similar to that of the procedural extensions of SQL. This

is no surprise as the SQL extensions are derived from imperative programming languages. The

LinkedList data type provides an iterator, which corresponds to a cursor in database languages

and avoids an explicit browsing of the internal data structure. This also may be helpful when the

list representation is changed, because only the (hidden) iterator has to be revised and not the while

loops of the method order low. The class StoreEntry provides a method low, and every entry

object thus contains the information whether it belongs to the view low (cf. Example 2.2). The

object-orientation of Java enables further modularization and implicit code reuse by inheritance.

This, however, is not in the scope of this thesis.

item
price
amount

low()
update(a)

StoreEntry

item
amount

JournalEntry

store
journal

MyApplication

order(e,a)
order_low()

Classes for Data Objects Application Class

Figure 4: Class diagram of the Java example

The integration of external operations is possible, too. Standard interfaces like CORBA [Sie96]

and JDBC [CWH99] facilitate the interoperability with external software. For simple and �xed

operations, small wrapper classes might be designed, that transform an abstract procedure call

into software-speci�c calls. 2

Imperative programming languages enable a modular and compositional programming of data

structures as well as operations. They allow the construction of highly complex architectures, even

though the programs are rather operational than declarative. However, the development of a multi-

layered architecture that enables a compact high-level programming with a well-de�ned semantics

and meets transactional requirements is not a straight-forward task. For instance, eÆcient data

structures have to be designed, and concurrency and recovery problems have to be solved. In this

17

light, the ULTRA concept we will present in the following sections can be seen as a proposal of how

a sophisticated architecture could be designed. It points out the signi�cant problems and provides

viable solutions.

2.3 Logic Databases

Logic (or deductive) databases [Das92, Llo87] can be seen as an extension of relational databases.

Essentially, the concepts of relational algebra are augmented by means for recursive programming.

Logic databases are usually described in a rule-based language, called Datalog. The language and its

semantics are derived from �rst-order predicate logic [Llo87], although there exist various elements

(see below) that are essentially di�erent from the pure logic. The part of the notation that is

relevant in the ULTRA context will be de�ned in detail in Section 3. Here, we will just give a broad

overview of the concepts and some illustrative examples.

As depicted in Figure 5, a logic database consists of an extensional database (EDB) comprising

some (persistent) base relations and an intensional database (IDB) de�ned by a set of deductive

rules. The rules correspond to views de�nitions, and the model-theoretic semantics determines

what is true or false in the IDB for a given instance of the EDB.

IDB (Views)

EDB (Base Tables)

Figure 5: Logic (or deductive) databases

Under the assumption that the rules do not contain any negation, i.e. they are de�nite clauses of

the form p(: : :) p1(: : :); : : : ; pn(: : :) , every program (together with a given EDB instance)

has a unique logical semantics, called the least Herbrand model . It can be computed in an iterative

way starting with the EDB facts. This strategy is called the naive bottom-up evaluation. How-

ever, more sophisticated methods have been developed, especially those which do not compute the

whole model, when the answer for a restricted query is sought. The methods combine top-down

(query-driven) and bottom-up (data-driven) evaluation techniques. One prominent method that

encodes top-down elements into a program by rewriting the IDB rules is the magic set transforma-

18

tion [BR91]. The transformed programs are evaluated in a bottom-up fashion. A pure top-down

evaluation strategy is the SLD resolution, which is known from the language Prolog [MW88a]. See

[RU95] for a detailed overview of concepts for eÆcient query processing in logic databases. Flexible

evaluation strategies have also been developed in the LOLA project [ZF96, ZF99]. It should be

mentioned that these strategies are even capable to compute negation and aggregation semantics

as considered below.

The semantics of logic databases becomes more and more complicated, when negation is involved.

The negation semantics known from predicate logic is not directly applicable, since it leads to

intuitively odd results, which do not �t with the concepts of view de�nitions. In a pure logic

approach, a positive literal in a rule head could be replaced by a negative literal in the body

and vice versa. In the semantics for logic databases, however, there is a signi�cant di�erence:

Atoms occurring negated in a rule body are preferentially made false by the semantics, while atoms

occurring in a rule head are preferentially made true. This can be explained by the following

standard example: Let a fact saying that Tweety is a bird and a rule specifying that a bird ies, if

it is not a penguin, be given.

bird(tweety)

flies(X) bird(X); NOT penguin(X)

Then the fact that Tweety ies, i.e. flies(tweety), should be derived. In contrast, the fact that

Tweety is a pengiun, i.e. penguin(tweety), is not an expected conclusion. The main reason for

the anomalies of the negation semantics is the closed world assumption principle in the �eld of

databases. Explicit speci�cations are meant to describe the facts that hold, while it is inconvenient

to specify what does not hold, too. The latter should be implicitly derived as the complement from

the facts that hold or { more operationally speaking { from the facts that can be derived. This

simple idea, however, leads to severe problems and opened a whole research branch in the �eld

of logic programming. [AB94] discusses many approaches to handle negation model-theoretically

as well as operationally. One semantics which is often chosen for programs containing negation

is the well-founded model semantics [vG89, vGRS91]. It is applicable for arbitrary programs and

subsumes most standard semantics previously de�ned for restricted program classes.

Aggregation constructs as known from relational databases, e.g. for computing sum, average, max-

imum, etc., can be integrated into a language for logic databases, too. In addition to the special

notation, which does not resemble classical logics anymore, their semantics causes similar problems

as the semantics of negation, because an aggregation function operates on a collection of facts

instead of a single fact. [vG92] presents a formal approach for aggregation, which extends the ideas

of the well-founded model semantics [vG89, vGRS91].

It should be noted that the semantics of logic databases supports a form of complex data types, if

(uninterpreted) function symbols are allowed in the rule-based language. In this case, the combi-

nation and separation of items can be described declaratively as shown in the following example,

where emptylist and cons serve as constructors for lists (cf. lists in functional or logic programming

languages).

member(X; cons(X;R))

member(X; cons(Y;R)) member(X;R)

first(X; cons(X;R))

last(X; cons(X; emptylist))

last(X; cons(Y;R)) last(X;R)

19

Facts likemember(a; cons(b; cons(a; emptylist))) and first(c; cons(c; emptylist)) should be derived

from this speci�cation. The various model-theoretic semantics, which are generally based on the

Herbrand pre-interpretation, can deal with such uninterpreted function symbols, although the

termination of the evaluation methods becomes undecidable. Another objective is the integration

of more speci�c interpretations for some constants, function symbols, and predicate symbols. For

instance, arithmetic and string expressions should be handled. Foundations and formal semantics

for this integration are investigated in the �eld of constraint logic programming [BC93].

Now we want to model our introduction example as a logic database. Note that we do not consider

the dynamic operations, yet.

Example 2.3 [Storage (Cont.)] The static parts of our introduction example (see Examples 1.1

and 2.1) can be expressed as the following logic database:

The extensional database consists of a 3-ary relation store(Item;Price;Amount) and a binary

relation journal(Item;Amount).

The actual EDB instance may look as follows. We choose the usual table notation to represent

store, the representation for journal is omitted.

store Item Price Amount

box 5 2

barrel 20 13

bucket 8 5

The intensional database consists of a unary relation low(Item) which is de�ned by the following

logical rule:

low(I) store(I; P;A); A < 10

Intuitively, the rule reads \low holds for item I, if there exists a stock value A less than 10 for

I in the relation store". From the EDB instance above, the facts low(box) and low(bucket) can

be derived, while low(barrel) does not hold. The variable I is implicitly universally quanti�ed. P

and A are universally quanti�ed, too, but as they appear locally in the rule body, they have an

existential semantics in this scope (recall the logical semantics of an implication). 2

Logical databases can serve as a clear and expressive foundation for various kinds of information

systems. Rule-based languages including negation/aggregation or nested term structures o�er a

modeling power that lies above that of the database language SQL [DD97] discussed in Section

2.1. The syntax, which is adopted from predicate logic, is compact and easy to read. Further, the

logical semantics and the evaluation of queries are well understood and formalized. The appropriate

handling of dynamic behaviour in this context, however, is still a research issue. The most important

work in this �eld will be discussed in the following section.

2.4 Logic-Based Approaches for Updates and Dynamics

In this section we cite a collection of concepts for rule-based update speci�cation and other logical

concepts dealing with dynamics. A brief, informal description and classi�cation is provided for each

20

approach. The merits of the various approaches have been respected during the development of

the ULTRA concept. The reader may obtain further information about this �eld in a recent survey

article by Bonner and Kifer [BK98].

The approaches found in the literature can roughly be classi�ed into the following groups. Of

course, hybrid approaches are not excluded.

� Updates in the rule body

In this paradigm, the syntax of the rule bodies is extended in a way such that they can

accommodate basic update operations, e.g. insertions and deletions, and the rules are in-

terpreted in a top-down fashion. Consequently, the rule heads can be compared with pro-

cedural declarations, the bodies with combinations of basic operations and procedure calls.

The main advantage of this paradigm is the inherent modularization property: complex up-

date operations can be built hierarchically and recursively in analogy to the (static) IDB

(see Figure 6). The naming of operations by the rule heads facilitates the reuse of pre-

de�ned operations. Further, update queries can be considered as transaction invocations.

This generalizes the usual principle that a retrieval task is invoked by an IDB query. These

advantages were decisive for the development of the ULTRA concept. Besides ULTRA, also

[BK94, BK96, Che97, MBM97, MW88a, MW88b] are founded on this rule paradigm. The

top-down interpretation, which can be considered as a form of abduction (cf. Section 7.2),

imposes one important problem: it is diÆcult to de�ne a formal semantics for set-oriented

updates (bulk updates). Multiple solutions for an update query should rather be handled

by non-determinism. Approaches like [MBM97, NK88], which try to handle them as implicit

bulk updates, can be judged as failed: the semantics are partly incomprehensible, show several

anomalies, and impose impractical constraints on the programmer. In the ULTRA approach

we provide a bulk quanti�er with a special semantics. As the quanti�er has to be explicitly

used and results are interpreted as non-deterministic otherwise, we circumvent the problems

of the approaches above.

� Updates in the rule head

In this paradigm, basic update operations can be used as rule heads, and the rules are con-

sidered bottom-up as condition/action speci�cations. This means that a basic update in a

rule head is triggered, when the condition of the corresponding rule body is satis�ed. Set-

oriented updates are naturally justi�ed by this rule interpretation. Their results, however, are

dependent on the rule processing strategy. There exist many di�erent semantics depending

on how the rules (set-oriented/tuple-oriented, deterministically/non-deterministically, simul-

taneously/successively, etc.) are evaluated, see e.g. [AV88]. Further, a priori it is not clear

which state a rule body should refer to. Some approaches like [LHL95, Zan93] de�ne a clean

semantics by incorporating state identi�ers into the language. The programming with abso-

lute or relative state identi�ers, however, causes similar problems as the programming with

labels or line numbers in imperative languages. Anyway, the bottom-up rule paradigm is not

suitable for modular programming of complex operations, and its syntax does not reect a

notion of transaction spheres. Thus, we think that this rule paradigm is rather applicable in

other �elds like active databases, reactive systems, and continuous processes.

� Other speci�cation approaches

The concept of IDB rules can be combined with procedural concepts. This is done e.g. in

[CM93], but analogous problems hold as for the extensions of SQL (cf. Section 2.1). The

21

IDBUP

EDB

write

read

Basic Updates

Figure 6: Extension of logic databases by updates

integration of the di�erent paradigms at the semantical level is insuÆcient, such that the

approaches only have an operational semantics.

� Implicit updates

In several cases, updates do not need to be de�ned explicitly but can be generated auto-

matically by reasoning about given constraints. One prominent example is the concept of

implicit view updates. As shown e.g. by Kakas, Mancarella [KM90] and Bry [Bry90], requests

to change an IDB relation can be translated into sets of changes on the EDB by abductive

reasoning about the IDB rules. Unfortunately, a view update may lead to non-deterministic

results on the database some of which do not have a sensible semantics from the user's point of

view. This is roughly comparable with the problem of negation discussed in Section 2.3: recall

the Tweety example where flies(tweety) is an intended conclusion while penguin(tweety) is

not. In Section 7.2 we will explain in more detail what problems arise with implicit updates

and why we focus on explicit update speci�cations in the ULTRA approach. It should be

mentioned that more complex approaches for implicit updates also exist. In the DaCapo

approach [FSMZ95], for instance, the objective is to derive sequences of actions from require-

ments written as formulas in a temporal logic [Eme90]. The approaches that try to generate

updates automatically from abstract requirements can be considered as highly declarative

from a pure logical point of view, while other approaches, e.g. the rule-based ones, are often

called procedural or operational. Nevertheless, we have decided to rely on one of the rule-

based paradigms, since dynamic behaviour obviously contains procedural elements and the

pure, declarative approaches have their speci�c shortcomings. Note that the objective of the

ULTRA project is not the development of a new declarative programming paradigm but the

development of a compact language that is capable to describe database-oriented operations

and has a well-de�ned semantics.

22

� Reasoning about updates and actions

Other approaches do not deal with the speci�cation of operations, but with the reasoning

about given operations. While approaches like [Kow92, Rei95] mainly reason about basic

actions or sequences of basic actions, other approaches like [LRL+97, SWM93] can reason

about composite actions or programs. We will spend some thoughts on these approaches be-

low, since we are interested in operational semantics that perform transactions hypothetically

without changing the physical state. In this setting, the reasoning features become an issue.

In the following we use our introductory example to illustrate the two rule paradigms for the

speci�cation of complex operations.

Example 2.4 [Storage (Cont.)] Recall Examples 1.1 and 2.3. Our current objective is to specify

the operation that reorders all transport items being low on stock. Let INS r(: : :) and DEL r(: : :)

denote basic update atoms for insertions and deletions w.r.t. an EDB relation r (r can be either

store or journal). Further, let send mail order(: : :) be an external basic operation that issues an

order via a given e-commerce system.

Using the ULTRA syntax, a top-down-oriented speci�cation of the reordering operation, would look

as follows:

order low # I [low(I) 7! order(I; 20)]

order(I;A) store(I; P;A0); A1 = A0 +A;

DEL store(I; P;A0); INS store(I; P;A1);

INS journal(I;A); send mail order(I;A)

The program implements an operation order low on top of a sub-operation order. The bulk

quanti�er # can be interpreted as a \for all" construct. The complete reordering is started by

submitting the update query order low. However, the operation order can be used individually

or in a completely di�erent context, too. In Appendix A, the interested reader can �nd the complete

storage example modeled in the ULTRA language.

In a bottom-up-oriented environment, one would implement the reordering operation as follows:

INS order(I; 20) order low; low(I)

DEL order low order low

DEL store(I; P;A0) order(I;A); store(I; P;A0)

INS store(I; P;A1) order(I;A); store(I; P;A0); A1 = A0 +A

INS journal(I;A) order(I;A)

send mail order(I;A) order(I;A)

DEL order(I;A) order(I;A)

In this setting, order and order low are EDB predicates. When the fact order low is made true (by

the user) and the program is evaluated bottom-up, its rules will trigger the basic operations that

accomplish the reordering. In contrast to the rules of the ULTRA example, the condition/action

rules are implicitly set-oriented. Thus all items with a low stock are reordered. Although the

program is conceived modularly, it lacks locality properties. The tasks necessary to perform the

ordering of a single item are distributed over various rules, and it is hard to grasp what the

operation actually does. Moreover, as the program does not explicitly refer to certain states, the

23

results depend on the rule processing strategy. The operation order low is performed correctly,

only if the rules are evaluated simultaneously and the triggered updates are collected in every

iteration step. Otherwise, arbitrary incorrect results can occur. 2

Now we will give an outline of some prominent speci�cation and reasoning concepts. We discuss

the contributions and their relevance within the ULTRA context.

One top-down-oriented logic programming language that enables the speci�cation of complex oper-

ations is the well-known language Prolog [MW88a]. Database-oriented updates like insertions and

deletions as well as other external operations can be placed into the rule bodies. Their semantics,

however, is de�ned at the operational level, and an abstract logical semantics does not exist. Note

that even the semantics of operations without side e�ects is tied to a top-down left-to-right rule

processing strategy. Further, update operations do not run as transactions: since side e�ects are

not backtrackable and isolation spheres cannot be de�ned, none of the usual transaction properties

are guaranteed. Let us explain the main problems using the following two example operations p

and q:

p :{ r(a); assert(r(a)); r(b)

q :{ assert(r(a)); r(a); r(b)

In this simple Prolog program, the atoms r(a) (not those within the assert statement) refer to

di�erent states, the conjunction of the subgoals is not commutative. Thus, the operation p can

fail, even if q is successful. If q is called and r(b) does not hold, q will lead to a failure, but the

assertion of r(a) will not be undone. This violates the ACID properties w.r.t. q. Due to these

problems, Prolog has turned out not to be a suitable starting point for a transaction speci�cation

language. Naish, Thom, and Ramamohanarao [NTR87] also discuss the problems that arise from

non-declarative update constructs as provided in Prolog. They propose a clean solution based

on deferred updates. The central ideas have been extended and re�ned by other approaches, e.g.

[MBM97], and also by the ULTRA concept.

The language U-Datalog of Montesi et al. [MBM97] is also based on the \updates in the rule body"

paradigm and integrates the concept of deferred updates as proposed in [NTR87]. U-Datalog makes

the attempt to perform bulk updates by aggregation of success paths in the resolution tree of a query.

The semantics can be considered as declarative. However, due to a rigorous aggregation, one always

gets a bulk update e�ect and cannot specify update alternatives as in other approaches. Moreover,

the combination of the update requests does not distinguish between the logical conjunction and

disjunction, as shown in the following example:

p +r(a)

p +r(b)

q +r(a); + r(b)

Although the operation p can be considered as a disjunction and q as a conjunction of insertions,

both operations imply the same side e�ect { namely the insertion of r(a) and r(b) { under the

semantics of U-Datalog. At the operational level, update queries asked against U-Datalog programs

are evaluated in two phases: In themarking phase, the query is resolved and basic updates occurring

in the bodies are collected for every branch of the resolution tree. In the update phase, the updates

of all successful branches are merged and performed on the EDB. Consistency checks must be

24

performed in order to guarantee that no insertion and deletion of the same tuple is speci�ed

simultaneously. The operational model can easily guarantee atomicity and durability properties.

The handling of concurrent transactions, however, has not been discussed, yet. A severe restriction

of U-Datalog is the impossibility to specify sequential operations. Of course, sequential operations

can be performed as top-level transactions, however, a sequential composition of operations is

neither integrated into the rule formalism nor into the declarative semantics.

The language DLP proposed by Manchanda andWarren [MW88b] is based on dynamic logic [KT90],

although the programs that are used within the modality operators are atomic. Instead, complex

operations are speci�ed by update rules for which a model-theoretic semantics is presented. Like in

U-Datalog [MBM97], the basic operations are restricted to insertions and deletions. However, the

updates are considered as immediate, and the main contribution is the integration of a sequential

composition with the rule formalism. Essentially, the ideas of DLP are subsumed by the ULTRA

approach and (Concurrent) Transaction Logic [BK94, BK96]. Operations written in a DLP-like

update language can be performed as sequential or nested transactions [Mos85]. Cronau [Cro90]

has collected some methods for an adequate transaction processing.

Chen de�nes an update calculus and a corresponding update algebra [Che95]. The latter is an

extension of the relational algebra and deals with deferred updates, concurrent/sequential compo-

sition of these increments, and consistency constraints. The update calculus is based on abduction

and minimal changes of a relational database, where the basic update atoms are considered as

assertions for the next state. It should be noted that neither IDB rules, nor update rules are con-

sidered in Chen's update calculus. But Chen has also worked on the integration of deferred updates

with the logic programming paradigm and developed a concept [Che97] that has turned out to be

similar to the ULTRA language described in some earlier publications [WF96, WF97, WFF98b] as

well as in Sections 3.2 and 4.3 of this thesis, where it is considered as an instance of the generic

ULTRA framework. However, Chen's main goal is to de�ne a \well-founded semantics" for update

programs by tailoring van Gelders's alternating �xpoint procedure [vG89] to operate on a structure

built over update request sets, whereas in the ULTRA approach, the emphasis lies in the integration

of arbitrary basic operations and in a transactional foundation. Up to now we have not considered

to permit negation of basic or de�nable update atoms.

Transaction Logic proposed by Bonner and Kifer [BK94] is one of the concepts which have signi�-

cantly inspired our own work. It forms a modal logic [Eme90] for the representation of changes in

which the sequential composition of operations is handled explicitly and arbitrary basic operations

can be integrated. The interpretation of formulas is de�ned w.r.t. state paths. This generalizes

the semantics of DLP [MW88b] that is based on pairs of states. The general logical concepts

have been restricted to form a rule-based language. This language has a model-theoretic and a

proof-theoretic semantics, where multiple answers for the same update query are interpreted as

non-deterministic solutions with speci�c state changes. Unfortunately, the question of how to per-

form complex operations as transactions is poorly addressed. Transaction Logic has no explicit

construct for bulk updates. Of course, the e�ect of bulk updates can be obtained using recursive

rules (see e.g. [MW88b] for an example). In [BKC93] a relational assignment operator for copy-

ing an IDB relation into the EDB is proposed. However, this operation is atomic and outside

the scope of Transaction Logic. Thus, bulk updates cannot be composed from existing single up-

dates. Concurrent Transaction Logic [BK96] provides an explicit concurrency construct, by which

one can specify that subtransactions are to be performed in an interleaved fashion. This form of

concurrency, which is also found in various programming languages, e.g. Java, leads to veri�cation

problems for composite systems. In particular, modular programming becomes diÆcult because

25

of the unconstrained interaction of the components. Although the (Concurrent) Transaction Logic

approach can be considered as declarative, the evaluable programs have a similar semantics as

programs written in classical, imperative programming languages. In contrast, ULTRA contains

more abstract constructs and a novel semantics for concurrent updates that supports composition-

ality. While the update semantics of Transaction Logic is tightly de�ned in terms of state paths,

the ULTRA framework leaves out the exact structure of the transition objects. Thus, it is possible

to design and tune an instance w.r.t. the given environment and operational issues. Under some

minor restrictions, the sequential version of Transaction Logic and the sequential fragment of the

ULTRA instance presented in Sections 3.3 and 4.4 have the same modeling power. Similarities

and di�erences between ULTRA and (Concurrent) Transaction Logic are discussed more formally in

Section 7.3.

One prominent example for a bottom-up-oriented environment with a clear logical semantics is the

language Statelog of Lud�ascher, Hamann, and Lausen [LHL95]. Relative state identi�ers are aÆxed

to the literals occurring in the rules, and the semantics is based on temporal logic programming

[AM89]. Statelog programs can be transformed into locally strati�ed programs [Prz88], and the

usual minimal model semantics leads to the semantics of the original program. The emphasis in the

Statelog approach has been laid on the investigation of termination and determinism properties.

Transactional execution is not considered { as opposed to the HiPAC project [DBC96], which also

deals with condition/action rules, but on the other hand does not provide an overall semantics.

Lud�ascher, May, and Lausen [LML96] present an extension of Statelog by update procedures and

sequential composition. The language further abstracts from states. In essence, its semantics en-

codes a top-down control into the bottom-up, data/event-driven Statelog evaluation environment.

A similar e�ect can be obtained in the ULTRA context by using a suitable magic set transforma-

tion [BR91]. Zaniolo [Zan93] de�nes a concept similar to Statelog and investigates corresponding

properties.

So far, we have presented related work dealing with the logic-based speci�cation of updates and

transactions rather than with reasoning about actions. The ULTRA concept presented in the

following sections is designed as a generic framework for speci�cation languages, too. Consequently,

the frame problem (see [Rei95] for a discussion) and other problems that arise at the axiomatization

of e�ects are not an issue, neither in ULTRA, nor in the other approaches. Nevertheless, reasoning

about actions becomes relevant for operational semantics that are based on deferred updates and

hypothetical reasoning. In this case, the concepts referred to subsequently can serve as a foundation.

Reiter [Rei95] describes possible actions and their e�ects in the situation calculus and addresses the

frame problem. In the language GOLOG [LRL+97], procedural structures and complex operations

are introduced, their semantics is described by macro expansion and second order constructs.

Like in our ULTRA approach, all states generated by a sequence of actions are represented by

an increment w.r.t. a certain initial state. The procedures that lead to the state transitions,

however, are not speci�ed in a rule formalism. Kowalski [Kow92] uses the event calculus for

characterizing dynamics, which has some similarities with the situation calculus but behaves better

for hypothetical reasoning. In [SWM93] a dynamic logic for verifying database updates is developed.

However, the updates are programmed in a language like Embedded SQL.

2.5 Transaction Concepts

At the execution level, we want to consider complex operations as transactions. Thus, it is necessary

to discuss the main work about transaction concepts and transaction processing. We give a brief

26

overview and expose those parts that appear to be relevant for the ULTRA concept.

Transactions are well-known in database theory since a long time now. Traditionally, database

systems implement the so-called ACID properties which guarantee atomicity, consistency, isolation,

and durability of transactions, meaning that transactional update operations must be performed

either completely or not at all, the state of the database must be kept consistent, di�erent operations

invoked concurrently must not interfere with each other, and changes of completed operations must

be persistent. The ACID properties imply that a transaction behaves as an atomic operation {

even in presence of concurrency and arbitrary failures. The main research problem in the �eld of

transactions is the operational implementation of the highly abstract properties. For concurrent

transactions the serializability property has been de�ned. It states that the results of transactions

that are processed in parallel or in an interleaved fashion must be equivalent to the results of any

serial execution of the transactions one after the other. Another important issue is the recoverability

property. It prohibits unsolvable conicts between the atomicity of one (aborted) transaction and

the durability of another (committed) transaction. Further, to guarantee atomicity and durability,

changes must be written into (persistent) logs. In case of failures, these logs can be considered

forwards to redo actions or backwards to undo actions. When they are used backwards, they must

contain enough information to restore the previous states. Additional information is also necessary,

when non-deterministic operations have to be redone and should lead to a particular state. An

extensive treatment of transaction concepts and implementation details can be found e.g. in the

textbooks of Gray and Reuter [GR93] or Bernstein et al. [BHG87, BN97].

Most synchronization protocols for performing transactions are based on object locking . Before

a data object can be accessed, a lock of an appropriate class (e.g. shared lock, exclusive lock)

has to be acquired. Conicts between operations are represented by conicts on locks such that

they can be handled by the transaction scheduler. The well-known strict two-phase locking protocol

[BHG87] guarantees serializability and recoverability. Locking protocols can be implemented easily,

but under some conditions they may produce deadlocks.

The ULTRA concept as it will be instantiated for logic databases in Sections 3.2, 4.3, and 5.4

perfectly �ts with optimistic scheduling protocols [BHG87], for instance [H�ar84, KR81, Tho98].

These methods are called optimistic, because checks for conicts between concurrent transactions

are only performed at commit-time, i.e. every transaction is allowed to run to its end. This is

usually done in three phases: During execution of a transaction, it is only allowed to read data

from the database; the changes are made to a private workspace. When the transaction commits,

it enters the validation phase in which its updates are checked for conicts with other transactions.

Depending on the outcome of the validation, the changes are materialized in an atomic write phase,

or the whole transaction is aborted. This also shows the main drawback of optimistic protocols:

conicts are detected very late, so a lot of work may be lost. In [HD91] the authors propose a

technique called ODL (optimistic method with dummy locks), which merges ideas of locking into

optimistic scheduling such that part of the conicts can be detected earlier. This may save a lot of

unnecessary work. Moreover, ODL avoids deadlocks.

Although ULTRA database transactions as described in this paper can be implemented with the

techniques of \traditional" transaction processing by using an optimistic protocol (see above), an al-

ternative operational semantics for ULTRA incorporates nested transactions, cf. [FWF00, WFF98a].

Nested transactions are transactions that are made up of subtransactions which in turn may be

built from other subtransactions, and so on, thus forming transaction trees with basic operations

as their leaves. This �ts well with the modular speci�cation of complex operations using the \up-

dates in the rule body" paradigm. Nested transactions guarantee the ACID properties for top-level

27

transactions, while subtransactions may lose some of them; especially durability is usually missing

for subtransactions.

Nested transactions are traditionally due to Moss [Mos85], who has written the �rst exhaustive

treatment of this concept. The group around Lynch and Weihl [LMWF94] formalizes nested trans-

actions with the help of I/O automata. In this approach, all components of the system, i.e. trans-

actions, data objects, and the schedulers itself, are modeled as automata. In [AFL+88, FLMW90]

some protocols for nested transactions are proved to be correct. Another way to formally cap-

ture nested transactions, which stays closer to the classical model of at transactions, is given in

[BBG89]. There, a nested transaction system is modeled as a forest of computations with a given

ordering of actions. In contrast to this model which takes the semantics of the actions into ac-

count, [HAD97] develops a simpler model for nested transactions in multi-databases which leaves

the semantics aside.

Also Schek andWeikum and their research groups have done a lot of work about nested transactions,

e.g. [DSW94, Wei91, WS92]. Considerable part of their work concentrates on applying the theory of

nested transactions to composite systems, i.e. multi-databases or federated databases. Recently, a

new approach [ABFS97] has been proposed, which is based on weak and strong order dependencies

and enables a higher degree of parallelism within and between nested transactions.

28

3 The Update Language ULTRA

3.1 The Generic ULTRA Language

In this section we present the generic ULTRA language, whose syntax is based on the syntax of

�rst-order predicate logic [Llo87]. The language can be re�ned for speci�c applications as shown

in the subsequent sections.

De�nition 3.1 [Predicate Classes] We distinguish a set of DB predicates (PredDB), a set of

basic update predicates (PredBU), and a set of de�nable update predicates (PredDU). 2

The DB predicates refer to observable state information, whereas the basic update predicates

refer to executable (atomic) update operations. In the ULTRA-based database language de�ned in

Section 3.2, the basic operations will be simple insertions or deletions of tuples of base relations.

However, other atomic operations like �xed SQL statements, calls to stored database procedures,

or even external operations can be integrated. Moreover, the state information can comprise more

than just classical base relations and views. For instance, return values of basic operations or

external events can be modeled using auxiliary DB predicates. The de�nable update predicates

can be regarded as names of complex update operations that may be executed as transactions.

Their meaning is de�ned by an update program, i.e. by a set of update rules (see below) written

in the ULTRA language.

De�nition 3.2 [Terms, Atoms, DB Literals] A term is an arity-conform composition of func-

tion symbols, constants, and variables taken from given alphabets. A term without variables is

called ground .

We assume that the alphabet of constants contains a special constant all.

Atoms are of the form p(t1; : : : ; tn), where t1; : : : ; tn are terms and p is an n-ary predicate. We

can distinguish between DB atoms, basic update atoms, and de�nable update atoms depending on

which set of predicates p belongs to. DB literals are DB atoms q(t1; : : : ; tn) or negated DB atoms

NOT q(t1; : : : ; tn). The groundness property of terms can be generalized to atoms, literals, and

formulas de�ned below in the natural way. 2

Technically, the reserved constant all is needed for the representation of non-ground terms as

ground terms at the semantical level in certain cases. The constant all is important for algebraic

properties and must not be used at the syntactical level, i.e. in programs or queries.

De�nition 3.3 The set of all ground terms is called the Herbrand universe and is denoted by U .

The set of all ground DB atoms is called the Herbrand base and is denoted by B. The set of all

ground basic update atoms is called the basic update base and is denoted by BBU . The set of all

ground de�nable update atoms is called the de�nable update base and is denoted by BDU . 2

In the following we use the abbreviation ~t for a �nite sequence t1; : : : ; tn of terms. Similarly, we

write ~X for a �nite sequence X1; : : : ;Xn of variables and ~all for a repetition of the constant all.

After having recalled some preliminaries, we now de�ne the speci�c elements of the ULTRA lan-

guage. Its basic elements are called update literals.

29

De�nition 3.4 [Update Literals] The set of update literals is de�ned by the following cases:

1. Every DB literal is an update literal .

2. NOP is an update literal (\no operation").

3. Every basic update atom u(~t) is an update literal .

4. Every de�nable update atom p(~t) is an update literal .

2

Update literals specify retrieval (DB literals), atomic modi�cations (basic update atoms), and

references to de�ned complex operations (de�nable update atoms). Update literals do not need to

be ground, i.e. they may contain variables. However, they should not contain the reserved constant

all.

Update literals can be composed to form more complex update formulas. First, we de�ne the

general notion of update formulas, a subset of which forms the set of update goals that we will

introduce later.

Note that di�erent from other approaches, e.g. [Che97], we do not allow negated basic or de�nable

update atoms. Negation is permitted only at the retrieval level.

De�nition 3.5 [Update Formulas] The set of update formulas is de�ned inductively by the

following cases:

1. Every update literal is an update formula.

2. Let ' and be update formulas. The concurrent conjunction '; and the sequential

conjunction ' : are update formulas.

3. Let ' and be update formulas. The disjunction ' _ is an update formula.

4. Let ' be an update formula and ~X be a �nite sequence of variables. Then 9 ~X ' is an

update formula.

5. Let A be a DB atom, let ' be an update formula, and let ~X be a �nite sequence of variables.

The bulk quanti�cation # ~X [A 7! '] is an update formula.

6. Let ' and be update formulas. The implication '! is an update formula.

7. Let ' be an update formula and ~X be a �nite sequence of variables. Then 8 ~X ' is an

update formula.

If necessary we use square brackets \[. . .]" to indicate the operator bindings in a composite formula.

2

30

In De�nition 3.5 we have de�ned a concurrent and a sequential conjunction for specifying simul-

taneous and successive update operations, respectively, and a bulk quanti�cation for specifying

set-oriented updates in terms of single updates. The intuitive reading of the bulk quanti�cation is

\for all ~X such that A holds perform update '". The concurrent conjunction and the bulk quan-

ti�cation specify simultaneous operations that can be performed in parallel or in an interleaved

fashion. From the logical point of view, however, each thread will refer to local states and will not

be aware of the other threads. The resulting state will �nally be derived by accumulating the local

changes. At a �rst sight this looks like uncontrolled concurrency. However, suitable consistency

and isolation properties can be de�ned and exploited to ensure the mutual exclusion of the parallel

threads. We believe that our approach does not sacri�ce generality too much while avoiding the

semantical problems of interleaving parallelism.

The disjunction and the existential quanti�cation enable the compact speci�cation of non-determi-

nistic updates. Further, the existential quanti�cation helps to deal with local variables inside a bulk

quanti�er. However, disjunction and existential quanti�cation are not essential for the rule-based

language, as their semantics can be simulated by auxiliary rules as in classical logic programming

(see Section 6.3 for details). The implication and the universal quanti�cation are used to construct

update rules for the de�nition of complex update operations.

From a semantical point of view, the existential quanti�cation and the bulk quanti�cation can be

regarded as a generalization of the disjunction and the concurrent conjunction, respectively.

De�nition 3.6 [Update Goals] An update goal is an update formula not containing the impli-

cation ! or the quanti�er 8, i.e. the set of update goals is de�ned by cases 1 to 5 of De�nition 3.5.

2

Update goals form rule bodies or top-level update queries (see Examples 3.17 and 3.20).

De�nition 3.7 A variable occurring inside a formula is free unless being in the scope of a quanti�er

(8, 9, or #). An update formula is called ground , if it does not contain any free variables. 2

Remark 3.8 [Renaming of Variables] Quanti�ed variables can be renamed consistently within

the scope of the binding quanti�er. The renaming must obey the usual constraints known from

�rst-order predicate logic [Llo87]. 2

De�nition 3.9 For an update formula ' we denote by '[X=t] the new formula '0 that results

from replacing simultaneously all free occurrences of the variable X by the term t.

Let X1; : : : ;Xn be a sequence of disjoint variables and t1; : : : ; tn be a sequence of terms. '[~X =~t]

denotes the simultaneous substitution of each variable Xi by the corresponding term ti. 2

De�nition 3.10 [Update Rules] An update rule is a universal closure 8(U ! p(~t)), also de-

noted by p(~t) U , where p(~t) is a de�nable update atom and U is an update goal. Rules without

a head U denote update queries. An update rule with an empty body is called an update fact .

The empty body corresponds to the update literal NOP . 2

Remark 3.11 Since all variables in a rule are explicitly or implicitly quanti�ed, it is possible to

rename them according to Remark 3.8. This corresponds to the renaming of parameters and local

variables in other programming languages. 2

31

De�nition 3.12 [Update Program] An update program PUP is a set of update rules. 2

An update program speci�es the meaning of the de�nable update atoms occurring in the rule

heads. It can be compared with a set of procedure de�nitions in classical programming languages.

However, the ULTRA notion is less operational and more convenient for programming related to

(logic) databases and information processing.

Up to now we have de�ned the basic concepts of ULTRA, in particular the notion of update rules

and update programs. A �nal ULTRA instance must provide the necessary alphabets of constants,

function symbols, and various predicates. It may also provide additional syntactical elements that

will be relevant for the semantics, e.g. a program for computing the truth interpretation in each

state. The instances de�ned below, however, are more abstract, they just describe some additional

constraints that must hold for the �nal instances. The �nal instances are implicitly given by the

example applications, e.g. a calendar manager or a robot interface. Note that the instantiation will

be more interesting at the semantical level, which is treated in Section 4.

3.2 Instantiating the Framework: ULTRA for Logic Databases

In this section we are going to de�ne a more speci�c ULTRA language that can be used for spec-

ifying update operations in logic databases (cf. Section 2.3). The same database language has

been proposed as a stand-alone concept in [WFF98b]. In this thesis, however, it is formulated as

an instance of the framework presented in Section 3.1. Essentially, we restrict the basic update

operations to insertions and deletions and integrate the notion of deductive rules, which serve as

view de�nitions.

As already mentioned in Section 2.3, we distinguish an extensional database (EDB) comprising

some (persistent) base relations, e.g. a relational database, and an intensional database (IDB)

de�ned by a set of normal deductive rules, i.e. Datalog with function symbols and negation [Llo87].

Consequently, the set of DB predicates as de�ned in De�nition 3.1 is partitioned as follows.

De�nition 3.13 [DB Predicates, DB Atoms] The set of DB predicates PredDB is partitioned

into a set of EDB predicates and a set of IDB predicates.

Every DB atom is either called an EDB atom or an IDB atom depending on its predicate symbol.

2

De�nition 3.14 [EDB Instance] Let B be the given Herbrand base. A set DB of ground EDB

atoms r(~t) 2 B is called an EDB instance over B. 2

An EDB instance assigns truth values to the EDB atoms as usual and represents a database state.

The truth value of the IDB atoms can be derived from the IDB program w.r.t. the state semantics

chosen (see Section 4.3 for details).

De�nition 3.15 [IDB Rules, IDB Program] IDB rules are universal closures of implications

built from an IDB head atom q(~t) and a body L1; : : : ; Ln of DB literals (denoted by q(~t)

L1; : : : ; Ln). IDB rules with an empty body are called IDB facts.

An IDB program PIDB is a set of IDB rules. 2

32

In the following we assume that two basic operations are available in the logic database instance of

the ULTRA framework: the insertion and the deletion of an EDB atom, i.e. of a tuple in an EDB

relation. So we provide corresponding basic update atoms INS : : : and DEL : : : for every EDB

atom r(~t). Note that we do not consider basic updates on the IDB (view updates).

De�nition 3.16 [Basic Update Atoms] The set of basic update atoms consists of elements of

the form INS r(~t) and DEL r(~t), where r(~t) is an EDB atom. Note that this also �xes the basic

update base BBU . Further, INS r and DEL r can be considered as predicate symbols in PredBU .

2

An extended logic database (deductive database) consists of three user-de�nable components: a

persistent EDB, an IDB program PIDB, and an update program PUP .

To illustrate the properties and capabilities of the ULTRA database language, we will use another

running example. Although the introductory example (see Example 1.1) has been suitable to show

the basic problems, it looks rather trivial and does not really point out the power of the results

presented in this thesis. As an extended example, we use a simpli�ed version of a personal calendar.

Since the discussion of the example is distributed over various sections, the full program is listed

in Appendix B.

Example 3.17 [Personal Calendar] In the calendar model used in our examples, appointments

have a unique identi�er and may occupy one or more consecutive time slots. Time slots may be of

any length, but throughout the example we assume that a slot represents one hour. The calendar is

based on two EDB relations: a relation entry(Day; Slot; ID) which associates a time slot Slot on

day Day with an appointment identi�er ID and a relation description(ID; Text) that contains the

descriptive text Text for an appointment with identi�er ID. The reserved identi�er 0 represents

free time slots. In a real world implementation, free slots would of course not be recorded in the

database but rather be computed, either by joining the entry relation with a relation representing

all possible slots per day, or by using a computed predicate that enumerates the possible slots. For

the sake of simplicity, we consider only one �xed week.

In the rest of the paper we always refer to the EDB instance DB0 shown in Table 1. The constant

mon refers to the Monday of the �xed week. This EDB instance can be interpreted as follows: The

entry Day Slot ID

mon 9 21

mon 10 0

mon 11 0

mon 12 7

mon 13 7

mon 14 0

mon 15 8

mon 16 10

description ID Text

7 Meeting Mr. Dean

8 Hairdresser

10 Review

21 Call Mr. Miller

Table 1: Sample EDB instance DB0

owner of the calendar has a meeting with Mr. Dean on Monday from 12pm to 2pm, she wants to

visit the hairdresser on Monday at 3pm, etc. The time slots on Monday from 10am to 12pm and

33

from 2pm to 3pm are not reserved, yet. To keep the tables short we omit the entries for the other

days.

In this setting, possible basic update atoms are DEL entry(mon; 10; 0), INS entry(mon; 10; 23),

and INS description(23; \Presentation"). They specify the deletion of the tuple (mon; 10; 0) from

the entry relation, the insertion of the tuple (mon; 10; 23) into the entry relation, and the insertion

of the tuple (23; \Presentation") into the description relation, respectively. Together, this amounts

to inserting a new appointment \Presentation" on Monday from 10am to 11am into the calendar

database.

Let us now have a closer look at the update program PUP . In our calendar example there is {

among others { the update rule

do insert(D;S;L; T) newid(ID); do allocate(D;S;L; ID);

INS description(ID; T)

which speci�es the insertion of a new entry with descriptive text T , starting at time slot S on day

D and having a duration of L slots. The de�nition of the do insert predicate consists of three

components: newid is a (built-in) predicate that returns a new identi�er ID. From the semantical

point of view it can be regarded as a predicate which is true for exactly one constant, however

the constant varies between independent evaluations. Such a feature is provided in many database

systems to avoid concurrency problems when searching for unused key values. do allocate is a

recursive auxiliary update predicate which allocates L consecutive time slots needed for identi�er

ID in relation entry (see Appendix B for details). As before, INS description(ID; T) inserts the

descriptive text of the new appointment into the relation description.

Since the subgoals do allocate(D;S;L; ID) and INS description(ID; T) refer to di�erent EDB

relations, they can be evaluated simultaneously and thus are combined by concurrent conjunction

\;". Note that also the subgoal newid(ID) is connected by concurrent conjunction. From the

logical point of view it can be evaluated concurrently with the rest. A lazy evaluation method, for

instance, may work with an open value of ID, until it is clear that the the allocation of the slots

is possible. However, in classical implementations newid(ID) would be implicitly scheduled to be

evaluated �rst such that it can produce a binding for ID. This kind of partial sequentialization

can be achieved by a suitable sideways information passing strategy, but we will not consider such

topic in this thesis.

For the deletion of an entry, a predicate do delete can be de�ned that uses an auxiliary predicate

do deallocate. The latter predicate may be de�ned as follows using the bulk quanti�er, which says

that for all entries in entry with appointment identi�er ID the corresponding slot has to be marked

free.

do deallocate(ID) #D;S

[entry(D;S; ID) 7!

[DEL entry(D;S; ID); INS entry(D;S; 0)]]

Appointments are frequently moved from one time interval to another. This can be achieved using

the update predicate do move shown below which moves an appointment with identi�er ID to

day D and time slot S. Again, do move is built upon the prede�ned auxiliaries do allocate and

do deallocate. The predicate duration of counts the number L of slots reserved for the appointment

34

ID, it is de�ned by an IDB rule (see Appendix B).

do move(ID;D; S) [duration of(ID;L); do deallocate(ID)] :

do allocate(D;S;L; ID)

Here we need the sequential conjunction \:" to specify that the second subgoal is to be evaluated

in the (hypothetical) database state that results from completing the operation speci�ed by the

subgoals on the left. In our example this is necessary to ensure that an entry does not block its

own movement. So, �rst all time slots assigned to that particular entry are freed, and then the

allocation of the slots at the new starting time is attempted. For do move to succeed, both subgoals

of the sequential conjunction must succeed. 2

For the development of isolation concepts we have to regard the retrieval dependencies within the

IDB program. The de�nitions are as usual, cf. [ABW88].

De�nition 3.18 [Dependency Graph] Let PIDB be an IDB program, and let p and q be EDB

or IDB predicates. p depends directly on q, denoted by p PIDB q, i� there exists a rule in PIDB

such that p is the head predicate and q occurs in the body. The relation PIDB on the set PredDB

of DB predicates de�nes the edges of the dependency graph of PIDB . 2

Note that the relation PIDB only refers to the retrieval part, i.e. EDB and IDB predicates. The

predicate dependencies given by the update program, i.e. by the update rules, are not considered

here.

The set of EDB predicates a predicate q depends on will be used to detect read/write conicts

between two transactions.

De�nition 3.19 Let PIDB be an IDB program and q be an EDB or IDB predicate. We de�ne

DefE[PIDB](q) := fr j r is an EDB predicate ^ q �

PIDB
rg;

where �

PIDB
denotes the reexive and transitive closure of the relation PIDB . 2

Whenever a predicate q is accessed by a transaction, the predicates contained in DefE[PIDB](q)

will be marked as read as if they were accessed instead of q. Then it is easy to detect conicts

between read access and basic update operations on the EDB.

3.3 Instantiating the Framework: ULTRA for External Operations

While in Section 3.2 we have shown how a logic database language supporting updates can be

derived from the ULTRA framework, we now focus on a rather di�erent application domain: we

will show how ULTRA can be used for the speci�cation of complex operations in arbitrary external

environments. The main problem lies in the de�nition of the speci�c semantics (see Section 4.4).

At the syntactical level, no re�nements of the ULTRA framework are necessary. So, we can proceed

with an example: a driver for a non-intelligent robot. The setting has been adopted from [LRL+97,

Rei95].

35

Example 3.20 [Robot World] Consider a robot working over a (theoretically in�nite) grid of

discrete positions. The robot can move stepwise in each direction, or it can try to pick up or put

down a block at its current position. Corresponding to these basic operations, let the basic update

predicates xstep, ystep, pickup, and putdown be given. Let xstep and ystep be unary with the

direction as its only parameter (with values �1 and 1), let the other predicates be nullary. We

assume that pickup and putdown cause (successful) idle movements, whenever there is no block to

operate on or there are conicts between multiple blocks. In other words, the robot is not aware

of what it is really doing, but rather just performs the prede�ned movements. However, let us

assume that the robot is equipped with a sensor that checks whether its hand actually holds a

block or is empty. Syntactically, the state of the sensor is modeled by a nullary predicate empty

(a DB predicate in the sense of Section 3.1). Let the robot have two other sensors to check the

coordinates of the current position (X;Y) on the grid. These sensors are modeled by the unary

predicates xpos and ypos.

Next, we want to de�ne an operation move(X;Y) to move the robot to a certain position (X;Y).

The operation is composed from independent move operations in x- and y-direction, named xmove

and ymove, which are implemented recursively using the basic operations xstep and ystep. The

de�nition of xmove looks at follows:

xmove(X) xpos(X)

xmove(X) xpos(X0) : X < X0 : xstep(�1) : xmove(X)

xmove(X) xpos(X0) : X > X0 : xstep(1) : xmove(X)

The implementation of xmove is straight-forward: steps towards the desired position have to be

performed until the target is reached. We use the sequential conjunction \:" in the rule bodies,

as the sub-operations should be performed sequentially and the x-position of the robot has to be

checked in every intermediate state. The operation ymove is de�ned analogously. Now we can

specify the complex move operation by the following rule:

move(X;Y) xmove(X); ymove(Y)

Because the movements in the two orthogonal directions do not interfere with each other, it is

possible to compose the subgoals by concurrent conjunction \;". This will allow an operational

semantics to perform the two movements of the robot in an interleaved fashion. In contrast, the

sequential conjunction would imply that the robot �rst moves multiple steps in x-direction and

then multiple steps in y-direction.

Finally, we are going to specify a more complex composite operation to pick up a block at some

position (X;Y). As a precondition we require that the robot is empty, as a postcondition that it is

not empty, i.e. that it has actually picked up a block and has not just made an idle movement to the

oor. Note that for the sake of the example, we do not model any knowledge about the environment

of the robot, e.g. where the blocks are placed. In particular, no persistent database storage is

involved. In our example, the ULTRA system can just let the robot perform the operations pickup,

putdown, and move and check the sensor in the robot's hand by querying the empty predicate.

pickup at position(X;Y) [empty; move(X;Y)] : pickup : NOT empty

The complete robot example featuring some more operations can be found in Appendix C. 2

36

4 Semantics of Formulas and Programs

In this section we present the model-theoretic semantics of ULTRA, which is based on the concept

of deferred updates. Essentially, updates are not just considered as side e�ects which occur during

the evaluation of an update goal. Referring to a �xed initial state, each update goal determines

(one or more) possible transitions that may or may not be materialized later. Not earlier than

at materialization time does a possible transition cause an actual transition leading to some new

state.

For the logical semantics, it is legitimate to call all states except the initial state hypothetical .

However, several implications arise for the operational semantics: obviously, retrieval which is

necessary to provide variable bindings cannot be deferred but must be done immediately during an

evaluation. When referring to hypothetical states, the retrieval must be either based on hypothetical

reasoning without changing the physical state or a selection of computed transitions must be

physically executed with an undo option. The latter point of view also applies for the robot

example (cf. Example 3.20), if the robot world is considered as a black box. In this case, the robot

must actually perform the actions, such that its sensors can investigate the resulting intermediate

state. In case of a failure, the actions must be undone, i.e. the robot and its environment must

return to a previous state. This form of recovery is not necessary in the database approach which

can be semantically and operationally based on deferred updates, but on the other hand requires

hypothetical reasoning. Of course, it would also be possible to model enough knowledge about the

e�ects of further actions beyond insert and delete to enable hypothetical reasoning in other contexts.

Reiter [Rei95], for instance, provides a viable axiomatization technique in terms of the situation

calculus. Axioms that describe the e�ects of some external actions, e.g. the movements of the robot,

could be integrated into an ULTRA evaluation engine. Unfortunately, the semantics of external

actions is typically more diÆcult than the semantics of database operations like insert and delete.

The frame problem [Rei95] causes further intractabilities for bigger sets of basic operations and

observable predicates. Consequently, there exist many questions and problems w.r.t. an operational

semantics, and its design is not a simple, straight-forward task. The semantics we present in this

section, however, is independent of the operational model, and the latter can and should be designed

and optimized w.r.t. a more speci�c instance of the ULTRA framework.

To be able to detect conicts between immediate retrieval and deferred updates, the semantics

allows to assign a logging transition to every DB atom. It must be guaranteed by semantical

properties that a validation of the corresponding (immediate) read access is possible when the

materialization of a logging transition takes place. Note that this validation is called a certi�cation

in optimistic synchronization protocols [BHG87]. The read-isolation problem will be investigated in

Section 5, where we will also develop an optimistic protocol for the execution of ULTRA transactions.

4.1 Preliminaries and Preconditions

Before we can de�ne the semantics of update formulas, we have to consider some preliminaries.

It may be necessary to deal with three-valued interpretations for the DB predicates, for instance,

when their interpretation is determined by deductive rules containing negation [AB94].

De�nition 4.1 [Three-Valued Interpretation] A three-valued interpretation I over the Her-

brand base B assigns to each ground DB atom A 2 B one of the truth values \true" (denoted by

I j= A), \false" (denoted by I j= :A), or \unknown".

37

I3
B
denotes the set of all three-valued interpretations I over the Herbrand base B. 2

Next, we introduce some objects and constructs needed in the de�nition of the interpretation

domain for the update formulas (see Section 4.2). In the following de�nition we formalize the

components of a transition system and the algebraic properties that must hold. The transition

system is one of the open parameters of the ULTRA framework. Essentially, it provides a set of

states and describes possible state changes. The basic notion of a transition system, which can

be found e.g. in [WN95], is re�ned to meet the special requirements for the ULTRA semantics. In

particular, the representation of composite transitions must be supported.

De�nition 4.2 [Transition System] A transition system is a tuple (S;T ;TCons;�E;�";t;
F
;�)

where

� S is a set of states,

� T is a set of transitions,

� TCons � T is set of transitions which are called consistent ,

� �E denotes an execution semantics

�E : S � TCons ! S

such that s �E � represents the state s0 resulting from the execution of � starting in the

state s,

� �" 2 TCons denotes a special neutral transition,

� t is a concurrent composition function

t : T � T ! T ;

�
F
is a concurrent composition function that maps every multi-set over T onto a transition in

T ,

� � is a sequential composition function

� : T � T ! T

such that following algebraic properties hold:

1. For the concurrent composition t, the following holds:

(a) t is commutative:

(b) t is associative:

(c) �" is a neutral element for t :

In other words, (T ;t;�") forms a commutative monoid.

38

2. For the sequential composition �, the following holds:

(a) � is associative:

(b) �" is a neutral element for � :

In other words, (T ;�;�") forms a monoid.

3. Let �1;�2 2 T be arbitrary transitions. Then the following holds:

(a) �1 2 TCons ^ �2 2 TCons (= �1 t�2 2 TCons

(b) �1 2 TCons ^ �2 2 TCons =) �1 ��2 2 TCons

(c) �2 2 TCons (= �1 ��2 2 TCons

4. Let s 2 S be a state, and let �1;�2 2 TCons be consistent transitions. Then the following

holds:

(a) (s�E �1)�E �2 = s�E (�1 ��2)

For every state s 2 S,

(b) s�E �" = s

holds, i.e. �" is neutral for �E.

5. For arbitrary multi-sets T over T and arbitrary transitions � 2 T the equality

(a)
F
(f�g] T) = � t

F
T

holds, where] denotes the union of multi-sets. Further

(b)
F
; = �"

holds for the empty multi-set.

2

Transitions are semantical objects to represent the changes between two states. Every consistent

transition leads from a given current state to a next state when it is executed. A transition which is

not consistent does not need to be executable in any state and thus may not represent state changes.

Later we will restrict ourselves to consistent transitions, however, the more general concept helps

to simplify the formal treatment of the speci�c ULTRA instances.

Example 4.3 For the database language of Section 3.2, the states will be de�ned as the various

EDB instances, and the transitions will be de�ned as sets which contain insertion and deletion

requests for EDB tuples. A consistent transition must not specify the simultaneous insertion and

deletion of the same tuple. See Section 4.3 for more details.

When using the ULTRA framework for external operations as demonstrated in Section 3.3, the

states will be de�ned as the states of the external system, and consistent transitions will be de�ned

as partially ordered multi-sets of basic actions. The execution �E models the state change that

results from performing the external actions respecting the given order dependencies. See Section

4.4 for more details. 2

39

Transitions must be composable by a concurrent composition and a sequential composition, such

that complex combinations of transitions can be expressed by a single transition. The composition

functions may be de�ned for inconsistent transitions or yield inconsistent transitions. To be able

to formulate the semantics of the bulk quanti�cation, we also need a concurrent composition for

(possibly in�nite) multi-sets of transitions.

The algebraic properties required in De�nition 4.2 are justi�ed by experiences in the real world.

They are also necessary to obtain several expected properties of the semantics of the update formulas

(see Section 6). Property 3 is important, since we will restrict the semantics of update formulas to

consistent transitions. Property 5 states that the concurrent composition of multi-sets �ts with the

concurrent composition of two transitions. This is important, as
F
is not de�ned inductively by t.

To the contrary,
F
is an additional parameter and has to be de�ned for in�nite multi-sets as well.

Note that we do not de�ne further requirements at the generic framework level. For example, we do

not formalize dependencies between the concurrent and the sequential composition of transitions.

When the framework is instantiated, further properties may be identi�ed, which can be exploited

for an operational semantics.

De�nition 4.4 [Conformity] Two or more consistent transitions are called conforming with each

other, if their concurrent composition is consistent. 2

Next, the basic update atoms and the DB atoms will be related to the given transition system.

Further, the interpretation of the DB atoms will be speci�ed for each state. Informally speaking,

the parameters de�ned below serve as a bridge between the syntactical parameters of the ULTRA

framework and the transition system.

De�nition 4.5 [DB Interpretation] A mapping

IDB : S ! I3
B
;

which assigns a set of true and false DB atoms (observations) to each state, is called a DB inter-

pretation. 2

De�nition 4.6 [Logging Transition Assignment] A mapping

Log : B ! TCons;

which assigns a consistent transition to each ground DB atom, is called a logging transition assign-

ment . 2

De�nition 4.7 [Update Transition Assignment] A mapping

Upd : BBU ! TCons;

which assigns a consistent transition to each ground basic update atom, is called an update transition

assignment . 2

40

The DB interpretation IDB provides a state-dependent meaning for the DB atoms. The mappings

Log and Upd are used to assign semantical counterparts { in terms of consistent transitions { to the

(syntactical) update literals. Note that the assignments are state-independent. This is adequate,

since the execution semantics �E already handles the state-dependence. The logging transitions

are used to record what state information has been queried and thus simply serve as marks. They

should typically not change the state when they are executed. However, this property is not relevant

for the semantics. If it is not satis�ed, not only the basic update atoms, but also the DB atoms

may become a�icted by side e�ects.

Example 4.8 In the database-oriented ULTRA instance, the function IDB will map each EDB

instance onto the well-founded model [vG89, vGRS91] of its extension by the given IDB program.

This way, IDB provides the missing semantics for the IDB predicates. Log will map an atom

over a DB predicate q 2 PredDB onto the set f?r1; : : : ; ?rng, where r1; : : : ; rn 2 PredDB are the

EDB predicates q depends on. The update transition assignment Upd will be de�ned as a simple

adaptation: for example, it will map an insertion atom INS r(~t) onto the singleton set f+r(~t)g.

In the ULTRA instance for external operations, IDB will yield observable truth values for every

external state, while Log and Upd will be adaptations that simply map atoms to singleton sets of

actions. See Sections 4.3 and 4.4 for more details. 2

4.2 Interpretation of Update Formulas

We will now de�ne the interpretation of update formulas. The semantics will be de�ned w.r.t. an

arbitrary but �xed initial state s0 2 S. However, for the sake of readability we do not parame-

terize the constructs introduced in the following with this state. Any (non-initial) state s 2 S is

represented by a transition � 2 TCons, such that the execution of � in the state s0 would lead to

s.

�
s0 �! s

We call s a hypothetical state, as it does not need to become a physical state. Note that s0 can be

represented by the neutral transition �".

The semantics of ULTRA is not based on relations between di�erent states like in a dynamic logic

[KT90], but rather on deferred transitions. An interpretation I is a mapping from the set of

ground update formulas to the power-set of TCons � TCons, i.e. I(') � TCons � TCons for every

ground formula '. The �rst component of each pair (�C ;�) 2 I(') points to a (hypothetical)

current state sCurr (reachable from s0) in which ' is to be evaluated, the second component refers

to a transition that would lead to the next state sNext if applied to the current state sCurr. Every

pair (�C ;�) corresponds to an allowed state change.

�C �
(s0 �!) sCurr �! sNext

If I(') contains multiple pairs with the same �rst component �C , ' has a non-deterministic

update interpretation. Note that non-deterministic choice [GSZ95, Sha89] is not involved at the

level of the logical semantics. However, an implementation has to perform a choice operation when

materializing one of the new possible states.

41

As de�ned below, I will be an extension of an interpretation IUP of the de�nable update atoms.

In other words, if an interpretation IUP of the de�nable update atoms is given, the interpretation

I of all ground update formulas can be derived according to De�nition 4.9. In Section 4.6 we will

characterize a particular interpretation IUP derived from the update program PUP .

Note that we de�ne the semantics of quanti�ers over a replacement of variables by ground terms.

This is correct, because we tacitly use the Herbrand pre-interpretation [Llo87], where every domain

element can be represented by a ground term of U .

De�nition 4.9 [Interpretation of Update Formulas] Let (S;T ;TCons;�E ;�";t;
F
;�) be a

transition system with initial state s0 2 S. Let IDB : S ! I3
B
be a DB interpretation, Log :

B ! TCons be a logging transition assignment, and Upd : BBU ! TCons be an update transition

assignment. Let IUP be an interpretation of the de�nable update atoms, i.e. a mapping

IUP : BDU ! 2TCons�TCons :

We de�ne the interpretation I of update formulas as an extension of IUP to arbitrary ground update

formulas inductively as follows. Note that only consistent transitions � 2 TCons are considered.

Base cases:

1. DB literal (DB)

Let q(~t) 2 B be a DB atom.

For all �C ;� 2 TCons de�ne:

(�C ;�) 2 I(q(~t)) :()

IDB(s0 �E �C) j= q(~t) and � = Log(q(~t))

(�C ;�) 2 I(NOT q(~t)) :()

IDB(s0 �E �C) j= :q(~t) and � = Log(q(~t))

2. NOP literal (NOP)

For all �C ;� 2 TCons de�ne:

(�C ;�) 2 I(NOP) :() � = �"

3. Basic update atom (BU)

Let u(~t) 2 BBU be a basic update atom.

For all �C ;� 2 TCons de�ne:

(�C ;�) 2 I(u(~t)) :() � = Upd(u(~t))

4. De�nable update atom (DU)

Let p(~t) 2 BDU be a de�nable update atom.

For all �C ;� 2 TCons de�ne:

(�C ;�) 2 I(p(~t)) :() (�C ;�) 2 IUP (p(~t))

Inductive cases:

1. Concurrent conjunction (CCj)

For all �C ;� 2 TCons de�ne:

(�C ;�) 2 I(';) :()

there exist �1;�2 2 TCons such that:

(�C ;�1) 2 I(') and (�C ;�2) 2 I() and � = �1 t�2

42

2. Sequential conjunction (SCj)

For all �C ;� 2 TCons de�ne:

(�C ;�) 2 I(' :) :()

there exist �1;�2 2 TCons such that:

(�C ;�1) 2 I(') and (�C ��1;�2) 2 I() and � = �1 ��2

3. Disjunction (Dj)

For all �C ;� 2 TCons de�ne:

(�C ;�) 2 I(' _) :()

(�C ;�) 2 I(') or (�C ;�) 2 I()

4. Existential quanti�cation (Ex)

Let ' be an update formula, and let X1; : : : ;Xn be variables such that 9 ~X ' is ground.

For all �C ;� 2 TCons de�ne:

(�C ;�) 2 I(9 ~X ') :()

there exists a ground term tuple (~t) 2 Un

such that (�C ;�) 2 I('[~X =~t])

5. Bulk quanti�cation (Bulk)

Let A be a DB atom that contains exactly the variables X1; : : : ;Xn,

let ' be an update formula such that '[~X =~t] is ground for term tuples (~t) 2 Un,

and let I('[~X =~t]) be already de�ned for every ground tuple (~t) 2 Un.

For �C 2 TCons let TA;�C
:= f(~t) 2 Un j IDB(s0 �E �C) j= A[~X =~t]g.

For all �C ;� 2 TCons de�ne:

(�C ;�) 2 I(# ~X [A 7! ']) :()

TA;�C
= ; and � = Log(A[~X = ~all])

or

TA;�C
6= ; and there exists a function f : TA;�C

! TCons such that:

8(~t) 2 TA;�C
: (�C ; f(~t)) 2 I('[~X =~t])

and � = Log(A[~X = ~all]) �
F
(~t)2TA;�C

f(~t)

6. Implication (Impl)

For all �C ;� 2 TCons de�ne:

(�C ;�) 2 I('!) :()

(�C ;�) 2 I(') =) (�C ;�) 2 I()

7. Universal quanti�cation (Univ)

Let ' be an update formula, and let X1; : : : ;Xn be variables such that 8 ~X ' is ground.

For all �C ;� 2 TCons de�ne:

(�C ;�) 2 I(8 ~X ') :()

for arbitrary ground term tuples (~t) 2 Un the following holds:

(�C ;�) 2 I('[~X =~t])

2

De�nition 4.9 essentially formalizes what kind of transitions � are necessary to satisfy the corre-

sponding update formulas. In operational terms this amounts to the de�nition of the transitions

43

� that are generated during the evaluation. Note how basic update atoms are related to the

update transitions (Upd) and how the concurrent/sequential conjunction is related to the concur-

rent/sequential composition of transitions. Case (Bulk) concerning the bulk quanti�cation should

be explained in more detail: consider a �xed current state represented by �C . First, all ground

term tuples (~t), such that the instance A[~X =~t] of the atom A is true in the current state, have

to be collected in TA;�C
. Then either TA;�C

is empty and the bulk quanti�cation is successful

without any single updates, or for each term tuple (~t) in TA;�C
, a corresponding transition (w.r.t.

the ground update formula '[~X =~t]) must be chosen and incorporated into �, which represents

the resulting bulk update. The choice is reected by the function f . In both cases, also logging

transitions for the atom A are incorporated into � to express the necessary read access to A. Since

A is non-ground, all variables of A are replaced by the special constant all (cf. De�nition 3.2) before

the logging transition is assigned. The truth value of the DB atoms in each hypothetical state is

given by the possibly three-valued DB interpretation (IDB). We adopt a cautious view, where an

unde�ned truth value leads to a logical failure.

The connectives of the ULTRA language have several algebraic properties, which can be applied

when rewriting update formulas. These properties are discussed formally in Section 6. The most

important one is the associativity of \;", \:", and _ (see Proposition 6.1). Due to this associativity,

we do not need to use precedence brackets in formulas of the form '1; : : : ; 'n , '1 : : : : : 'n , and

'1 _ : : : _ 'n .

4.3 Speci�c Semantics for Logic Databases

Now we develop the semantics for the database language presented in Section 3.2. We only have to

�ll the gaps left in the generic ULTRA framework, i.e. we have to de�ne an appropriate transition

system as well as the mappings IDB, Log, and Upd which relate it to the syntactical elements of

the database language. Except for some minor formal di�erences, the resulting semantics is exactly

the same as given in [WFF98b].

In the context of logic databases, the states will be de�ned as the EDB instances, and the transitions

will be de�ned as sets which contain insertion and deletion requests for EDB tuples. Such an update

request can be considered as an assertion about the next database state. Update request sets store

also read tags for EDB relations accessed during derivation and can thus be considered as local

logs (cf. [BHG87, GR93]).

De�nition 4.10 [Update Request] A ground basic update request has the form +r(~t) or �r(~t),

where r(~t) 2 B is a ground EDB atom. We sometimes refer to these update requests as database

update requests. 2

Intuitively, a ground basic update request speci�es the insertion (+) or deletion (�) of an EDB

atom, i.e. a tuple in an EDB relation.

De�nition 4.11 [Read Tag] A read tag has the form ?r, where r is an EDB predicate. Sometimes

we refer to ?r as a database read tag. 2

The read tags are used to record retrieval operations. Intuitively, a read tag ?r expresses that

the EDB relation associated with r has (possibly) contributed to the result. Thus, to ensure

44

transaction isolation, the read tags have to be certi�ed [BHG87], before the computed update

requests are actually materialized. The certi�cation will check the absence of read/write conicts

with concurrent transactions. Obviously, the granularity of the read tags is rather coarse. Thus,

conicts may be noticed at the syntactical level which are { semantically { no proper conicts. The

determination of a minimal set of relevant EDB data for any derived information, however, is an

undecidable problem [Elk90] and outside the scope of this thesis. Note that even many standard

database systems use read locks on whole base relations, if serializability is to be ensured. In

the following, read tags are treated like update requests. Note, however, that read access is an

immediate operation as opposed to update operations which are deferred. Only the certi�cation of

a read access is also deferred.

De�nition 4.12 [Update Request Sets, Consistency] An update request set � is a set of

ground basic update requests and read tags.

An update request set � is consistent , i� there exists no atom r(~t) 2 B such that +r(~t) 2 � and

�r(~t) 2 �. 2

Now we are able to de�ne the required database-speci�c concepts in order to obtain a concrete

interpretation of the update formulas.

De�nition 4.13 [States] The set S of (database) states is de�ned as the set of all EDB instances

over the Herbrand base B. 2

De�nition 4.14 [Transitions] The set T of (database) transitions is de�ned as the set of all

update request sets taken from the Herbrand base B.

The subset TCons � T is de�ned as the set of consistent update request sets according to De�nition

4.12. (TCons equals the set denoted by D in earlier publications [WF97, WFF98b].)

The neutral transition �" 2 TCons is de�ned as the empty set ;, which is indeed a consistent update

request set. 2

De�nition 4.15 [Execution] The execution �E of a consistent update request set � 2 TCons
w.r.t. the EDB instance DB 2 S is de�ned by:

DB �E � := fr(~t) j (r(~t) 2 DB ^ �r(~t) 62 �) _+r(~t) 2 �g

2

Example 4.16 The execution of the update request set

� := f�entry(mon; 10; 0);+entry(mon; 10; 23)g

w.r.t. the EDB instance DB0 of Example 3.17 results in the new state:

DB0 �E � = DB0 [fentry(mon; 10; 23)g

n fentry(mon; 10; 0)g

2

45

In logic databases, the semantics of the IDB atoms often is given by the well-founded model [vG89,

vGRS91], which subsumes most standard models de�ned for restricted program classes (cf. Section

2.3). The well-founded model of a database � = PIDB [DB, where PIDB is a (�xed) IDB program

and DB 2 S is an EDB instance, is denoted by WFM(�).

De�nition 4.17 [DB Interpretation] For logic databases, we de�ne the DB interpretation

IDB : S ! I3
B

by

IDB(DB) :=WFM(PIDB [DB)

for all EDB instances DB 2 S. 2

In our prototype implementation and even in the running example, we make use of strati�ed

aggregation, constraints, and extra-logical constructs (computed functions or predicates also called

built-ins). This is not considered in the pure semantics. However, these extensions can be seen as

part of the state semantics provided by IDB . Consequently, they are non-critical for the ULTRA

concept.

De�nition 4.18 [Transition Assignments] We de�ne the mapping Log by

Log(q(~t)) := f?r j r 2 DefE[PIDB](q)g

for all ground DB atoms q(~t) 2 B and the mapping Upd by

Upd(INS r(~t)) := f+r(~t)g

Upd(DEL r(~t)) := f�r(~t)g

for all ground EDB atoms r(~t) 2 B. (In the database context, this de�nes Upd for all elements of

BBU .) 2

Finally, we must de�ne the composition constructs for the transition system.

De�nition 4.19 [Concurrent Composition] The concurrent composition t of two update re-

quest sets �1;�2 2 T is de�ned by the set union, i.e.

�1 t�2 := �1 [�2:

Similarly, we de�ne the concurrent composition
F
for a multi-set of update request sets. 2

De�nition 4.20 [Write-Compatibility] Recall De�nition 4.4. If two or more consistent update

request sets are conforming with each other, we call them also write-compatible (cf. [WFF98b]). In

Corollary 4.25 we will show that this is legitimate. 2

46

Note that the write-compatibility is an intra-transaction compatibility which is necessary to de�ne a

clear semantics for the concurrent conjunction. Within a transaction, a read access does supposedly

not conict with an update. Update goals composed by the concurrent conjunction are evaluated

w.r.t. the same current state and specify individual update request sets which are merged in order

to express a simultaneous transition leading to a common next state.

Example 4.21 Consistent updates request sets are for example:

�1 = f?entry;�entry(mon; 10; 0);+entry(mon; 10; 23)g

�2 = f+description(23; \Presentation")g

�3 = f?entry;�entry(mon; 10; 0);+entry(mon; 10; 23);

+ description(23; \Presentation")g

�3 is the concurrent composition of �1 and �2, i.e. �3 = �1t�2. �1 and �2 are write-compatible,

as �3 is consistent (cf. De�nitions 4.4 and 4.20).

The following update request sets are consistent, but not conforming with each other:

�4 = f?entry;�entry(mon; 10; 0)g

�5 = f?entry;+entry(mon; 10; 0)g

The concurrent composition of �4 and �5 contains both the insertion and deletion of the fact

entry(mon; 10; 0) and thus is not a consistent update request set. 2

De�nition 4.22 [Sequential Composition] The sequential composition � of two update re-

quest sets �1;�2 2 T is de�ned by:

�1 ��2 := f+r(~t) j (+r(~t) 2 �1 ^ �r(~t) 62 �2) _+r(~t) 2 �2g

[f�r(~t) j (�r(~t) 2 �1 ^+r(~t) 62 �2) _ �r(~t) 2 �2g

[f?r j ?r 2 �1 _ ?r 2 �2g

2

Proposition 4.23 Let �1;�2 2 TCons be write-compatible update request sets. Then the equality

�1 ��2 = �1 t�2

holds.

Proof: The following equivalences hold for arbitrary insertion requests +r(~t):

+r(~t) 2 �1 ��2

() (+r(~t) 2 �1 ^�r(~t) 62 �2) _ + r(~t) 2 �2

() +r(~t) 2 �1 _ + r(~t) 2 �2
(subsmpt:)

() +r(~t) 2 �1 t�2

Have a closer look at the equivalence marked \subsmpt.". `)' is trivial, as the condition on the

left hand side is stronger than the condition on the right. However, due to the assumption of

47

write-compatibility, the converse `(' also holds, as the deletion request �r(~t) cannot be contained

in �2, if +r(~t) 2 �1 t�2 holds.

As the de�nitions are symmetric, similar equivalences hold for deletion requests �r(~t).

In both compositions, the read tags are merged like in the usual set union. Thus,

?r 2 �1 ��2 () ?r 2 �1 [�2 () ?r 2 �1 t�2

holds for arbitrary read tags ?r. This completes the proof of the equality of �1��2 and �1 t�2.

2

After having de�ned the speci�c concepts, we must verify that they satisfy the required algebraic

properties of De�nition 4.2. This will be done in the following theorem.

Theorem 4.24 [Algebraic Properties] The algebraic properties of De�nition 4.2 hold for the

transition system de�ned for the extended database language.

Proof: The proof essentially relies on the de�nitions of �E , t,
F
, and � in this section.

1. Recall that the concurrent composition t is de�ned as the set union. Further, �" = ; holds.

Properties (a) to (c) required for t thus follow from the properties of the set union.

2. Next, we show the properties required for �.

(a) Let arbitrary update request sets �1;�2;�3 2 T be given.

The following equivalences hold for arbitrary insertion requests +r(~t):

+r(~t) 2 (�1 ��2)��3

() (+r(~t) 2 �1 ��2 ^ � r(~t) 62 �3) _ + r(~t) 2 �3

() [((+r(~t) 2 �1 ^ �r(~t) 62 �2) _+r(~t) 2 �2) ^

�r(~t) 62 �3] _ + r(~t) 2 �3

() (+r(~t) 2 �1 ^ �r(~t) 62 �2 ^ �r(~t) 62 �3) _

(+r(~t) 2 �2 ^ �r(~t) 62 �3) _ + r(~t) 2 �3

() (+r(~t) 2 �1 ^ �r(~t) 62 �2 ^ �r(~t) 62 �3) _
(subsmpt:) (+r(~t) 2 �1 ^+r(~t) 2 �3 ^ �r(~t) 62 �3) _

(+r(~t) 2 �2 ^ �r(~t) 62 �3) _ + r(~t) 2 �3

() (+r(~t) 2 �1 ^ (�r(~t) 62 �2 _+r(~t) 2 �3) ^ �r(~t) 62 �3) _

(+r(~t) 2 �2 ^ �r(~t) 62 �3) _ + r(~t) 2 �3

() (+r(~t) 2 �1 ^ : [(�r(~t) 2 �2 ^+r(~t) 62 �3) _ �r(~t) 2 �3]) _

(+r(~t) 2 �2 ^ �r(~t) 62 �3) _ + r(~t) 2 �3

() (+r(~t) 2 �1 ^ � r(~t) 62 �2 ��3) _ + r(~t) 2 �2 ��3

() +r(~t) 2 �1 � (�2 ��3)

Have a closer look at the equivalence marked \subsmpt.". `)' is trivial, as the three disjuncts on

the left hand side also occur on the right hand side. However, the converse `(' also holds, as the

disjunct

+r(~t) 2 �1 ^+r(~t) 2 �3 ^ �r(~t) 62 �3

48

which does not occur on the left hand side implies the disjunct

+r(~t) 2 �3:

As the de�nitions are symmetric, similar equivalences hold for deletion requests �r(~t).

The sequential composition � merges the read tags exactly like the usual set union. Thus, the

equivalences

?r 2 (�1 ��2)��3 () ?r 2 �1 [�2 [�3 () ?r 2 �1 � (�2 ��3)

hold for arbitrary read tags ?r. This completes the proof of the associativity of �.

(b) To show that �" is a neutral element, let � 2 T be arbitrarily chosen.

���" = f+r(~t) j (+r(~t) 2 � ^ �r(~t) 62 ;) _+r(~t) 2 ;g [

f�r(~t) j (�r(~t) 2 � ^+r(~t) 62 ;) _ �r(~t) 2 ;g [

f?r j ?r 2 � _ ?r 2 ;g

= f+r(~t) j+ r(~t) 2 �g [f�r(~t) j � r(~t) 2 �g [f?r j ?r 2 �g

= �

�" �� = f+r(~t) j (+r(~t) 2 ; ^ �r(~t) 62 �) _+r(~t) 2 �g [

f�r(~t) j (�r(~t) 2 ; ^+r(~t) 62 �) _ �r(~t) 2 �g [

f?r j ?r 2 ; _ ?r 2 �g

= f+r(~t) j+ r(~t) 2 �g [f�r(~t) j � r(~t) 2 �g [f?r j ?r 2 �g

= �

3. Next, we show the consistency properties.

(a) The �rst implication holds, since t is de�ned as the set union: if �1 or �2 were not consistent,

then �1 t�2 would not be consistent, too.

(b) Now let �1;�2 2 TCons be consistent update request sets. Assume that �1 � �2 is not

consistent. Then an atom r(~t) 2 B exists, such that +r(~t);�r(~t) 2 �1 ��2. We can reason as

follows:

+r(~t) 2 �1 ��2 ^ � r(~t) 2 �1 ��2

=) ((+r(~t) 2 �1 ^ �r(~t) 62 �2) _+r(~t) 2 �2) ^

((�r(~t) 2 �1 ^+r(~t) 62 �2) _ �r(~t) 2 �2)

=) (+r(~t) 2 �1 ^ �r(~t) 62 �2 ^ �r(~t) 2 �1 ^+r(~t) 62 �2) _

(+r(~t) 2 �2 ^ �r(~t) 2 �1 ^+r(~t) 62 �2) _

(+r(~t) 2 �1 ^ �r(~t) 62 �2 ^ �r(~t) 2 �2) _

(+r(~t) 2 �2 ^ �r(~t) 2 �2)

=) (+r(~t) 2 �1 ^ �r(~t) 2 �1) _ (+r(~t) 2 �2 ^ �r(~t) 2 �2)

The last statement contradicts the precondition saying that �1 and �2 are consistent. Thus, our

assumption must be false, which means that �1 ��2 is consistent.

(c) It is easy to see that �2 � �1 ��2 holds. Consequently, if �1 ��2 is consistent, �2 must be

consistent, too.

49

4. Next, we show the properties required for �E .

(a) The assertion concerning the exchange of execution �E and sequential composition � can be

proved in a similar fashion as the associativity of � (see property 2). Note that DB�E (�1 ��2)

is well-de�ned, since �1 ��2 is consistent (see property 3).

(b) To show that �" is a neutral element, let DB 2 S be arbitrarily chosen.

DB �E �"

= fr(~t) j (r(~t) 2 DB ^ �r(~t) 62 ;) _+r(~t) 2 ;g

= fr(~t) j r(~t) 2 DBg

= DB

5. Recall that the concurrent composition (t and
F
) is de�ned as the set union. Consequently, the

properties (a) and (b) required for
F
can easily be shown. 2

Corollary 4.25 [Write-Compatibility] Let DB 2 S be an EDB instance, and let �1;�2 2

TCons be write-compatible update request sets. Then the following equalities hold:

(DB �E �1)�E �2 = DB �E (�1 t�2) = (DB �E �2)�E �1

In other words, the execution order of �1 and �2 is not relevant for the resulting state.

Proof: The assertion follows directly from Proposition 4.23 and the algebraic properties proved

in Theorem 4.24. 2

In Theorem 4.24 we have shown that the concepts de�ned in this section are legal for the generic

ULTRA framework. Thus, we can apply the semantical results of Section 4.2 and get a semantics

for the speci�c database language. It is easy to see that the resulting semantics coincides with the

semantics de�ned in [WFF98b]. Let us now turn to an illustration of the interpretation of update

formulas as given in De�nition 4.9.

Example 4.26 [Personal Calendar (Cont.)] Consider the update formula

' :� entry(mon; 10; 0); DEL entry(mon; 10; 0); INS entry(mon; 10; 23)

which is an instance of one of the rule bodies de�ning the update predicate do allocate (see Ap-

pendix B). Let the EDB instance DB0 of Example 3.17 be given as the initial state. By De�nition

4.9, cases (DB) and (BU), the following holds regardless of any speci�c interpretation IUP of de-

�nable update atoms:

(;; f?entryg) 2 I(entry(mon; 10; 0))

(;; f�entry(mon; 10; 0)g) 2 I(DEL entry(mon; 10; 0))

(;; f+entry(mon; 10; 23)g) 2 I(INS entry(mon; 10; 23))

Applying case (CCj) twice we can deduce:

(;; f?entry;�entry(mon; 10; 0);+entry(mon; 10; 23)g) 2 I(')

50

Up to now, we only considered the initial state DB0 as the current state. Next, we consider a

hypothetical current state, where the fact entry(mon; 10; 0) has been removed from the EDB:

(f�entry(mon; 10; 0)g; f?entry;�entry(mon; 10; 0);+entry(mon; 10; 23)g) 62 I(')

holds, because entry(mon; 10; 0) is false in the hypothetical state and case (DB) of De�nition 4.9

is thus not applicable.

Finally, we would like to illustrate the semantics of the bulk quanti�er. Have a look at the update

formula

 :� # D;S [entry(D;S; 7) 7! [DEL entry(D;S; 7); INS entry(D;S; 0)]]

which is an instance of the rule body de�ning the update predicate do deallocate (see Example 3.17

and Appendix B). We assume that the EDB instance DB0 of Example 3.17, where the assertions

IDB(DB0) j= entry(mon; 12; 7) and IDB(DB0) j= entry(mon; 13; 7) hold and IDB(DB0) assigns

the truth value \false" to other ground instances of the EDB atom entry(D;S; 7), is given as the

initial state. Then according to De�nition 4.9, case (Bulk),

Tentry(D;S;7);; = f(mon; 12); (mon; 13)g

holds. Tentry(D;S;7);; determines the relevant ground instances of the update subgoal

DEL entry(D;S; 7); INS entry(D;S; 0)

occurring in , and we must �nd interpretations for these instances. It is easy to derive the following

assertions regardless of any speci�c interpretation IUP of de�nable update atoms:

(;; f�entry(mon; 12; 7);+entry(mon; 12; 0)g)

2 I(DEL entry(mon; 12; 7); INS entry(mon; 12; 0))

(;; f�entry(mon; 13; 7);+entry(mon; 13; 0)g)

2 I(DEL entry(mon; 13; 7); INS entry(mon; 13; 0))

Using case (Bulk) of De�nition 4.9, we can now deduce

(;;�) 2 I()

for the consistent update request set

� = f?entry;�entry(mon; 12; 7);�entry(mon; 13; 7);

+ entry(mon; 12; 0);+entry(mon; 13; 0)g:

Informally speaking, � is a representation of the bulk update speci�ed by (w.r.t. the initial state

DB0): it contains the update requests of the single updates (see above) and also a read tag ?entry

that corresponds to the read access necessary to construct the set Tentry(D;S;7);;. 2

51

4.4 Speci�c Semantics for External Operations

In this section we will develop the semantical parts of the ULTRA instance that is adequate for

arbitrary external operations (cf. Section 3.3). Like in Section 4.3, we have to de�ne a transition

system together with the mappings IDB, Log, and Upd. Essentially, we generalize the structural

notion of update request sets to partially ordered multi-sets of actions. Consequently, order con-

straints between actions and multiple occurrences of actions can be represented. This becomes

necessary, when basic operations beyond insertions and deletions are considered.

4.4.1 States and Actions

In the following, we consider a given set S of states and a given set � of actions. We assume that

the states and actions are related by an execution function

do : �� S ! S

which models the behaviour of the external system.

Let further the DB interpretation

IDB : S ! I3
B

be given as the projection of the states onto the observable properties represented by the DB atoms.

Let

Logact : B ! �

be a given mapping from the ground DB atoms to the actions, and let

Updact : BBU ! �

be a given mapping from the ground basic update atoms to the actions. Note that an action

assigned by Logact does not need to be a proper action. It may be a simple mark about a retrieval

operation that is necessary to check the truth value of the logged DB atom. In this case, we call

such an action a read tag and assume that its execution does not change the external state.

De�nition 4.27 [Compatibility] Two actions a1; a2 2 � are called compatible with each other,

if

do(a2; do(a1; s)) = do(a1; do(a2; s))

holds for every state s 2 S. 2

De�nition 4.28 [Independence] A ground DB atom A 2 B is called independent of an action

a 2 �, if for every state s 2 S and for every �nite sequence a1; : : : ; an of actions ai 2 � the following

equivalences hold:

IDB(do(an; do(: : : ; do(a1; do(a; s))::))) j= A () IDB(do(an; do(: : : ; do(a1; s)::))) j= A

IDB(do(an; do(: : : ; do(a1; do(a; s))::))) j= :A () IDB(do(an; do(: : : ; do(a1; s)::))) j= :A
2

52

Remark 4.29 [Conditions for Special Instances] In specialized instances of ULTRA, the ac-

tions of � might be identi�ed with DB atoms (or DB predicates) and basic update atoms. In this

case, � would be equal to B [BBU (or PredDB [BBU), Log
act would be the identity mapping (or

the mapping that maps a DB atom onto its predicate symbol), and Updact would be the identity

mapping. Moreover, it is possible to pre�x the actions that are returned by Logact with a special

symbol, e.g. \?", to emphasize that they are merely read tags instead of proper actions. As state

retrieval usually has no side e�ect, the actions assigned by Logact should not change the state, i.e.

for an action a 2 Logact(B) and an arbitrary state s 2 S, do(a; s) = s should hold. 2

Remark 4.30 The ULTRA instance de�ned in this section is capable to deal with complex op-

erations in arbitrary systems. Hence, it can be re�ned to be used even in the database context.

For this purpose, the preliminaries required above, i.e. S, �, do, IDB , Log
act, and Updact, have

to be de�ned for database speci�c operations. It is possible to use de�nitions that resemble the

de�nitions of Section 4.3. For instance, Updact will map a basic update atom INS r(~t) onto the

update request +r(~t), and do(+r(~t);DB) will be equal to the database state DB[fr(~t)g for each

database state DB. The resulting semantics of update formulas, however, will be slightly di�erent

from that one de�ned in Section 4.3: As we will see below, the sequential composition of transitions

generates order dependencies and does not eliminate invalidated update requests. Consequently,

the transitions may contain a lot of obsolete information, which is not relevant for the characteriza-

tion of subsequent database states but has a negative impact on hypothetical reasoning techniques

needed for the two-phase execution strategy of Section 8.1. Besides the illustration purposes, this

is another reason for presenting the database-oriented ULTRA instance with a dedicated semantics

based on update request sets. 2

Example 4.31 [Robot World (Cont.)] In our robot example, the states in S will be the states

of the robot and its environment, i.e. the blocks world.

We can de�ne the set � of actions by

� := BBU [f?q j q 2 PredDBg

and the mappings Logact and Updact according to Remark 4.29. Consequently, we will obtain

actions like xstep(�1), xstep(1), pickup, ?xpos, ?empty, etc. The actions pre�xed by \?" are

considered as read tags without side e�ects. They are relevant only for optimistic transaction

processing strategies (cf. Section 5).

If the robot world is currently in state s 2 S, then do(xstep(1); s) denotes the state that results from

executing the operation xstep(1), i.e. by moving the robot by one step in x-direction. Similarly,

do(pickup; s) denotes the state resulting from a pickup operation. Of course s = do(pickup; s) may

hold, since idle operations are possible. But usually do(pickup; s) denotes a state where a block

which was on the oor in s has been picked up by the hand of the robot.

Since the execution of a read tag is supposed not to change the state, the read tags are compatible

with all other actions. But we can also �nd compatibilities between proper actions: the movement

actions xstep(�1), xstep(1), ystep(�1), and ystep(1) are pair-wise compatible with each other.

In contrast, the movement actions are not compatible with pickup and putdown (provided that

the blocks world is not degenerated). See Table 2 for a matrix representation of the complete

compatibility relation.

53

compatibility xstep(: : :) ystep(: : :) pickup putdown ? : : :

xstep(: : :) + + � � +

ystep(: : :) + + � � +

pickup � � + � +

putdown � � � + +

? : : : + + + + +

Table 2: Compatibility relation in the robot example

In our example, the only observable items are the position indicators xpos and ypos as well as the

empty sensor of the robot. Assume, for instance, that the robot is empty in state s and a block is

lying on the oor at the current position, then the semantics IDB will state that IDB(s) j= empty

and IDB(do(pickup; s)) j= :empty holds. Similarly, if the robot is at x-position 1 in state s, then

IDB(s) j= xpos(1) and IDB(do(xstep(1); s) j= xpos(2) will hold.

Finally, let us discuss some independence properties between actions and ground DB atoms. Ev-

ery DB atom is trivially independent of every read tag. Considering proper actions, a DB atom

xpos(: : :) is independent of an action ystep(: : :), and ypos(: : :) is independent of xstep(: : :) anal-

ogously, as the movements in x- and y-direction behave orthogonally to each other. A move in

y-direction, for instance, will never have an e�ect on the x-position of the robot. One could be

tempted to think that empty is independent of xstep(1) and other movements, too, as the truth

value of empty is not directly a�ected by these actions. However, this property is not suÆcient

to guarantee the independence: the movement can have an indirect e�ect on empty after the next

pickup action (provided that the blocks world is not degenerated), this violates the independence

condition. A matrix representation of the complete independence relation can be found in Table 3.

2

independence empty xpos(: : :) ypos(: : :)

xstep(: : :) � � +

ystep(: : :) � + �

pickup � + +

putdown � + +

? : : : + + +

Table 3: Independence relation in the robot example

Based on the preliminaries de�ned above we will build a new instance of the ULTRA framework

during the following sections.

4.4.2 Partially Ordered Multi-Sets of Actions

In this section we present the foundations of partially ordered multi-sets. The formal de�nitions

are adapted from [Pra86]. Essentially, the classical notion of sets is generalized in two directions:

elements can occur multiple times, and order dependencies between elements can be represented.

54

The main area of application for partially ordered multi-sets is the formal description of arbitrary

concurrent and sequential processes. In this context, the elements are called actions, and the

ordering relation, which does not need to be linear, speci�es execution constraints: ordered actions

are considered as sequential, while unordered actions are considered as concurrent. Partially ordered

multi-sets can serve as a viable representation structure for the deferred transitions in a universal

ULTRA instance, especially since the composition functions t and � are easy to de�ne with a

commonly accepted semantics (see [Pra86] for more information about concurrent and sequential

composition of processes).

De�nition 4.32 [Labelled Partial Order] Let � be a set of actions. A labelled partial order

over � is a triple (V;�; �) where V is a set of events, � is a partial order on V , and � : V ! � is

a labelling function. 2

De�nition 4.33 [Congruence] Two labelled partial orders (V;�; �) and (V 0;�0; �0) are congru-

ent , i� there exists a bijective mapping f : V ! V 0, such that e1 � e2 () f(e1) �
0 f(e2) holds for

arbitrary events e1; e2 2 V and � = �0 Æ f . 2

Remark 4.34 Let a �xed set � of actions be given. Then the congruence is a well-de�ned equi-

valence relation on the set of labelled partial orders over �. f can be interpreted as a renaming

function. 2

De�nition 4.35 [Partially Ordered Multi-Sets] Let � be a set of actions. The set of partially

ordered multi-sets (pomsets) over �, denoted by �z, is de�ned as the set of all labelled partial orders

over � modulo congruence, i.e. the set containing one representative of each equivalence class w.r.t.

congruence. 2

In the following, we keep a set � of actions �xed and consider the pomsets in �z. Every element of

�z is denoted by a representative [V;�; �]. For the sake of brevity we denote the empty multi-set

[;; ;; ;] by ; and a singleton [feg; f(e; e)g; fe 7! ag] (with a 2 �) by fag.

Note that a partially ordered multi-set can be represented and visualized by a graph. The vertices

V are marked with actions according to the function �, the edges correspond to a relation on V

that induces the ordering � by reexive-transitive closure. Some examples of pomsets are shown

in Figure 7.

1∆

∆2

∆3

a

c d

b

e

b

c dba

a c d e

e

Figure 7: Partially ordered multi-sets

Next, we de�ne the concurrent and the sequential composition of two partially ordered multi-sets.

55

De�nition 4.36 [Concurrent Composition] The concurrent composition t : �z � �z ! �z is

de�ned by

�1 t�2 := [V1 [V2 ; �1 [�2 ; �1 [�2]

for two partially ordered multi-sets �1 := [V1;�1; �1] and �2 := [V2;�2; �2] over �, where V1 and

V2 are chosen disjoint (w.l.o.g.). 2

De�nition 4.37 [Sequential Composition] The sequential composition � : �z � �z ! �z is

de�ned by

�1 ��2 := [V1 [V2 ; �1 [(V1 � V2)[�2 ; �1 [�2]

for two partially ordered multi-sets �1 := [V1;�1; �1] and �2 := [V2;�2; �2] over �, where V1 and

V2 are chosen disjoint (w.l.o.g.). 2

The composition functions t and � are well-de�ned. Since V1 and V2 are disjoint, it is easy to verify

that �1 [�2 and �1 [(V1 � V2)[�2 are partial orders on V1 [V2 and that �1 [�2 is the graph

of a function � : V1 [V2 ! �. Thus, the composed objects are partially ordered multi-sets over �.

Using standard techniques, it is possible to show the independence of the chosen representatives

V1 and V2.

Lemma 4.38 [Monoid Properties] (�z;t; ;) forms a commutative monoid, and (�z;�; ;) forms

a monoid.

Proof: The associativity of t and � is easy to see, when the representatives are chosen disjoint

(w.l.o.g.): apply the associativity of the set union. The commutativity of t follows directly from

the commutativity of the set union. The empty multi-set ; (i.e. [;; ;; ;]) behaves neutral, because

; is the neutral element of the set union. Consequently, the assertions hold. 2

Example 4.39 [Composition of Pomsets] Have a look at Figure 7. The pomset �1 can be

constructed as follows:

�1 := fag � (fbg t (fcg � fdg)) � feg

In contrast, �2 and �3 are constructed using the sequential composition � only. 2

It is straight-forward to de�ne a concurrent composition for multi-sets of pomsets.

De�nition 4.40 [Concurrent Composition] Let M be a multi-set of partially ordered multi-

sets over �. Choose (w.l.o.g.) a representation of M of the form f[Vi;�i; �i] j i 2 Ig, where the

event sets Vi are disjoint. The concurrent composition
F
for the multi-set M is de�ned by:

G
M :=

h S
i2I Vi ;

S
i2I �i ;

S
i2I �i

i
2

56

The concurrent composition
F

for multi-sets of pomsets is well-de�ned. This can be shown in a

similar fashion as for the t function: the result is indeed a pomset and does not depend on the

chosen representatives.

The following lemma states that the concurrent composition for multi-sets of pomsets �ts with the

concurrent composition of two pomsets.

Lemma 4.41 Let M be a multi-set of pomsets over �, and let � 2 �z be a pomset over �. Then

the equality

G
(f�g]M) = � t

G
M

holds, where] denotes the union of multi-sets.

Proof: Choose (w.l.o.g.) a representation f[Vi;�i; �i] j i 2 Ig of M as in De�nition 4.40 such

that the event sets Vi are disjoint. Further choose (w.l.o.g.) a representative [V;�; �] of � such

that V is disjoint from all Vi. We can reason as follows:

F
(f�g]M)

= [V [
S
i2I Vi ; � [

S
i2I �i ; � [

S
i2I �i]

= [V;�; �] t [
S
i2I Vi ;

S
i2I �i ;

S
i2I �i]

= � t
F
M

2

In the following, we will de�ne some special classes of partially ordered multi-sets. The classi�ca-

tions are relevant for the subsequent de�nition of the execution function �E.

De�nition 4.42 [Finite Pomsets] A partially ordered multi-set [V;�; �] 2 �z is �nite, i� V is

�nite. 2

De�nition 4.43 [Linear Pomsets] A partially ordered multi-set [V;�; �] 2 �z is linear , i� � is

a linear ordering relation on V , i.e. i� for arbitrary events e; e0 2 V , e � e0 or e0 � e holds.

Let �;�0 2 �z be pomsets. �0 is called a linearization of �, if �0 is a linear pomset and if � and

�0 are representable by [V;�; �] and [V;�0; �], respectively, such that ���0. Note that both �

and �0 are ordering relations on V . 2

The properties of �niteness and linearity are well-de�ned: the independence of the chosen repre-

sentative is easy to verify. Further, the linearization condition does not depend on a particular

V : if the condition holds for representations in terms of some set V , it is clearly possible to �nd

representations that satisfy the condition w.r.t. another set V 0 of the same cardinality as V .

Lemma 4.44 Let �1;�2 2 �
z be arbitrary pomsets. Then the following equivalences hold:

�1 �nite ^ �2 �nite () �1 t�2 �nite

�1 �nite ^ �2 �nite () �1 ��2 �nite

Proof: The assertions follow directly from the properties of the set union. 2

57

Lemma 4.45 Every partially ordered multi-set � 2 �z has at least one linearization �0 2 �z.

A linear pomset � 2 �z has � as its unique linearization.

Proof: Let � be representable by [V;�; �]. Then there exists at least one linear ordering relation

�0 that extends �. De�ne �0 := [V;�0; �].

If � is linear, it is indeed a linearization of itself. The uniqueness follows from the fact that there

exists no ordering relation �0 on V di�erent from � such that ���0 holds. 2

Lemma 4.46 Let �1;�
0

1;�2;�
0

2 2 �
z be pomsets, where �0

1 is a linearization of �1 and �0

2 is a

linearization of �2. Then �0

1 ��0

2 is a linearization of both �1 t�2 and �1 ��2.

Proof: Choose (w.l.o.g.) representatives [V1;�1; �1], [V1;�
0

1; �1], [V2;�2; �2], and [V2;�
0

2; �2] (for

�1 through �0

2), such that V1 and V2 are disjoint and the inclusions �1��
0

1 and �2��
0

2 hold.

Recall that �01 and �
0

2 are linear orders. De�ne:

�t := �1 [�2

�� := �1 [(V1 � V2)[�2

�0
�

:= �01 [(V1 � V2)[�
0

2

�t, ��, and �
0

�
are the ordering relations (over V1 [V2) of �1 t �2, �1 � �2, and �0

1 � �0

2,

respectively.

It is straight-forward to show that �0
�
is a linear ordering relation: two arbitrary events of V1 [V2

that are both contained in the set V1 are ordered by �01 and thus by �0
�
, the same holds w.r.t.

V2 and �
0

2, two events belonging to di�erent sets are related by V1 � V2 and thus ordered by �0
�
.

Consequently, �0

1 ��0

2 is a linear pomset.

Further, the inclusions

�t�����
0

�

can be derived easily. This completes the proof of the main assertions. 2

Lemma 4.47 Let �;�0 2 �z be non-empty pomsets, where �0 is a linearization of �. Choose

(w.l.o.g.) representatives [V;�; �] and [V;�0; �] for � and �0, respectively, such that ���0 holds.

Let e 2 V be an arbitrary event, and de�ne V 0 := V n feg. Then the pomset [V 0;�0
jV 0 ; �jV 0] is

a linearization of the pomset [V 0;�
jV 0 ; �jV 0]. (For an ordering relation �, we denote the ordering

relation � \(V 0 � V 0) by �
jV 0 . This resembles the common notation j for restricted functions,

which is also used for �.)

Proof: Since � and �0 are pomsets over �, it is easy to verify that [V 0;�
jV 0 ; �jV 0] as well

as [V 0;�0
jV 0 ; �jV 0] are pomsets over �, too. The linearization property follows directly from the

linearity of the order �0 and the inclusion ���0. 2

Remark 4.48 [List Representation] Finite linear pomsets [V;�; �] 2 �z are isomorphic to lists.

Assume that V = fe1; : : : ; eng with e1 � : : : � en. Then [V;�; �] can be denoted by the list

[�(e1); : : : ; �(en)]. The empty pomset ; can be denoted by the empty list [] and a singleton fag

can be denoted by [a]. Further, the sequential composition � corresponds to the list concatenation

Æ. 2

58

Example 4.49 [Finite Linear Pomsets] The pomsets shown in Figure 7 on page 54 are �nite.

In addition, �2 and �3 are linearizations of �1: in both cases, the partial order of �1 is extended

to a linear order.

Being �nite linear pomsets, �2 and �3 can also be represented by lists as follows:

�2 = [a; b; c; d; e]

�3 = [a; c; b; d; e]
2

4.4.3 Execution of Finite Pomsets

In this section we de�ne what the execution of �nite pomsets means. We �rst introduce a notion

of consistency.

De�nition 4.50 [Consistency] A partially ordered multi-set [V;�; �] 2 �z is called consistent ,

if for arbitrary events e; e0 2 V the following holds:

e 6� e0 ^ e0 6� e =) �(e) is compatible with �(e0)

2

The de�nition of consistency is well-de�ned. Note that a linear pomset is always consistent, as

every pair of events is ordered by the linear ordering relation.

Lemma 4.51 Let �1;�2 2 �
z be arbitrary pomsets. Then the following conditions hold:

�1 consistent ^ �2 consistent (= �1 t�2 consistent

�1 consistent ^ �2 consistent () �1 ��2 consistent

Proof: Choose (w.l.o.g.) representatives [V1;�1; �1], [V2;�2; �2], [V1 [V2;�t; �], [V1 [V2;��; �]

(with V1 \ V2 = ;) for �1, �2, �1 t�2, and �1 ��2, respectively, according to De�nitions 4.36

and 4.37.

First, assume that �1 t�2 is consistent. Let e; e
0 2 V1 be events that are unordered by �1. Since

e and e0 cannot be related by �2, they are unordered by �t, too. Consequently, �(e) and �(e0)

must be compatible. As the labellings � and �1 coincide on V1, �1(e) and �1(e
0) are compatible

with each other. So, the consistency condition is satis�ed for �1. The consistency of �2 can be

shown analogously.

Next, assume that �1 ��2 is consistent. Let e; e
0 2 V1 be events that are unordered by �1. Since

e and e0 cannot be related by V1 � V2 or �2, they are unordered by ��, too. As in the case

above �1(e) and �1(e
0) must be compatible. So, the consistency condition is satis�ed for �1. The

consistency of �2 can be shown analogously.

Finally, assume that both �1 and �2 are consistent. Let e; e
0 2 V1[V2 be events that are unordered

by ��. As two events from di�erent sets Vi are related by V1 � V2 and thus ordered by ��, both

events e and e0 must be either contained in V1 or V2. Recall that the inclusions �1��� and

�2��� hold. Like in the cases above we can apply the consistency condition w.r.t. V1 or V2
to show that �(e) and �(e0) must be compatible. This completes the proof of the consistency of

�1 ��2. 2

59

Example 4.52 [Consistency] Figure 8 shows some pomsets taken from the robot domain. Being

�nite linear pomsets, �1 and �2 are also consistent pomsets. �3, the concurrent composition of �1

and �2, is consistent, too, because the actions contained in �1 are mutually compatible with the

actions contained in �2 (cf. Example 4.31). �4 is an example of a pomset that is not consistent:

although xstep(1) is not compatible with pickup, the corresponding events are not ordered in �4,

which contradicts the consistency condition. 2

1∆

∆2

∆4

∆3

xstep(1)

ystep(-1) ?ypos?ypos

?xpos ?xpos

xstep(1)?xpos ?xpos

xstep(1)

ystep(-1) ?ypos

?xpos

?ypos

?xpos

pickup?empty

Figure 8: Pomsets in the robot domain

Next, we de�ne the execution of �nite linear pomsets. Referring to this natural de�nition, the

execution of �nite consistent pomsets will be de�ned subsequently.

De�nition 4.53 [Execution of Linear Pomsets] The execution �linE of a �nite linear pomset

� 2 �z w.r.t. a state s 2 S is de�ned recursively by:

s�linE � :=

8><
>:
do(a; s)�linE �0; if � = fag ��0 for an action a 2 �

and a �nite linear pomset �0

s; if � = ;

2

The execution function �linE is well-de�ned w.r.t. recursion and case distinction. This becomes

obvious when the formal de�nition is rewritten into a list notation according to Remark 4.48.

Lemma 4.54 Let � 2 �z be a �nite linear pomset containing at least two actions. Choose

(w.l.o.g.) a representation [V;�; �] for � such that V = fe1; : : : ; eng (n � 2) and e1 � : : : � en.

Let i 2 f1; : : : ; n� 1g be an arbitrary but �xed index. De�ne the linear ordering relation �0 such

that e1 �
0 : : : �0 ei�1 �

0 ei+1 �
0 ei �

0 ei+2 �
0 : : : �0 en holds, and de�ne the linear pomset

�0 := [V;�0; �].

If �(ei) and �(ei+1) are compatible with each other, then

s�linE � = s�linE �0

holds for every state s 2 S.

Proof: The assertion follows easily from De�nitions 4.27 and 4.53. 2

60

Example 4.55 Have a look at the pomsets �2 and �3 of Figure 7 on page 54. �3 can be derived

from �2 by exchanging the second and the third event. Let us assume that the corresponding

actions b and c are compatible with each other. Then s�linE �2 = s �linE �3 holds for every state

s 2 S. In other words, the execution of �2 always leads to the same �nal state as the execution of

�3. 2

Lemma 4.56 Let � 2 �z be a �nite consistent pomset, and let �1;�2 2 �z be linearizations of

�. Then

s�linE �1 = s�linE �2

holds for every state s 2 S.

Proof: We prove the assertion by induction on the size of the pomset �, which can be uniquely

de�ned as the cardinality of the event set V of a chosen representative [V;�; �].

Base case: V = ;

In this case, � = ; and thus also �1 = ; and �2 = ;. The assertion holds trivially.

Induction step: V 6= ;

Choose (w.l.o.g.) representatives [V;�; �], [V;�1; �], and [V;�2; �] for �, �1, and �2, re-

spectively, such that the inclusions ���1 and ���2 hold. By the induction hypothesis,

the assertion holds for pomsets having an event set with a cardinality less than that of V .

Let e 2 V be the least event w.r.t. the ordering relation �1. e exists, as V is �nite and

�1 is linear. e does not need to be the least event w.r.t. �2, but in the �rst step of the

proof we will show that �2 (and thus �2) can be modi�ed such that e becomes the least

event without changing the execution results determined by �2. In the second step we will

eliminate the event e and apply the induction hypothesis to the restricted pomsets. Note

that these pomsets can be regarded as continuations after the execution of �(e).

Let us construct the linear ordering relation �3 from the given ordering �2 by replacing each

order dependency between e and a corresponding other event e0 in a way such that e �3 e
0

holds. Note that this preserves the order of the events contained in V n feg, while e becomes

the least event. De�ne the new pomset �3 := [V;�3; �].

We are going to show that the execution of �2 always leads to the same state as the execution

of �3. Let e1; : : : ; em 2 V n feg be the events for which ei �2 e holds. If such events do not

exist, then e is also the least element of �2, and �2 equals �3. Otherwise, action �(e) must

be compatible with each action �(ei) (i 2 f1; : : : ;mg): since e �1 ei as well as ei �2 e holds,

e and ei cannot be ordered by �, and the desired compatibility follows from the consistency

condition w.r.t. �. Applying Lemma 4.54 inductively, one can exploit the compatibilities

between �(e) and �(ei) (i 2 f1; : : : ;mg) and prove that

s�linE �2 = s�linE �3

holds for arbitrary states s 2 S. Note that in each step, the order of e and a neighbour ei is

exchanged. This way, �3 is derived from �2.

61

Let V 0 := V n feg, and de�ne the following pomsets:

�0 := [V 0;�
jV 0 ; �jV 0]

�0

1 := [V 0;�1jV 0 ; �jV 0]

�0

2 := [V 0;�2jV 0 ; �jV 0]

By Lemma 4.47, this is well-de�ned, and �0

1 and �0

2 are both linearizations of �0. Further-

more, �0 is consistent, and we can apply the induction hypothesis. It is easy to see that the

equalities f�(e)g ��0

1 = �1 and f�(e)g ��0

2 = �3 hold.

Now we are ready to prove the main assertion. Choose an arbitrary state s 2 S. We can

reason as follows:

s�linE �1

= do(�(e); s) �linE �0

1

= do(�(e); s) �linE �0

2
(IH)

= s�linE �3

= s�linE �2
(see above)

2

De�nition 4.57 [Execution of Consistent Pomsets] The execution �E of a consistent �nite

pomset � 2 �z w.r.t. a state s 2 S is de�ned by

s�E � := s�linE �0

where �0 is an arbitrary linearization of �. 2

The de�nition of the execution �E is well-de�ned due to Lemmata 4.45 and 4.56. Note that �linE
and �E coincide for �nite linear pomsets.

Lemma 4.58 Let s 2 S be a state and �1;�2 2 �
z be �nite consistent pomsets. Then

(s�E �1)�E �2 = s�E (�1 ��2)

holds.

Proof: Let �0

1 2 �
z and �0

2 2 �
z be some linearizations of �1 and �2, respectively. By Lemma

4.46, �0

1 � �0

2 is a linearization of �1 � �2. Note that �0

1 � �0

2 is a �nite linear pomset. Using

induction, it is easy to show that

(s�linE �0

1)�
lin
E �0

2 = s�linE (�0

1 ��0

2)

holds. This becomes more obvious when considering the list representation of �nite linear pomsets

(see Remark 4.48).

Now we can reason as follows:

(s�E �1)�E �2 = (s�linE �0

1)�
lin
E �0

2

= s�linE (�0

1 ��0

2) = s�E (�1 ��2)
2

62

Let us �nally discuss the execution semantics in more detail. A pomset can be considered as

the representation of a process, where the actions are performed respecting the order dependencies.

While ordered actions must be performed sequentially, unordered actions can be performed without

any synchronization. When atomic actions are considered, this concurrency corresponds to an

execution in any order. Consequently, the executions of a pomset can be modeled by the (sequential)

executions of its linearizations. The deferred update semantics of the ULTRA approach requires

that it is possible to reason about a state that will �nally be reached from a given state by executing

a consistent transition. This imposes two constraints: the execution must terminate, and it must

lead to a uniquely de�ned state. Lemma 4.56 shows that �nite consistent pomsets as de�ned

above satisfy the desired properties, such that we can de�ne the execution function �E for them.

Note that although the execution of a �nite consistent pomset may be non-deterministic at the

operational level, it is deterministic w.r.t. the ULTRA semantics, where only the resulting �nal

state is relevant (cf. also Example 4.62 below). The execution semantics of ULTRA should also

be contrasted with the execution semantics of independent transactions [BHG87, BN97, GR93].

Commonly, one accepts concurrent executions of multiple transactions as long as they lead to �nal

states that would also be reached if the transactions were executed one after the other. However,

the transactions do not characterize a unique �nal state. The state that is actually reached depends

on the operational settings.

4.4.4 The ULTRA Instance based on Pomsets

Now we are ready to obtain a new instance of the ULTRA framework. Let S, �, do, IDB, Log
act,

and Updact be given as in Section 4.4.1. It should be recalled that an ULTRA instance is de�ned by

a transition system and the mappings IDB, Log, and Upd. To construct the transition system, we

simply refer to partially ordered multi-sets over � together with their composition and execution

semantics. Log and Upd are straight-forward to de�ne.

De�nition 4.59 [Transitions] The set T of transitions is de�ned as the set �z of all partially

ordered multi-sets over �.

The subset TCons � T is de�ned as the set of �nite consistent pomsets over �.

The neutral transition �" 2 TCons is de�ned as the empty pomset ;, which is indeed a �nite

consistent pomset. 2

Note that the consistency notion in the ULTRA instance is more restrictive than the general consis-

tency notion of pomsets. In ULTRA, we consider in�nite pomsets as inconsistent, too, because the

execution function �E is not de�ned for them. Intuitively, the execution of an in�nite pomset will

not terminate, such that no �nal state to reason about will be reached. So, we exclude the in�nite

consistent pomsets from TCons.

De�nition 4.60 [Transition Assignments] We de�ne the mapping Log by

Log(q(~t)) := fLogact(q(~t))g

for all ground DB atoms q(~t) 2 B and the mapping Upd by

Upd(u(~t)) := fUpdact(u(~t))g

for all ground basic update atoms u(~t) 2 BBU . 2

63

The transition system (S;T ;TCons;�E ;�";t;
F
;�) for the new ULTRA instance can already be

considered as completely speci�ed, because the missing parameters �E , t,
F
, and � have been

de�ned in Sections 4.4.2 and 4.4.3. Nevertheless, we must verify the algebraic properties required

in De�nition 4.2. This will be done in the following theorem.

Theorem 4.61 [Algebraic Properties] The algebraic properties of De�nition 4.2 hold for the

transition system (S;T ;TCons;�E ;�";t;
F
;�) de�ned for arbitrary external operations.

Proof: The assertion follows from the de�nitions of �E, t,
F
, and � in this section. Note that

most of the properties have already been proved above.

Properties 1 and 2, which state that (T ;t;�") and (T ;�;�") form monoids, have been shown in

Lemma 4.38.

Property 3 concerning consistency aspects follows directly from Lemmata 4.44 and 4.51.

Property 4 (a) has been shown in Lemma 4.58, while property 4 (b) holds by De�nition 4.53.

Property 5 (a) has been shown in Lemma 4.41. The proof of property 5 (b) is simple:

G
; = [

S
;;
S
;;
S
;] = [;; ;; ;] = �"

2

In Theorem 4.61 we have shown that the concepts de�ned in this section are legal for the generic

ULTRA framework. Thus, we can apply the semantical results of Section 4.2 and get a particular

semantics for the ULTRA language. Let us illustrate this semantics using the robot example.

Example 4.62 [Robot World (Cont.)] Recall Examples 3.20 and 4.31 and consider the update

formula

' :� [xpos(1) : xstep(1) : xpos(2)] ; [ypos(1) : ystep(�1) : ypos(0)]

which speci�es a robot movement from position (1; 1) to position (2; 0). Note that ' has been

chosen according to the de�nition of the move operation (cf. Example 3.20 and Appendix C),

where the actual position of the robot is to be checked regularly. In this example, all variables that

should be bound during an evaluation have been replaced by some suitable values.

Let us assume that the robot is indeed at position (1; 1) in state s0. Then IDB(s0) j= xpos(1) and

IDB(s0) j= ypos(1) holds, further IDB(do(xstep(1); s0)) j= xpos(2) and IDB(do(ystep(�1); s0)) j=

ypos(0).

We can now interpret the formula ' using De�nition 4.9. The assertions derived below hold

regardless of any speci�c interpretation IUP of de�nable update atoms. (To keep the example

short, we use the list notation for �nite linear pomsets with more than one element.)

By cases (DB) and (BU), the assertions

(;; f?xposg) 2 I(xpos(1))

(f?xposg; fxstep(1)g) 2 I(xstep(1))

([?xpos; xstep(1)]; f?xposg) 2 I(xpos(2))

64

hold. Applying case (SCj) twice we can deduce:

(;; [?xpos; xstep(1); ?xpos]) 2 I(xpos(1) : xstep(1) : xpos(2))

Recall that [?xpos; xstep(1); ?xpos] is equal to �1 in Figure 8 on page 59. It is possible to show

that �2 is an analogous solution for the subgoal ypos(1) : ystep(�1) : ypos(0) . Consequently, we

know:

(;;�1) 2 I(xpos(1) : xstep(1) : xpos(2))

(;;�2) 2 I(ypos(1) : ystep(�1) : ypos(0))

Next, recall from Example 4.52 that the concurrent composition of �1 and �2 is the (consistent)

pomset �3 shown in Figure 8. Thus, applying case (CCj) we can �nally conclude:

(;;�3) 2 I(')

Intuitively, this result states that whenever the robot world is in state s0 (represented by ;), the

formula ' has a solution with a side e�ect expressed by the pomset �3 of Figure 8.

It should be noted that the operation speci�ed by the formula ' is a deterministic operation. In

particular, the solution �3 is uniquely de�ned for the current state represented by ;. Consequently,

there is no need for a choice when the materialization of a solution should take place. However, the

materialization itself can be performed non-deterministically, i.e. the robot can move on di�erent

paths from position (1; 1) to position (2; 0). The system component responsible for the material-

ization can autonomously and independently of the ULTRA semantics decide to move the robot via

(1; 0) or (2; 1). 2

4.5 Other Instantiations of the Framework

In Sections 4.3 and 4.4 we have demonstrated how the semantical parts of the ULTRA framework

can be instantiated. In this section we briefly discuss other possibilities to create instances. We do

not develop full-edged solutions but present some ideas of what else can be done with the generic

ULTRA concept.

4.5.1 Cost Calculation for Complex Operations

A quite di�erent instance of the ULTRA framework that serves rather for cost calculation than for

update speci�cation can be derived from well-known monoid properties in the domain of the natural

numbers (extended by in�nity). We de�ne the states S and the consistent transitions TCons as the

natural numbers and add 1 to the set T as a non-consistent transition (note that 1 is needed

only for formal reasons). The interesting part lies in the composition of the transitions, where we

use the functions sum and maximum.

De�nition 4.63 We de�ne S, T , TCons, and �" as follows:

S := IN

T := IN [f1g

TCons := IN

�" := 0

65

The execution of a consistent transition � 2 TCons w.r.t. state s 2 S is de�ned by:

s�E � := s+�

The concurrent composition of two transitions �1;�2 2 T is de�ned either by

�1 t�2 :=

(
�1 +�2; if �1;�2 2 IN

1; otherwise

or (alternatively) by

�1 t�2 :=

(
maxf�1;�2g; if �1;�2 2 IN

1; otherwise:

In analogy, we de�ne the concurrent composition
F
for a multi-set T of transitions by

P
respectively

max (suitably extended to IN [f1g).

The sequential composition of two transitions �1;�2 2 T is de�ned by:

�1 ��2 :=

(
�1 +�2; if �1;�2 2 IN

1; otherwise

2

Proposition 4.64 The transition system (S;T ;TCons;�E ;�";t;
F
;�) (in both versions of De�-

nition 4.63) satis�es the algebraic properties of De�nition 4.2.

Proof: The proof follows easily from the properties of the functions + and max in the domain

of natural numbers. 2

In Proposition 4.64 we have shown that De�nition 4.63 yields valid structures for building instances

of the ULTRA framework. These instances are not suitable to capture update semantics, but they

can be used to compute costs for complex update operations. In this setting, the transitions can

be considered as cost values. If Log and Upd assign cost values for retrieval operations and basic

update operations, respectively, the interpretation I(') of a ground update formula ' contains pairs

the second component of which expresses possible execution costs for ' (see Example 4.65 below).

We assume that sequential operations always accumulate costs, while for concurrent operations we

provide one model (sum semantics) that accumulates costs { applicable for resource calculations

{ and one model (maximum semantics) that chooses the \critical" value { applicable for time

calculations in a parallel execution environment. However, other cost models can be de�ned as

well. They only must lead to legal transition systems. Also the Cartesian product of cost models

is de�nable with the technique shown in Section 4.5.2.

In the cost-oriented ULTRA instance, the states can be considered as accumulated costs, too. If

the Herbrand universe U contains representatives for natural numbers and PredDB provides a DB

predicate costs, we can de�ne a state interpretation IDB such that

IDB(s) j= costs(t) () t represents the value s

holds for each state s 2 S. In this case, it is possible to reason about accumulated costs in a

(hypothetical) current state, since the value of costs can be asked within the update formulas.

We want to explain a cost calculation using an update goal of the robot example.

66

Example 4.65 Consider the update formula

' :� [xstep(1) : xstep(1)] ; ystep(�1)

specifying a robot movement in Example 3.20. Let Upd assign the transition � := 1 to every

ground basic update atom.

By De�nition 4.9, cases (BU), (CCj), and (SCj), depending on the cost model above either

(0; 3) 2 I(') (sum semantics for t)

or

(0; 2) 2 I(') (maximum semantics for t)

holds. Informally speaking, the execution of ' induces resource-oriented costs of value 3 and time-

oriented costs of value 2 (provided that a parallel execution of the movements in x- and y-direction

can actually take place). 2

The cost model as described above has two major disadvantages: First, despite the cost value,

it does not incorporate a notion of system states. Thus, it cannot handle intermediate states

that would be reached by performing basic operations. This problem, however, can be solved by

combining the cost model with another ULTRA instance, e.g. the one of Section 4.4. See Section

4.5.2 for more details on the composition of multiple instances. Secondly, the cost model above

does not respect costs that arise from searching a solution in an operational semantics. Costs for

retrieval and (performed and undone) basic operations on failing branches are not modeled. These

costs appear \backtracked", too. Only in an operational semantics that is purely based on deferred

updates and where the hypothetical reasoning does not induce extra costs, the operational costs

(for evaluation and materialization) coincide with the semantically speci�ed costs. In this case, the

cost values can serve as a means to �nd optimal choices for non-determinism. For instance, the

materialization of solutions with minimal cost values could be favoured. Note that the combination

with another ULTRA instance is again necessary to treat the update semantics.

4.5.2 Combination of Instances

This section is devoted to the composition of already de�ned instances of the ULTRA framework.

Two or more transition systems can be combined in analogy to the Cartesian product of sets. This is

shown in the following proposition. Essentially, the local transition systems are combined to a global

transition system, where the components remain independent of each other. The resulting ULTRA

semantics describes global changes in terms of local changes but cannot impose synchronization

constraints between multiple local components. If such a synchronization is necessary, the straight-

forward composition is not suÆcient, and one will have to put more e�ort into the development of

a global transition system.

Proposition 4.66 For i 2 f1; : : : ; ng, let each (S(i);T (i);T
(i)
Cons;�

(i)
E ;�

(i)
" ;t(i);

F(i);�(i)) be a tran-

sition system according to De�nition 4.2.

67

De�ne S, T , and TCons as Cartesian products, i.e.

S := S(1) � : : :� S(n);

T := T (1) � : : :� T (n);

TCons := T
(1)
Cons � : : :� T

(n)
Cons;

de�ne �E , �", t,
F
, and � component-wise, i.e.

(s(1); : : : ; s(n))�E (�(1); : : : ;�(n)) := (s(1) �
(1)
E �(1); : : : ; s(n) �

(n)
E �(n));

�" := (�
(1)
" ; : : : ;�

(n)
");

(�
(1)
1 ; : : : ;�

(n)
1) t (�

(1)
2 ; : : : ;�

(n)
2) := (�

(1)
1 t

(1) �
(1)
2 ; : : : ;�

(n)
1 t

(n) �
(n)
2);F

f(�
(1)
j ; : : : ;�

(n)
j) j j 2 Jg := (

F(1)f�
(1)
j j j 2 Jg; : : : ;

F(n)f�
(n)
j j j 2 Jg);

(�
(1)
1 ; : : : ;�

(n)
1)� (�

(1)
2 ; : : : ;�

(n)
2) := (�

(1)
1 �

(1) �
(1)
2 ; : : : ;�

(n)
1 �

(n) �
(n)
2):

Then (S;T ; TCons;�E ;�";t;
F
;�) is also a well-de�ned transition system.

Proof: The assertion can be shown easily: since the algebraic properties hold for the components

and the functions �E , �", t,
F
, and � are de�ned by delegation to the components, the algebraic

properties carry over to the composite system. The formal proofs are straight-forward. 2

An ULTRA instance must further provide the state interpretation IDB and the transition assign-

ments Log and Upd. Note that the ULTRA semantics does not impose any restrictions. Log and

Upd can be de�ned from given Log(i) and Upd(i) on component basis similar to �". The de�nition

of IDB, however, is not that easy, since every state needs a consistent interpretation. For instance,

if one component says I
(i)
DB(s

(i)) j= A and another component says I
(j)
DB(s

(j)) j= :A, then it is ques-

tionable whether A should be true or false in the global state s. Cautious de�nitions on component

basis could assign the truth value \unknown" to such atoms. A more practical approach would

partition the Herbrand base B (probably at the predicate-level) and use a dedicated component of

the state for each class of atoms.

Example 4.67 For simplicity, let us integrate the two cost models of Section 4.5.1 into one ULTRA

instance. Recall the update formula

' :� [xstep(1) : xstep(1)] ; ystep(�1)

of Example 4.65. We assume that Upd is de�ned component-wise using the de�nition of Upd in

the example above and thus assigns the value (1; 1) to each basic update atom.

In the combined model, where the �rst component uses the sum semantics for t and the second

component uses the maximum semantics for t, the statement

((0; 0); (3; 2)) 2 I(')

holds.

If we want to refer to costs within the update formulas, it is sensible to have two di�erent DB

predicates resource costs and time costs, whose interpretation is de�ned w.r.t. the �rst and the

second component of the state, respectively. 2

68

The component-wise de�nition of Log and Upd together with the partition-wise de�nition of IDB

is a viable method especially in the case that multiple systems that have been de�ned for disjoint

sets of symbols must be integrated using a common Herbrand base B and a common basic update

base BBU : The given partition of B can be used to de�ne IDB consistently. The logging and update

transition assignments for the local systems must be extended to the full sets of atoms by assigning

neutral transitions, then they can be composed on component basis. The resulting semantics of

update formulas expresses an independent, unsynchronized composition of the local systems.

4.5.3 Transitions and their Consistency

The set TCons of consistent transitions (a subset of T) is an important component of each transition

system. Under the conditions of the following proposition, it is possible to derive a new instance

of the ULTRA framework from a given instance by strengthening the consistency property.

Proposition 4.68 Let an instance of the ULTRA framework be given, i.e. a transition system

(S;T ;TCons;�E ;�";t;
F
;�) together with the mappings IDB , Log, and Upd. Let � be a property

on the set T of transitions, i.e. � may be either true or false for a transition � 2 T . De�ne

T 0Cons := f� 2 TCons j �(�)g = f� 2 T j � consistent ^ �(�)g:

Further, let � satisfy the following algebraic properties:

1. The following properties holds for the neutral transition and the transition assignments:

(a) �(�")

(b) �(�) holds for all � 2 Log(B):

(c) �(�) holds for all � 2 Upd(BBU):

2. For arbitrary �1;�2 2 T , the following holds:

(a) �(�1) ^ �(�2) (= �(�1 t�2)

(b) �(�1) ^ �(�2) =) �(�1 ��2)

(c) �(�2) (= �(�1 ��2)

In other words, property 3 of De�nition 4.2 holds for � analogously.

Then (S;T ;T 0Cons;�E ;�";t;
F
;�) together with IDB , Log, and Upd forms an ULTRA instance.

(Note that �E, Log, and Upd are implicitly restricted to T 0Cons.)

Proof: The assertion can be proved easily: the properties of De�nition 4.2 are respected and the

restrictions of the mappings �E , Log, and Upd are well-de�ned. 2

Corollary 4.69 Let an ULTRA instance and a property � be given as in an Proposition 4.68.

De�ne

T 00Cons := f� 2 T j �(�)g:

69

If � satis�es the conditions of Proposition 4.68 and further entails the given consistency property,

i.e.

T 00Cons � TCons

holds, then (S;T ;T 00Cons;�E ;�";t;
F
;�) together with IDB , Log, and Upd forms an ULTRA in-

stance. This instance does not need to refer to the given consistency property anymore.

Proof: The assertion follows directly from Proposition 4.68. Note that T 00Cons equals T
0

Cons due

to the additional condition. 2

In the following example, we give an outline of how to apply Corollary 4.69. It is much easier to

derive a new ULTRA instance from a given one than to develop it from scratch.

Example 4.70 Recall the ULTRA instance for external operations that has been presented in

Sections 3.3 and 4.4. In particular, recall De�nition 4.50, where the consistency of transitions has

been de�ned using the notion of compatibility. In a real life setting, this semantical notion of

compatibility may not be tractable due to computational constraints. This will inhibit an e�ective

operational semantics. It would thus be desirable to express the semantics of formulas using a

notion of syntactical compatibility , which is explicitly provided as an additional parameter, namely

a compatibility matrix. We require that a given compatibility matrix is correct w.r.t. the state

semantics, i.e. that syntactical compatibility entails semantical compatibility.

If we now rede�ne that a partially ordered multi-set [V;�; �] 2 �z is consistent, i� for arbitrary

events e; e0 2 V ,

e 6� e0 ^ e0 6� e =) �(e) is syntactically compatible with �(e0)

holds, then we obtain a more restrictive ULTRA instance. The new consistency property (which

corresponds to the parameter �) satis�es the conditions of Proposition 4.68 and entails the old

consistency property, such that Corollary 4.69 can be applied.

The replacement of semantical properties by syntactical properties is very common in the �eld

of database transactions. For instance, there exist two notions of serializability [BHG87]: view

serializability and conict serializability. While the former property is de�ned in terms of observable

state changes, i.e. at the semantical level, the latter property is de�ned using an explicit notion

of conicts between the basic operations. Unfortunately, the chosen conict model may specify

conicts between operations that are actually compatible with each other. In this case, there exist

execution schedules that are view serializable but not conict serializable. The signi�cantly greater

eÆciency of the methods to check and maintain conict serializability, however, outweighs this

minor drawback. 2

4.6 Semantics of Update Programs

Let an update program PUP be given, and let s0 2 S be an arbitrary but �xed initial state. In

this section we characterize the (minimal) models of PUP (w.r.t. s0). The results are shown for the

ULTRA framework and can thus be applied to every particular instance.

70

As stated in Section 4.1, the interpretation of DB atoms and basic update atoms is given from

outside (by IDB , Log, and Upd). So we just have to �nd an interpretation IUP of the de�nable

update atoms that respects the intended semantics of PUP . Recall that in this setting, an interpre-

tation I of the ground update formulas is completely determined by IUP . We will therefore identify

IUP and the corresponding interpretation I of ground update formulas and also write IUP (') for

arbitrary ground update formulas '. Note that IUP (') may depend on s0.

De�nition 4.71 [Models of an Update Program] An interpretation IUP of de�nable update

atoms is a model of an update program PUP , i� for each rule r 2 PUP

IUP (r) = TCons � TCons

holds. Recall that rules denote universally closed implications. 2

Lemma 4.72 An interpretation IUP is a model of an update program PUP , i� for every ground

instance U ! p(~t) of a rule r 2 PUP

IUP (U) � IUP (p(~t))

holds.

Proof: The assertion follows directly from cases (Impl) and (Univ) of De�nition 4.9. 2

An interpretation IUP is a model of an update program PUP , i� every rule of PUP is true w.r.t. IUP .

In this sense, De�nition 4.71 requires that every rule must be interpreted as valid w.r.t. arbitrary

pairs of transitions, where each pair corresponds to a state change (cf. Section 4.2). According to

Lemma 4.72 this holds, i� IUP (U) � IUP (p(~t)) holds for every ground instance U ! p(~t) of a

rule in PUP . Informally speaking, this means that each rule head allows at least all state changes

speci�ed by the corresponding rule body.

In the following we have to deal with various interpretations IUP over the given de�nable update

base BDU .

De�nition 4.73 I is de�ned as the set of all interpretations I : BDU ! 2TCons�TCons (over the

de�nable update base BDU). Further, we de�ne I?; I> : BDU ! 2TCons�TCons by

I?(p(~t)) := ; and I>(p(~t)) := TCons � TCons

for all p(~t) 2 BDU . 2

De�nition 4.74 [Interpretation Ordering] The ordering relation � on interpretations is de-

�ned by:

I1 � I2 :() I1(p(~t)) � I2(p(~t)) for all p(~t) 2 BDU

2

Intuitively, I1 � I2 holds, if I2 allows at least the same state changes for a de�nable update atom

as I1. However, I1 may be more restrictive.

71

Lemma 4.75 [Lattice of Interpretations] The set I of all interpretations together with its

ordering relation � (cf. De�nition 4.74) forms a complete lattice.

The bottom element and the top element of I are the constant mappings I? and I>, respectively.

Furthermore, for arbitrary non-empty sets J � I of interpretations, the equalities

glb(J)(p(~t)) =
\
I2J

I(p(~t))

and

lub(J)(p(~t)) =
[
I2J

I(p(~t))

hold for all p(~t) 2 BDU .

Proof: The assertions follow from the properties of the power-set lattice. 2

Remark 4.76 [Trivial (Maximal) Model] Every update program PUP has at least one trivial

model, i.e. the maximal interpretation I>.

Proof: The assertion follows directly from Lemma 4.72. 2

De�nition 4.77 [Minimal Model] A model M 2 I is minimal , i�

M 0 �M =)M 0 =M

holds for any other model M 0 2 I. 2

Lemma 4.78 Let I1; I2 2 I be interpretations over BDU with I1 � I2. Then

I1(U) � I2(U)

holds for every ground update goal U .

Proof: We prove the assertion by structural induction. In each case shown below, we choose

arbitrary �C ;� 2 TCons and show the implication

(�C ;�) 2 I1(U) =) (�C ;�) 2 I2(U):

Base cases:

Essentially, we apply De�nition 4.9.

1. DB literal

We show the assertion only for a positive DB literal. The proof for a negative DB literal

is entirely analogous.

(�C ;�) 2 I1(q(~t))

=) IDB(s0 �E �C) j= q(~t) and � = Log(q(~t))

=) (�C ;�) 2 I2(q(~t))

72

2. NOP literal

(�C ;�) 2 I1(NOP)

=) � = �"

=) (�C ;�) 2 I2(NOP)

3. Basic update atom

(�C ;�) 2 I1(u(~t))

=) � = Upd(u(~t))

=) (�C ;�) 2 I2(u(~t))

4. De�nable update atom

(�C ;�) 2 I1(p(~t))

=) (�C ;�) 2 I2(p(~t))

The assertion follows directly from the precondition I1 � I2.

Induction step:

By the induction hypothesis, I1(') � I2(') holds for any direct proper subgoal ' of the

composite goals analyzed in the following. Using De�nition 4.9 we can reason as follows.

1. Concurrent conjunction

(�C ;�) 2 I1(';)

=) there exist �1;�2 2 TCons such that :

(�C ;�1) 2 I1(') and (�C ;�2) 2 I1()

and � = �1 t�2

=) there exist �1;�2 2 TCons such that :
(IH) (�C ;�1) 2 I2(') and (�C ;�2) 2 I2()

and � = �1 t�2

=) (�C ;�) 2 I2(';)

2. Sequential conjunction

(�C ;�) 2 I1(' :)

=) there exist �1;�2 2 TCons such that :

(�C ;�1) 2 I1(') and (�C ��1;�2) 2 I1()

and � = �1 ��2

=) there exist �1;�2 2 TCons such that :
(IH) (�C ;�1) 2 I2(') and (�C ��1;�2) 2 I2()

and � = �1 ��2

=) (�C ;�) 2 I2(' :)

3. Disjunction

(�C ;�) 2 I1(' _)

=) (�C ;�) 2 I1(') or (�C ;�) 2 I1()

=) (�C ;�) 2 I2(') or (�C ;�) 2 I2()
(IH)

=) (�C ;�) 2 I2(' _)

73

4. Existential quanti�cation

Consider a quanti�cation 9 ~X ', where ~X = X1; : : : ;Xn. By the induction hypothesis,

I1('[~X =~t]) � I2('[~X =~t])

holds for all instances '[~X =~t] of the update subgoal '.

(�C ;�) 2 I1(9 ~X ')

=) there exists a ground term tuple (~t) 2 Un such that :

(�C ;�) 2 I1('[~X =~t])

=) there exists a ground term tuple (~t) 2 Un such that :
(IH) (�C ;�) 2 I2('[~X =~t])

=) (�C ;�) 2 I2(9 ~X ')

5. Bulk quanti�cation

Consider a bulk quanti�cation # ~X [A 7! '], where ~X = X1; : : : ;Xn. By the induction

hypothesis,

I1('[~X =~t]) � I2('[~X =~t])

holds for all instances '[~X =~t] of the update subgoal '.

Let �C ;� 2 TCons be arbitrarily chosen. The set

TA;�C
= f(~t) 2 Un j IDB(s0 �E �C) j= A[~X =~t]g

does not depend on any interpretation of update formulas.

The case TA;�C
= ; is trivial:

(�C ;�) 2 I1(# ~X [A 7! '])

=) � = Log(A[~X = ~all])

=) (�C ;�) 2 I2(# ~X [A 7! '])

For TA;�C
6= ; we get:

(�C ;�) 2 I1(# ~X [A 7! '])

=) there exists a function f : TA;�C
! TCons such that :

8(~t) 2 TA;�C
: (�C ; f(~t)) 2 I1('[~X =~t])

and � = Log(A[~X = ~all]) �
F
(~t)2TA;�C

f(~t)

=) there exists a function f : TA;�C
! TCons such that :

(IH) 8(~t) 2 TA;�C
: (�C ; f(~t)) 2 I2('[~X =~t])

and � = Log(A[~X = ~all]) �
F
(~t)2TA;�C

f(~t)

=) (�C ;�) 2 I2(# ~X [A 7! '])
2

Lemma 4.79 Let J � I be a non-empty set of interpretations over BDU . De�ne a new interpre-

tation I by

I(p(~t)) :=
\
I02J

I 0(p(~t))

74

for all p(~t) 2 BDU . Then

I(U) �
\
I02J

I 0(U)

holds for every ground update goal U .

Proof: Due to the construction of the interpretation I by intersection, I � I 0 holds for all

interpretations I 0 2 J . Now let U be an arbitrary ground update goal. By Lemma 4.78,

I(U) � I 0(U)

holds for all I 0 2 J , and the desired inclusion follows directly. 2

Lemma 4.80 [Model Intersection Property] Let PUP be an update program, let M � I be

a non-empty set of models of PUP . De�ne a new interpretation M by

M(p(~t)) :=
\

M 0
2M

M 0(p(~t))

for all p(~t) 2 BDU . Then M is a model of PUP .

Proof: By Lemma 4.72, an interpretation I is a model of PUP , i� for every ground instance

U ! p(~t) of a rule r 2 PUP the set inclusion I(U) � I(p(~t)) holds.

Now let U ! p(~t) be a ground instance of a rule r 2 PUP . BecauseM is a set of models of PUP , we

know that M 0(U) � M 0(p(~t)) holds for every M 0 2 M. We have to show that M(U) � M(p(~t))

holds, too.

Applying Lemma 4.79 we can conclude:

M(U) �
\

M 0
2M

M 0(U) �
\

M 0
2M

M 0(p(~t)) =M(p(~t))

2

Theorem 4.81 [Existence of a Unique Minimal Model] Let PUP be an update program.

Then PUP has a unique minimal model MUP .

Proof: PUP has at least one model due to Remark 4.76. Let M be the non-empty set of all

models of PUP . De�ne MUP by

MUP (p(~t)) :=
\

M 0
2M

M 0(p(~t))

for all p(~t) 2 BDU . By Lemma 4.80, MUP is a model of PUP . Due to the de�nition of MUP ,

MUP �M
0 holds for all models M 0 2M. The minimality and uniqueness of MUP follow directly.

2

Now we will have a look at the minimal model of the update program in our calendar example.

Recall Theorem 4.24, which allow us to use all results proved for the generic ULTRA language also

for the database language.

75

Example 4.82 [Personal Calendar (Cont.)] Consider the update rules

do allocate(D;S; 1; ID) entry(D;S; 0);

DEL entry(D;S; 0); INS entry(D;S; ID)

do allocate(D;S;L; ID) L > 1; do allocate(D;S; 1; ID);

S1 = S + 1; L1 = L� 1;

do allocate(D;S1; L1; ID)

of our calendar example (see Appendix B) and recall Example 4.26, in particular the de�nition:

' :� entry(mon; 10; 0); DEL entry(mon; 10; 0); INS entry(mon; 10; 23)

Because

(;; f?entry;�entry(mon; 10; 0);+entry(mon; 10; 23)g) 2 I(')

holds for arbitrary interpretations I 2 I (see Example 4.26), it follows that

(;; f?entry;�entry(mon; 10; 0);+entry(mon; 10; 23)g)

2M(do allocate(mon; 10; 1; 23))

holds for every model M of PUP , in particular for the minimal model MUP .

If an assertion holds for some models, it does not need to hold for the minimal model. Let us have

a look at the following negative example. Although there are many models M of PUP for which

(f�entry(mon; 10; 0)g; f?entry;�entry(mon; 10; 0);+entry(mon; 10; 23)g)

2M(do allocate(mon; 10; 1; 23))

holds, it does not hold for the minimal model MUP , because it is not justi�ed by any rule body

(see Example 4.26). A corresponding state change for the goal do allocate(mon; 10; 1; 23) is not

speci�ed by the programmer and thus excluded by the minimality condition. 2

We now provide an inductive �xpoint characterization of the unique minimal model of a given

update program which will be helpful in proving properties of the minimal model. The well-known

results for de�nite programs [Llo87] essentially hold for the update programs in ULTRA, too.

De�nition 4.83 [Immediate Consequence Operator] Let PUP be an update program. We

de�ne an immediate consequence operator TPUP : I ! I on the set of all interpretations over BDU

by specifying its value w.r.t. arbitrary de�nable update atoms as follows: let I 2 I be an arbitrary

interpretation, then de�ne

TPUP (I)(p(~t)) := f (�C ;�) 2 TCons � TCons j

there exists a ground instance U ! p(~t)

of a rule r 2 PUP ; such that (�C ;�) 2 I(U) g

for all p(~t) 2 BDU . 2

76

To be able to apply the �xpoint theory we must show the monotonicity of the immediate conse-

quence operator.

Lemma 4.84 [Monotonicity] The immediate consequence operator TPUP of De�nition 4.83 is

monotonic.

Proof: The proof is straight-forward: Let two interpretations I1; I2 2 I with I1 � I2 be given.

By Lemma 4.78, I1(U) � I2(U) holds for arbitrary ground update goals U , in particular for all

instances of the rule bodies of PUP . TPUP (I1) � TPUP (I2) follows directly from De�nition 4.83. 2

Lemma 4.85 Let PUP be an update program and I 2 I be an arbitrary interpretation. Then the

following holds:

I is a model of PUP () TPUP (I) � I

Proof: The assertion follows directly from Lemma 4.72 and De�nition 4.83. 2

De�nition 4.86 The ordinal powers TPUP " of the immediate consequence operator of an

update program PUP are de�ned as usual (cf. [Llo87]):

TPUP " 0 := I?
TPUP " �+ 1 := TPUP (TPUP " �) for a successor ordinal �+ 1

TPUP " � := lub f TPUP " j < � g for a limit ordinal �

2

Theorem 4.87 [Fixpoint Characterization] Let PUP be an update program and MUP be its

unique minimal model. Then MUP is the least �xpoint of TPUP , and there exists a closure ordinal

�PUP , such that MUP = TPUP " �PUP .

Proof: Recall from Lemma 4.75 that

glb(J)(p(~t)) =
\
I2J

I(p(~t))

holds for all p(~t) 2 BDU and arbitrary non-empty subsets J of the lattice I of interpretations.

Now recall the construction of MUP and apply Lemma 4.85. We have:

MUP = glb f I 2 I j TPUP (I) � I g

The assertion follows from the theorem of Knaster and Tarski (see [Llo87] for details). Note that

the monotonicity property of TPUP as proved in Lemma 4.84 is essential. 2

Using our robot example, we want to sketch how the minimal model of an update program can be

computed. The results proved for the generic ULTRA language are applicable to the programming

language for external operations due to Theorem 4.61.

77

Example 4.88 [Robot World (Cont.)] Consider the update rules

xmove(X) xpos(X)

xmove(X) xpos(X0) : X < X0 : xstep(�1) : xmove(X)

xmove(X) xpos(X0) : X > X0 : xstep(1) : xmove(X)

ymove(Y) ypos(Y)

ymove(Y) ypos(Y 0) : Y < Y 0 : ystep(�1) : ymove(Y)

ymove(Y) ypos(Y 0) : Y > Y 0 : ystep(1) : ymove(Y)

of our robot example (see Example 3.20 and Appendix C). Further recall how the interpretation of

update formulas has been derived in Example 4.62. Again, we assume that the robot is at position

(1; 1) in the initial state s0. Using the immediate consequence operator, one can easily derive the

following assertions for the minimal model MUP :

(;; f?xposg) 2 MUP (xmove(1))

([?xpos; xstep(�1)]; f?xposg) 2 MUP (xmove(0))

(;; [?xpos; xstep(�1); ?xpos]) 2 MUP (xmove(0))

([?xpos; xstep(1)]; f?xposg) 2 MUP (xmove(2))

(;; [?xpos; xstep(1); ?xpos]) 2 MUP (xmove(2))

etc.

Analogous assertions can be derived for ymove.

Next, consider the rules

move(X;Y) xmove(X); ymove(Y)

pickup at position(X;Y) [empty; move(X;Y)] : pickup : NOT empty

which specify a composite movement and a complex pickup operation, respectively. Further, have

a look at the consistent pomsets shown in Figure 9. Provided that in state s0 the robot is empty

and there is a block lying on the oor at position (2; 0), it is straight-forward to show the following

assertions:

(;;�1) 2 MUP (move(2; 0))

(;;�2) 2 MUP (pickup at position(2; 0))

2

∆2

∆1

xstep(1)?xpos ?xpos

ystep(-1) ?ypos?ypos

?empty

pickup ?empty

xstep(1)

ystep(-1) ?ypos

?xpos

?ypos

?xpos

Figure 9: Pomsets for move(2; 0) and pickup at position(2; 0)

78

In Theorem 4.87 we have shown that the minimal model of an update program can be characterized

as a least �xpoint. Unfortunately, the iterated application of the immediate consequence operator

at most to the �rst limit ordinal ! may be insuÆcient to compute the minimal model, i.e. the

closure ordinal may be strictly greater than !. This will be illustrated by the following example

taken from the database domain (see Sections 3.2 and 4.3).

Example 4.89 Let us consider a logic database featuring a unary EDB predicate r as well as a

unary IDB predicate q, which is de�ned by the following IDB rules:

q(0)

q(s(X)) q(X)

Independently of a chosen database state, IDB will assign the truth value \true" to in�nitely many

ground instances of the atom q(X). These instances result from replacing X by the terms si, where

s0 :� 0 and si+1 :� s(si) for i 2 IN.

Next, let us de�ne the following update program PUP :

p(0) INS r(0)

p(s(X)) INS r(s(X)); p(X)

t # X [q(X) 7! p(X)]

PUP has a unique minimal model MUP , and the assertions

(;; f+r(s0); : : : ;+r(si)g) 2MUP (p(s
i))

can be inductively derived for all i 2 IN. Now have a look at the bulk quanti�cation, whose

semantics requires the accumulation of in�nitely many transitions. The choice function f (see case

(Bulk) of De�nition 4.9) can be de�ned to map each term si (i 2 IN) to the update request set

f+r(s0); : : : ;+r(si)g. Consequently,

(;; f?qg [f+r(si) j i 2 INg) 2MUP (#X[q(X) 7! p(X)])

and thus

(;; f?qg [f+r(si) j i 2 INg) 2MUP (t)

holds.

It should be observed that the minimal model cannot be derived by an iterated application of the

immediate consequence operator TPUP to the �rst limit ordinal !. The interpretation of the bulk

quanti�cation remains empty until ! is reached and the interpretations of all relevant instances p(si)

of the update subgoal p(X) have been computed. The computation of the correct interpretation of

the atom t requires a subsequent application of TPUP . In other words, the closure ordinal �PUP is

equal to ! + 1.

Note that the closure ordinal ! + 1 does not arise from a need to compute the truth values w.r.t.

the IDB predicate q. Although this might be a signi�cant problem for an operational semantics,

the model-theoretic semantics abstracts from the computation of the state observations, i.e. IDB

79

can be considered as implicitly materialized. The immediate consequence operator TPUP , which is

an operator de�ned by the update program PUP only, causes problems, because the set of single

updates relevant for the bulk quanti�cation is in�nite and the single updates depend recursively

on each other. 2

A �xpoint semantics can be called impure at the computational level, when �nite iterations of the

immediate consequence operator or in�nite iterations to the �rst limit ordinal are not suÆcient to

compute the �xpoint. Thus, we aim at �nding conditions that render the immediate consequence

operator TPUP of an update program PUP continuous. As shown by Kleene (see [Llo87] for details),

the closure ordinal of a continuous operator is �nite or equal to !. The conditions we present in

this thesis concern the bulk quanti�cations # ~X [A 7! '] that occur in a program: if either the set

TA;�C
de�ned in case (Bulk) of De�nition 4.9 is always �nite, or ' is a basic update atom (compare

this to updates in the SQL language [DD97]), it is possible to show the continuity of the immediate

consequence operator. Before we can present the main theorem, we need two lemmata.

Lemma 4.90 Let J � I be a directed set of interpretations. Let U1; : : : ; Un be ground update

goals and I1; : : : ; In 2 J be corresponding interpretations. Then there exists an interpretation

I 2 J such that

Ii(Ui) � I(Ui)

holds for every i 2 f1; : : : ; ng.

Proof: De�ne I := lub fI1; : : : ; Ing. Since J is directed, I 2 J will hold.

Next, choose an arbitrary index i 2 f1; : : : ; ng. Because I is de�ned as an upper bound, Ii � I

holds, and by Lemma 4.78, Ii(Ui) � I(Ui) follows. 2

Lemma 4.91 Let J � I be a directed set of interpretations.

Let U be an arbitrary ground update goal, such that one of the following conditions holds for every

bulk quanti�cation # ~X [A 7! '] contained in U :

1. The set TA;�C
as de�ned in case (Bulk) of De�nition 4.9 is �nite for every consistent transition

�C 2 TCons.

2. The subgoal ' is a basic update atom, i.e. an atom u(~t) with u 2 PredBU .

Then

(�C ;�) 2 lub(J)(U) =) there exists an interpretation I 2 J such that : (�C ;�) 2 I(U)

holds for arbitrary consistent transitions �C ;� 2 TCons.

Proof:

We prove the assertion by structural induction. In each case shown below, we choose arbitrary

�C ;� 2 TCons and show the desired implication.

Note that J is not empty, since lub(;) 2 J holds. We will refer to I0 := lub(;) in some base cases,

where we must show the existence of any interpretation in J .

80

Base cases:

Essentially, we apply De�nition 4.9.

1. DB literal

We show the assertion only for a positive DB literal. The proof for a negative DB literal

is entirely analogous.

(�C ;�) 2 lub(J)(q(~t))

=) IDB(s0 �E �C) j= q(~t) and � = Log(q(~t))

=) (�C ;�) 2 I0(q(~t))

=) there exists I 2 J such that : (�C ;�) 2 I(q(~t))

2. NOP literal

(�C ;�) 2 lub(J)(NOP)

=) � = �"

=) (�C ;�) 2 I0(NOP)

=) there exists I 2 J such that : (�C ;�) 2 I(NOP)

3. Basic update atom

(�C ;�) 2 lub(J)(u(~t))

=) � = Upd(u(~t))

=) (�C ;�) 2 I0(u(~t))

=) there exists I 2 J such that : (�C ;�) 2 I(u(~t))

4. De�nable update atom

(�C ;�) 2 lub(J)(p(~t))

=) there exists I 2 J such that : (�C ;�) 2 I(p(~t))
(4:75)

The assertion follows directly from the property

lub(J)(p(~t)) =
[
I2J

I(p(~t))

presented in Lemma 4.75.

Induction step:

By the induction hypothesis, the assertion holds for any direct proper subgoal ' of the

composite goals analyzed in the following. Note that Lemma 4.90 and the preconditions

w.r.t. bulk quanti�cations will be essential for the induction step. Using De�nition 4.9 we

can reason as follows.

81

1. Concurrent conjunction

(�C ;�) 2 lub(J)(';)

=) there exist �1;�2 2 TCons such that :

(�C ;�1) 2 lub(J)(') and (�C ;�2) 2 lub(J)()

and � = �1 t�2

=) there exist �1;�2 2 TCons and I1; I2 2 J such that :
(IH) (�C ;�1) 2 I1(') and (�C ;�2) 2 I2()

and � = �1 t�2

=) there exist �1;�2 2 TCons and I 2 J such that :
(4:90) (�C ;�1) 2 I(') and (�C ;�2) 2 I()

and � = �1 t�2

=) there exists I 2 J such that : (�C ;�) 2 I(';)

2. Sequential conjunction

(�C ;�) 2 lub(J)(' :)

=) there exist �1;�2 2 TCons such that :

(�C ;�1) 2 lub(J)(') and (�C ��1;�2) 2 lub(J)()

and � = �1 ��2

=) there exist �1;�2 2 TCons and I1; I2 2 J such that :
(IH) (�C ;�1) 2 I1(') and (�C ��1;�2) 2 I2()

and � = �1 ��2

=) there exist �1;�2 2 TCons and I 2 J such that :
(4:90) (�C ;�1) 2 I(') and (�C ��1;�2) 2 I()

and � = �1 ��2

=) there exists I 2 J such that : (�C ;�) 2 I(' :)

3. Disjunction

(�C ;�) 2 lub(J)(' _)

=) (�C ;�) 2 lub(J)(') or (�C ;�) 2 lub(J)()

=) there exist I1; I2 2 J such that :
(IH) (�C ;�) 2 I1(') or (�C ;�) 2 I2()

=) there exists I 2 J such that :
(4:90) (�C ;�) 2 I(') or (�C ;�) 2 I()

=) there exists I 2 J such that : (�C ;�) 2 I(' _)

4. Existential quanti�cation

Consider a quanti�cation 9 ~X ', where ~X = X1; : : : ;Xn. By the induction hypothesis,

the assertion holds for all instances '[~X =~t] of the update subgoal '.

(�C ;�) 2 lub(J)(9 ~X ')

=) there exists a ground term tuple (~t) 2 Un such that :

(�C ;�) 2 lub(J)('[~X =~t])

=) there exists (~t) 2 Un and I 2 J such that :
(IH) (�C ;�) 2 I('[~X =~t])

=) there exists I 2 J such that : (�C ;�) 2 I(9 ~X ')

82

5. Bulk quanti�cation

Consider a bulk quanti�cation # ~X [A 7! '], where ~X = X1; : : : ;Xn. By the induction

hypothesis, the assertion holds for all instances '[~X =~t] of the update subgoal '.

Let �C ;� 2 TCons be arbitrarily chosen. The set

TA;�C
= f(~t) 2 Un j IDB(s0 �E �C) j= A[~X =~t]g

does not depend on any interpretation of update formulas.

The case TA;�C
= ; is trivial:

(�C ;�) 2 lub(J)(# ~X [A 7! '])

=) � = Log(A[~X = ~all])

=) (�C ;�) 2 I0(# ~X [A 7! '])

=) there exists I 2 J such that : (�C ;�) 2 I(# ~X [A 7! '])

Next, let us consider the case TA;�C
6= ;. To show the assertion, we have to use at least

one of the preconditions required for the bulk quanti�cation.

If TA;�C
is �nite (according to condition 1), we get:

(�C ;�) 2 lub(J)(# ~X [A 7! '])

=) there exists a function f : TA;�C
! TCons such that :

8(~t) 2 TA;�C
: (�C ; f(~t)) 2 lub(J)('[~X =~t])

and � = Log(A[~X = ~all]) �
F
(~t)2TA;�C

f(~t)

=) there exist interpretations I(~t) 2 J for the tuples (~t) 2 TA;�C

(IH) and a function f : TA;�C
! TCons such that :

8(~t) 2 TA;�C
: (�C ; f(~t)) 2 I(~t)('[

~X =~t])

and � = Log(A[~X = ~all]) �
F
(~t)2TA;�C

f(~t)

=) there exist an interpretation I 2 J
(4:90) and a function f : TA;�C

! TCons such that :

8(~t) 2 TA;�C
: (�C ; f(~t)) 2 I('[~X =~t])

and � = Log(A[~X = ~all]) �
F
(~t)2TA;�C

f(~t)

=) there exists I 2 J such that : (�C ;�) 2 I(# ~X [A 7! '])

The �niteness of TA;�C
is essential, because Lemma 4.90 can deal only with �nite se-

quences of goals and corresponding interpretations.

If ' is a basic update atom (according to condition 2), its interpretation does not depend

on a particular interpretation of de�nable update atoms (cf. case (BU) of De�nition 4.9).

Thus, we can use I0 2 J instead of lub(J) and reason as follows:

(�C ;�) 2 lub(J)(# ~X [A 7! '])

=) there exists a function f : TA;�C
! TCons such that :

8(~t) 2 TA;�C
: (�C ; f(~t)) 2 lub(J)('[~X =~t])

and � = Log(A[~X = ~all]) �
F
(~t)2TA;�C

f(~t)

=) there exists a function f : TA;�C
! TCons such that :

(see above) 8(~t) 2 TA;�C
: (�C ; f(~t)) 2 I0('[~X =~t])

and � = Log(A[~X = ~all]) �
F
(~t)2TA;�C

f(~t)

=) (�C ;�) 2 I0(# ~X [A 7! '])

=) there exists I 2 J such that : (�C ;�) 2 I(# ~X [A 7! ']) 2

83

Now we are able to show the continuity of the immediate consequence operator of an update

program. Recall that we must require some conditions for the bulk quanti�cations that occur in

the program.

Theorem 4.92 [Continuity] Let PUP be an update program, where every bulk quanti�cation

~X [A 7! '] occurring in a rule body satis�es one of the following conditions:

1. The set TA;�C
as de�ned in case (Bulk) of De�nition 4.9 is �nite for every consistent transition

�C 2 TCons.

2. The subgoal ' is a basic update atom, i.e. an atom u(~t) with u 2 PredBU .

Then the immediate consequence operator TPUP is continuous.

Proof: According to [Llo87], we have to show that

TPUP (lub(J)) = lub(TPUP (J))

holds for every directed set J � I of interpretations.

Now let J � I be directed. To prove the desired equality, let us choose an arbitrary ground

de�nable update atom p(~t) 2 BDU and two arbitrary consistent transitions �C ;� 2 TCons. We

can show the following equivalences:

(�C ;�) 2 TPUP (lub(J))(p(~t))

() there exists a ground instance U ! p(~t) of a rule r 2 PUP ;
(4:83) such that (�C ;�) 2 lub(J)(U)

() there exists a ground instance U ! p(~t) of a rule r 2 PUP
(see below) and an interpretation I 2 J ; such that (�C ;�) 2 I(U)

() there exists an interpretation I 2 J ; such that (�C ;�) 2 TPUP (I)(p(~t))
(4:83)

() (�C ;�) 2
S
I2J TPUP (I)(p(~t))

() (�C ;�) 2 lub(TPUP (J))(p(~t))
(4:75)

The second equivalence is the most important one and must be explained in more detail: For

the direction `)' we can apply Lemma 4.91. Recall that the preconditions required for the bulk

quanti�cations are essential. The converse `(' follows directly from Lemma 4.78, because I �

lub(J) holds for each interpretation I 2 J . 2

Corollary 4.93 [Continuity] Let an instance of the ULTRA framework be given. Each of the fol-

lowing conditions is suÆcient to guarantee that every update program has a continuous immediate

consequence operator.

1. The Herbrand universe U is �nite. (This implies also the absence of function symbols.)

2. For every state s 2 S, IDB(s) assigns the truth value \true" to �nitely many ground DB

atoms A 2 B.

84

3. The use of the bulk quanti�er is generally forbidden.

Proof: Each condition above implies that all bulk quanti�cations in a program satisfy condition

1 of Theorem 4.92. 2

Let us summarize the results about the semantics of update programs. For every program, we

have de�ned a unique minimal model that can be characterized as the least �xpoint of a straight-

forward immediate consequence operator. Finally, we have presented some conditions (w.r.t. the

bulk quanti�cation) that guarantee the continuity of the immediate consequence operator, such that

the minimal model can be computed by iteration at most to the �rst limit ordinal !. Consequently,

the �xpoint semantics may serve as the starting point for an operational semantics of the ULTRA

language.

De�nition 4.94 Let PUP be an update program, and let s0 2 S be a state. Then

MUP [PUP ; s0]

denotes the (unique) minimal model of PUP w.r.t. the �xed initial state s0.

Note that MUP [PUP ; s0] 2 I is an interpretation of de�nable update atoms. The interpretation

MUP [PUP ; s0](') of a ground update formula ' should be implicitly de�ned w.r.t. s0, too. 2

85

5 Transactions and Serializability

In this section we will consider operations de�ned by an update program in the ULTRA language

as transactions. After de�ning their e�ects according to the model-theoretic semantics developed

in Section 4, we show how to support the isolation of independent transactions. The solutions are

developed with an operational model based on deferred materialization and hypothetical reasoning

in mind, as this strategy integrates smoothly with the logical semantics. We present suÆcient

preconditions for a transaction manager and derive an optimistic transaction processing method

(cf. Section 2.5). This method allows the concurrent execution of multiple transactions while

maintaining the ACID properties [BHG87, BN97, GR93].

The fundamental results presented in this section hold for the generic ULTRA concept. We demon-

strate how to apply them directly to the database-oriented instance developed in Sections 3.2 and

4.3 as well as to the instance for external operations developed in Sections 3.3 and 4.4. It should

be noted that the results are not restricted to top-level transactions. Thus, they may be further

exploited for operational semantics built on the nested transaction model [BBG89, Mos85, WS92].

In particular, hybrid approaches that interleave multiple evaluation phases and multiple material-

ization phases within one top-level transaction can bene�t from our results.

5.1 Transactions in ULTRA

A new top-level transaction is invoked by submitting a top-level update query to the ULTRA system.

The interpretation of the query goal yields possible transitions, which can transform the initial state

s0 to a desired future state.

De�nition 5.1 [Top-Level Update Queries] A top-level update query U is an update rule

without a head, where the body U does not contain any free variables. 2

De�nition 5.2 [Possible Transitions] Let PUP be an update program and let s0 2 S be a state.

Let Q be a top-level update query of the form U .

All transitions � 2 TCons such that (�";�) 2 MUP [PUP ; s0](U) are called possible transitions for

the update query Q w.r.t. the initial state s0. 2

To commit a transaction invoked by a top-level query, one possible transition of the query has

to be materialized, such that a new physical state s00 2 S will be reached. The logical semantics

does not care about when and how the choice of a possible transition will take place. This is left

to the operational semantics. We only require that whenever a transaction commits, the physical

execution of a possible transition must be complete. However, a transaction may be aborted. In

this case, it must not cause a (persistent) state change. A transaction will logically fail, if there

exists no possible transition.

Example 5.3 [Personal Calendar (Cont.)] Our calendar tool features an update operation

do insert on day(D;L; T) which can be used to insert an appointment having a description T

and a duration of L slots on a day D without specifying the starting time. Instead, all those

time slots an appointment of the requested duration can be assigned to are looked up, then the

corresponding database entry is inserted at a free position. The de�ning rule reads as follows:

do insert on day(D;L; T) free(D;S;L) : do insert(D;S;L; T)

86

Now suppose the update query

Q � do insert on day(mon; 1; \Call Mr. Martin")

is issued in database state DB0 of Example 3.17. Using the IDB predicate free (see Appendix B),

it is deduced that the time slots on Monday at 10am, 11am, or 2pm can hold an appointment of one

hour. Therefore, the following three possible transitions for query Q can be generated, assuming

the assigned identi�er is 28:

�(1) = f?entry;�entry(mon; 10; 0);+entry(mon; 10; 28);

+ description(28; \Call Mr. Martin")g

�(2) = f?entry;�entry(mon; 11; 0);+entry(mon; 11; 28);

+ description(28; \Call Mr. Martin")g

�(3) = f?entry;�entry(mon; 14; 0);+entry(mon; 14; 28);

+ description(28; \Call Mr. Martin")g

2

Example 5.4 [Robot World (Cont.)] Recall Example 4.88, in particular the chosen initial state

s0, and assume that the update query pickup at position(2; 0) is submitted. We have already

shown that for the transition �2 depicted in Figure 9 on page 77,

(;;�2) 2MUP [PUP ; s0](pickup at position(2; 0))

holds. Thus �2 is a possible transition for the update query above.

If the robot world is in a state where the robot arm is not empty or there is no block lying at

position (2; 0), the same query will have no possible transition. 2

As free variables in Datalog queries usually have a set-oriented interpretation, which is di�erent

from the non-deterministic update semantics de�ned in this thesis, we do not allow free variables in

top-level update queries. Intuitively speaking, the complex operations can only be invoked with all

parameters instantiated. This seems a little odd at a �rst glance, because in conventional database

applications pure retrieval transactions are of course also necessary. However, the latter can easily

be integrated into the overall approach provided that they produce logging transitions according

to the queried information. It should be emphasized that retrieval queries have no relation to

the minimal model of an update program. They are added for convenience, as they �t into the

transaction model, which we will present subsequently.

De�nition 5.5 [Retrieval Queries] A retrieval query Q is of the form q(~t), where q(~t) is a

DB atom containing the variables ~X .

We assign to Q the \possible transition" � := Log(q(~t)[~X = ~all]). Note that is also the possible

transition of the bulk quanti�cation # ~X [q(~t) 7! NOP] . 2

Like update transactions, a pure retrieval transaction also has to materialize its (unique) possible

transition. However, in every ULTRA instance for conventional databases, this materialization does

not perform any visible updates on the state. Instead, only isolation checks with other transactions

will be done (see below for details). These checks can be seen as part of the materialization.

87

Example 5.6 [Personal Calendar (Cont.)] browse(D;S; T) (see Appendix B) is an IDB pred-

icate that relates a description T to the appointment on day D occupying time slot S. browse is

de�ned as the natural join of the entry and the description relation. The following retrieval query

Q inquires the agenda for entries on Monday at 12pm:

Q � browse(mon; 12; T)

This retrieval query produces the binding \Meeting Mr. Dean" for the free variable T . In addition,

the update request set

� = f?entry; ?descriptiong

is generated. Both read tags contained in � have to be checked before the query result is returned

to the top-level. 2

5.2 Read-Isolation

Now we de�ne the concept of read-isolation of one transition from another. Under certain conditions

the read-isolation property can be used to guarantee isolation and serializability of independent

transactions. This will be shown formally in Section 5.3.

De�nition 5.7 [Read-Isolation] Let a binary relation R on the set T of transitions be given,

where (�1;�2) 2 R expresses that a transition �1 2 T is read-isolated from another transition

�2 2 T . R does not need to be symmetric.

R is called a read-isolation relation, if the following properties hold:

1. Let �0 2 TCons be a consistent transition, and let �1;�2 2 T be arbitrary transitions. Then

the following holds:

(a) �1 t�2 read-isolated from �0

=) �1 read-isolated from �0 and �2 read-isolated from �0

(b) �1 ��2 read-isolated from �0

=) �1 read-isolated from �0 and �2 read-isolated from �0

2. Let �0 2 TCons be a consistent transition and A be a ground DB atom or a non-ground DB

atom containing the variables ~X . Let A0 := A[~X = ~all] be the ground instance of A, where

all variables have been replaced by the special constant all, and let A00 := A[~X =~t] be an

arbitrary ground instance of A. Further, let Log(A0) be read-isolated from �0. Then for all

states s 2 S and all consistent transitions � 2 TCons the following holds:

(a) IDB((s�E �0)�E �) j= A00 () IDB(s�E �) j= A00

(b) IDB((s�E �0)�E �) j= :A00 () IDB(s�E �) j= :A00
2

The algebraic properties required in De�nition 5.7 state that the read-isolation property carries

over to subparts of a decomposable transition and that the read-isolation of a logging transition

disallows observable changes in the truth value of the logged DB atom. Property 2 also de�nes a

particular property for the special constant all: the semantical conditions should be maintained,

when the constant all is replaced by an arbitrary term of U .

88

Example 5.8 In the ULTRA database instance of Sections 3.2 and 4.3, one update request set �

will be called read-isolated from another update request set �0, if � does not contain any read tags

on EDB relations, for which �0 speci�es insertions or deletions. This corresponds to the absence

of read/write conicts in classical database transactions [BHG87]. 2

5.3 Isolation of Transactions

After having de�ned some preliminaries, we can investigate the isolation problem for concurrent

transactions in the ULTRA framework. The formal results will be derived w.r.t. an arbitrary but

�xed initial state s0 2 S, and we assume that two or more independent transactions are invoked

in this state. Further, we require that the transaction processing is divided into an evaluation

phase, where the transactions simultaneously operate on the �xed state s0 without making changes

visible to each other, and a subsequent materialization phase, where each transaction may execute

one possible transition. We are going to show that checking the read-isolation property of the

possible transitions is a viable method to determine the isolation of the underlying transactions.

In the following we often refer to top-level transactions invoked by an update query. The results,

however, are more general and can be exploited for subtransactions of a top-level transaction as

well, provided that the subtransactions are executed in two phases. Note that execution in two

phases does not always require a logical concept for hypothetical reasoning: for instance, changes

could also be made in a private workspace, and external actions could be executed in a (private)

simulation model instead of the real system.

De�nition 5.9 Let I 2 I be an interpretation of update formulas and �0 2 TCons be an arbitrary

but �xed consistent transition. Let ' be a ground update formula. We say that I, �0, and ' have

the property (*), i� the following condition holds:

For arbitrary �C ;�
0

C ;� 2 TCons such that � is read-isolated from �0;

(�C ��0 ��0

C ;�) 2 I(')() (�C ��0

C ;�) 2 I(') holds:
(*)

2

Our objective is to show that the minimal modelMUP [PUP ; s0] of a given update program PUP w.r.t.

the physical state s0 satis�es (*) for arbitrary update request sets �0 and arbitrary ground update

formulas '. From this assertion we can derive serializability properties and even an optimistic

transaction processing method that guarantees full isolation of concurrent transactions.

Lemma 5.10 Let I 2 I be an interpretation of update formulas and �0 2 TCons be an arbitrary

but �xed consistent transition.

If (*) holds for every ground de�nable update atom p(~t) 2 BDU , then (*) holds for every ground

update formula '.

Proof: We prove the assertion by structural induction. Let (*) hold for all ground de�nable

update atoms p(~t) 2 BDU . In each case shown below, we choose arbitrary �C ;�
0

C ;� 2 TCons such

that � is read-isolated from �0 and show the equivalence in De�nition 5.9 using De�nition 4.9.

89

Base cases:

1. DB literal

We only show the assertion for a positive DB literal. The proof for a negative DB literal

is entirely analogous.

(�C ��0 ��0

C ;�) 2 I(A)

() IDB(s0 �E (�C ��0 ��0

C)) j= A and � = Log(A)

() IDB(((s0 �E �C)�E �0)�E �0

C) j= A and � = Log(A)
(4:2)

() IDB((s0 �E �C)�E �0

C) j= A and � = Log(A)
(5:7)

() IDB(s0 �E (�C ��0

C)) j= A and � = Log(A)
(4:2)

() (�C ��0

C ;�) 2 I(A)

Note that property 2 required for the read-isolation relation (see De�nition 5.7) is es-

sential for this part of the proof.

2. NOP literal

(�C ��0 ��0

C ;�) 2 I(NOP)

() � = �"

() (�C ��0

C ;�) 2 I(NOP)

3. Basic update atom

(�C ��0 ��0

C ;�) 2 I(u(~t))

() � = Upd(u(~t))

() (�C ��0

C ;�) 2 I(u(~t))

4. De�nable update atom

The equivalence holds by the precondition.

Induction step:

By the induction hypothesis, (*) holds for any direct proper subformula ' of the composite

formulas analyzed in the following.

1. Concurrent conjunction

(�C ��0 ��0

C ;�) 2 I(';)

() there exist �1;�2 2 TCons such that :

(�C ��0 ��0

C ;�1) 2 I(') and (�C ��0 ��0

C ;�2) 2 I()

and � = �1 t�2

() there exist �1;�2 2 TCons such that :
(IH) (�C ��0

C ;�1) 2 I(') and (�C ��0

C ;�2) 2 I()

and � = �1 t�2

() (�C ��0

C ;�) 2 I(';)

Both �1 and �2 are read-isolated from �0 by property 1 of De�nition 5.7. Therefore,

the induction hypothesis is applicable.

90

2. Sequential conjunction

(�C ��0 ��0

C ;�) 2 I(' :)

() there exist �1;�2 2 TCons such that :

(�C ��0 ��0

C ;�1) 2 I(') and ((�C ��0 ��0

C)��1;�2) 2 I()

and � = �1 ��2

() there exist �1;�2 2 TCons such that :
(4:2) (�C ��0 ��0

C ;�1) 2 I(') and (�C ��0 � (�0

C ��1);�2) 2 I()

and � = �1 ��2

() there exist �1;�2 2 TCons such that :
(IH) (�C ��0

C ;�1) 2 I(') and (�C � (�0

C ��1);�2) 2 I()

and � = �1 ��2

() there exist �1;�2 2 TCons such that :
(4:2) (�C ��0

C ;�1) 2 I(') and ((�C ��0

C)��1;�2) 2 I()

and � = �1 ��2

() (�C ��0

C ;�) 2 I(' :)

Both �1 and �2 are read-isolated from �0 by property 1 of De�nition 5.7. Therefore,

the induction hypothesis is applicable.

3. Disjunction

(�C ��0 ��0

C ;�) 2 I(' _)

() (�C ��0 ��0

C ;�) 2 I(') or (�C ��0 ��0

C ;�) 2 I()

() (�C ��0

C ;�) 2 I(') or (�C ��0

C ;�) 2 I()
(IH)

() (�C ��0

C ;�) 2 I(' _)

4. Existential quanti�cation

Consider a quanti�cation 9 ~X ', where ~X = X1; : : : ;Xn.

(�C ��0 ��0

C ;�) 2 I(9
~X ')

() there exists a ground term tuple (~t) 2 Un such that :

(�C ��0 ��0

C ;�) 2 I('[
~X =~t])

() there exists a ground term tuple (~t) 2 Un such that :
(IH) (�C ��0

C ;�) 2 I('[
~X =~t])

() (�C ��0

C ;�) 2 I(9
~X ')

5. Bulk quanti�cation

Consider a bulk quanti�cation # ~X [A 7! '], where ~X = X1; : : : ;Xn. Assume that

(�C � �0 � �0

C ;�) 2 I(# ~X [A 7! ']) or (�C � �0

C ;�) 2 I(# ~X [A 7! ']) holds.

Regarding case (Bulk) of De�nition 4.9, it is obvious that there exists a transition �0 2 T

such that � = Log(A[~X = ~all])��0. (�0 expresses the resulting bulk update, which is

composed with the logging transition of the DB atom A.) Then it is possible to apply

the properties of the read-isolation relation (see De�nition 5.7): Log(A[~X = ~all]) must

be read-isolated from �0 by property 1 (b), and we can reason as follows, where property

91

2 (a) is essential:

TA;�C��0��0

C

= f(~t) 2 Un j IDB(s0 �E (�C ��0 ��0

C)) j= A[~X =~t]g

= f(~t) 2 Un j IDB(((s0 �E �C)�E �0)�E �0

C) j= A[~X =~t]g
(4:2)

= f(~t) 2 Un j IDB((s0 �E �C)�E �0

C) j= A[~X =~t]g
(5:7)

= f(~t) 2 Un j IDB(s0 �E (�C ��0

C)) j= A[~X =~t]g
(4:2)

= TA;�C��0

C

The case TA;�C��0

C
= ; is trivial:

(�C ��0 ��0

C ;�) 2 I(#
~X [A 7! '])

() � = Log(A[~X = ~all])

() (�C ��0

C ;�) 2 I(#
~X [A 7! '])

Let us now consider the case TA;�C��0

C
6= ;:

(�C ��0 ��0

C ;�) 2 I(#
~X [A 7! '])

() there exists a function f : TA;�C��0��0

C
! TCons such that :

8(~t) 2 TA;�C��0��0

C
: (�C ��0 ��0

C ; f(~t)) 2 I('[
~X =~t])

and � = Log(A[~X = ~all]) �
F

(~t)2TA;�C��0��0
C

f(~t)

() there exists a function f : TA;�C��0

C
! TCons such that :

8(~t) 2 TA;�C��0

C
: (�C ��0 ��0

C ; f(~t)) 2 I('[
~X =~t])

and � = Log(A[~X = ~all]) �
F

(~t)2TA;�C��0
C

f(~t)

() there exists a function f : TA;�C��0

C
! TCons such that :

(IH) 8(~t) 2 TA;�C��0

C
: (�C ��0

C ; f(~t)) 2 I('[
~X =~t])

and � = Log(A[~X = ~all]) �
F

(~t)2TA;�C��0
C

f(~t)

() (�C ��0

C ;�) 2 I(#
~X [A 7! '])

The induction hypothesis is applicable, because for all ground tuples (~t) 2 TA;�C��0

C
,

f(~t) must be read-isolated from �0. This can be shown using the property 5 (a) required

for
F
in De�nition 4.2 and property 1 of the read-isolation relation (see De�nition 5.7).

6. Implication

(�C ��0 ��0

C ;�) 2 I('!)

() (�C ��0 ��0

C ;�) 2 I(') =) (�C ��0 ��0

C ;�) 2 I()

() (�C ��0 ��0

C ;�) 62 I(') or (�C ��0 ��0

C ;�) 2 I()

() (�C ��0

C ;�) 62 I(') or (�C ��0

C ;�) 2 I()
(IH)

() (�C ��0

C ;�) 2 I(') =) (�C ��0

C ;�) 2 I()

() (�C ��0

C ;�) 2 I('!)

92

7. Universal quanti�cation

Consider a quanti�cation 8 ~X ', where ~X = X1; : : : ;Xn.

(�C ��0 ��0

C ;�) 2 I(8
~X ')

() for all ground term tuples (~t) 2 Un;

(�C ��0 ��0

C ;�) 2 I('[
~X =~t]) holds

() for all ground term tuples (~t) 2 Un;
(IH) (�C ��0

C ;�) 2 I('[
~X =~t]) holds

() (�C ��0

C ;�) 2 I(8
~X ')

2

Theorem 5.11 [Validity of Property (*)] The unique minimal model of an update program

PUP satis�es the property (*) for any arbitrary but �xed consistent transition �0 2 TCons and for

every ground update formula '.

Proof: It is suÆcient to prove the assertion for de�nable update atoms. The assertion for

arbitrary update formulas follows by Lemma 5.10.

After choosing an arbitrary transition �0 2 TCons, we show by trans�nite induction that (*) holds

w.r.t. �0 and TPUP " for arbitrary ordinals . That means, we verify the following condition for

all ground de�nable update atoms p(~t) 2 BDU :

For arbitrary �C ;�
0

C ;� 2 TCons such that � is read-isolated from �0;

(�C ��0 ��0

C ;�) 2 TPUP " (p(~t))() (�C ��0

C ;�) 2 TPUP " (p(~t)) holds:

Base case: = 0

Let p(~t) 2 BDU be a de�nable update atom. Because I?(p(~t)) = ;, the property (*) trivially

holds w.r.t. I? and p(~t).

Induction step: successor ordinal �+ 1

By the induction hypothesis, (*) holds w.r.t. TPUP " � for all ground de�nable update atoms

p(~t) 2 BDU . By Lemma 5.10, (*) even holds w.r.t. TPUP " � for arbitrary ground update

formulas '.

Now choose a de�nable update atom p(~t) 2 BDU . For arbitrary �C ;�
0

C ;� 2 TCons such

that � is read-isolated from �0, the following equivalences hold.

(�C ��0 ��0

C ;�) 2 TPUP " �+ 1 (p(~t))

() (�C ��0 ��0

C ;�) 2 TPUP (TPUP " �)(p(~t))
(4:86)

() there exists a ground instance U ! p(~t) of a rule r 2 PUP ;
(4:83) such that (�C ��0 ��0

C ;�) 2 TPUP " � (U)

() there exists a ground instance U ! p(~t) of a rule r 2 PUP ;
(IH) such that (�C ��0

C ;�) 2 TPUP " � (U)

() (�C ��0

C ;�) 2 TPUP (TPUP " �)(p(~t))
(4:83)

() (�C ��0

C ;�) 2 TPUP " �+ 1 (p(~t))
(4:86)

93

Induction step: limit ordinal �

By the induction hypothesis, (*) holds w.r.t. each TPUP " � (� < �) for all ground de�nable

update atoms p(~t) 2 BDU .

Now choose a de�nable update atom p(~t) 2 BDU . For arbitrary �C ;�
0

C ;� 2 TCons such

that � is read-isolated from �0, the following equivalences hold.

(�C ��0 ��0

C ;�) 2 TPUP " � (p(~t))

() (�C ��0 ��0

C ;�) 2
S
�<� TPUP " � (p(~t))

(4:75)

() there exists � < � such that (�C ��0 ��0

C ;�) 2 TPUP " � (p(~t))

() there exists � < � such that (�C ��0

C ;�) 2 TPUP " � (p(~t))
(IH)

() (�C ��0

C ;�) 2
S
�<� TPUP " � (p(~t))

() (�C ��0

C ;�) 2 TPUP " � (p(~t))
(4:75)

In particular, the assertion holds w.r.t. TPUP " �PUP , which is equal to the minimal model of PUP
due to Theorem 4.87. 2

Theorem 5.11 states that the model-theoretic interpretation of an update formula ' may contain

corresponding pairs (�C ;�) of transitions that only di�er at the �rst position �C where the di�er-

ence lies in a composition with �0 or �" (as the neutral transition). Provided that � is read-isolated

from �0, the (hypothetical) execution of �0 at any time is irrelevant for the interpretation of '.

This formal result will be applied to legitimate a simultaneous evaluation of concurrent transac-

tions. Note that the assertion of Theorem 5.11 is not restricted to the top-level, since it does not

explicitly refer to top-level update queries. It merely expresses a result about the model-theoretic

semantics w.r.t. di�erent hypothetical states and can thus also be exploited for an operational

semantics based on the nested transaction model [BBG89, Mos85, WS92]. In combination with

the properties shown in Section 6, Theorem 5.11 may be helpful to verify operational models that

feature multiple evaluation and materialization phases within one top-level transaction.

We are now able to prove the following corollary expressing some form of isolation of top-level

transactions. We consider two already computed transitions �1 and �2 which have to be mate-

rialized in order to complete the corresponding transactions. Although it is not necessary for the

proof of Corollary 5.12, the property we desire becomes more obvious when looking at Remark

5.13, which says that �1 is computed w.r.t. the same initial state (and update program) as �2.

Corollary 5.12 [Isolation] Let PUP be an update program and s0 2 S be the initial state. Let

U2 be a ground update goal.

Let �1;�2 2 TCons be transitions such that:

1. �2 is read-isolated from �1.

2. (�";�2) 2MUP [PUP ; s0](U2)

Then the following holds:

(�1;�2) 2MUP [PUP ; s0](U2)

94

Proof: The assertion follows from Theorem 5.11 with �0 := �1 and ' := U2. Apply (*)

backwards with �C := �", �
0

C := �" and � := �2. 2

Remark 5.13 Let U1 be another ground update goal such that

(�";�1) 2MUP [PUP ; s0](U1):

Under this additional condition, Corollary 5.12 states that the computed possible transition �2 for

goal U2 is still valid in a (hypothetical) state where the transition of the other goal U1 has already

been executed, although the possible transitions have been computed w.r.t. the same physical

state s0. Thus, if �rst �1 and then �2 is materialized, the observable e�ect is equal to a serial,

isolated execution of the transactions invoked by the queries U1 and U2, respectively. This is

illustrated in Figure 10. Note that serializability is not guaranteed, if �2 is materialized before �1.

This would require that �1 is also read-isolated from �2. We do not have to care about execution

conicts between the transitions, as the materialization is assumed to be performed in a strictly

serial way, i.e. �2 after �1. 2

read-isolated from

of

s0

2

1∆ ∆2

∆

1

1∆
U

∆
1

∆

U1

2

U2

2Evaluation of

Materialization Materialization

Evaluation of

Queries

Check that is

U

of

Figure 10: Serializability of two (top-level) transactions

Corollary 5.14 [Serializability] Let PUP , s0, U1, �1, U2, and �2 be given as in Corollary 5.12

and Remark 5.13. Recall that �2 is assumed to be read-isolated from �1. Then the following

holds:

(�";�1 ��2) 2MUP [PUP ; s0](U1 : U2)

Proof: The assertion follows directly from Corollary 5.12 using case (SCj) of De�nition 4.9. 2

Like in Remark 5.13 the possible transitions �1 and �2 can be computed in parallel, because

they both refer to the same initial state s0. Nevertheless, the sequential composition �1 ��2 of

�1 and �2 is a possible transition for the sequential goal U1 : U2 . In other words, Corollary

5.14 reformulates serializability in terms of the underlying logical concepts, i.e. the sequential

conjunction.

95

Until now, we have only considered a simultaneous evaluation of multiple transactions, but we have

required that the materialization is performed in a strictly serial way. By the following remark, we

suggest how to make the materialization phase more exible.

Remark 5.15 [Materialization of Transactions] Have a look at property 4 (a) of De�nition

4.2. In the light of Corollary 5.12, it can be interpreted as o�ering an alternative way to deal with

the computed transitions. Instead of materializing �1 and �2 in a serial fashion, one can compute

and materialize a �nal transition � := �1 � �2. The computation of � can be interpreted as

a (sequential) merging of two local transitions into one global transition. Additional algebraic

properties of T and the composition functions t and � can be exploited for optimization purposes

during the materialization phase. This will be exempli�ed in Section 5.4. 2

Finally, there is the question what to do, when both transactions are logically successful, but

there exist no possible transitions that satisfy the read-isolation criterion. As serializability is not

guaranteed in this case, one has to abort one of the transactions and restart (recompute) it, after

the other transaction has been committed. Note that the transaction restarted in the new physical

state may fail logically, as the possible transitions for an update query depend on the initial state.

The results of Corollaries 5.12 and 5.14 can easily be extended to multiple transactions that are

processed in parallel. This will serve as the foundation of an optimistic transaction protocol we

will present below.

Remark 5.16 [Multiple Transactions] Let PUP be an update program and s0 2 S be the

initial state. Let U1; : : : ; Un be update queries that have possible transitions (w.r.t. s0)

�1; : : : ;�n 2 TCons, respectively. Further, let �i be read-isolated from �j for i; j 2 f1; : : : ; ng

with i > j.

Then the serialization of the underlying transactions is possible using the materialization order

�1; : : : ;�n. Moreover, �1 � : : : � �n is a possible transition for the sequential update query

 U1 : : : : : Un.

Proof: Applying Theorem 5.11 repeatedly, it is possible to show by induction that the two

assertions

(�1 � : : :��i�1;�i) 2 MUP [PUP ; s0](Ui)

(�";�1 � : : :��i) 2 MUP [PUP ; s0](U1 : : : : : Ui)

hold for every i 2 f1; : : : ; ng. The main assertion follows from the case i = n. Recall that property 4

of De�nition 4.2 states that sequential compositions of transitions harmonize with serial executions.

2

Before we are going to illustrate the semantical results of this section in the context of the formerly

de�ned ULTRA instances, we would like to summarize how the results can be used in practice. We

sketch a transaction protocol that is suitable for an operational model based on deferred material-

izations (cf. Section 8.1). Example 5.23 in Section 5.4 will discuss the execution behaviour of some

transactions on the personal calendar (see Appendix B).

Remark 5.17 [Optimistic Transaction Protocol] In our operational model, transactions in-

voked by top-level update queries are processed block-wise in two phases: an evaluation phase,

96

where the transactions simultaneously operate on the current initial state s0 without making

changes visible to each other, and a subsequent materialization phase, where each transaction

may execute one possible transition. The transactions are processed as follows:

1. Accept (or restart) independent update queries U1; : : : ; Un for evaluation, as long as

the materialization of the active transactions has not begun, yet.

2. Evaluate the active transactions hypothetically w.r.t. the current initial state s0. Synchro-

nization between di�erent evaluation threads is not necessary, as all queries are evaluated

w.r.t. the same state and no state changes are actually performed.

3. If a transaction invoked by a query Ui is ready to enter the materialization phase, i.e.

it provides a possible transition �i, check whether this transition is read-isolated from all

transitions collected so far. If the read-isolations hold, collect the new transition for materi-

alization. Otherwise, resume the evaluation of the query Ui in order to compute another

possible transition, or abort the corresponding transaction.

4. When the evaluation of the accepted transactions has been �nished, materialize the collected

transitions in the given order. This way, the system reaches a new physical state s00. Commit

those transactions with a successful materialization and abort the other ones. Note that the

materializations must be performed as external \write-only" transactions to ensure atomicity

and durability of the materializations.

Due to Remark 5.16, the protocol ensures serializability of the independent transactions. The

correctness is also guaranteed, if some of the transactions fail during the materialization phase:

these transactions do not have an e�ect and thus can be considered as non-existent.

Failed transactions should be restarted in the new physical state, when they have failed due to

isolation conicts with other transactions or due to materialization errors. A transaction that

logically fails, however, should be de�nitively aborted, as the success of a repeated evaluation is

unlikely. Although the transaction might be successful in a new physical state, the decision about

a restart is not the task of the transaction protocol.

It should be noted that the protocol described above can easily be enriched by additional constraints,

e.g. an upper limit of active transactions in an evaluation phase, time-out constraints, etc. Such

constraints can serve as tuning parameters to enable more serial or more concurrent and optimistic

transaction processing. 2

5.4 Read-Isolation in Logic Databases

Now we intend to apply the results of Section 5.3 to the database language presented in Section

3.2. Recall that the transitions in T are represented by update request sets containing insertions,

deletions, and read tags. First we de�ne a concrete read-isolation relation on the set of update

request sets, then we show that it entails the properties required in De�nition 5.7. Again, the

general results of Section 5.3 lead to the speci�c results presented in [WFF98b].

De�nition 5.18 [Read-Isolation] An update request set � 2 T is called read-isolated from

another update request set �0 2 T , if there exists no update request +r(~t) 2 �0 or �r(~t) 2 �0

such that the read tag ?r is contained in �. 2

97

Informally speaking, � is called read-isolated from �0, i� the basic update requests of �0 cannot

imply changes in EDB relations for which a read tag exists in �. Recall that read tags correspond

to retrieval operations during the computation of �. Thus, read-isolation guarantees the absence

of read/write conicts.

Example 5.19 [Personal Calendar (Cont.)] Given the two transactions

T1 � do insert(mon; 10; 1; \Presentation")

T2 � browse(mon; S; T)

we get the following update request sets �i for Ti, assuming the assigned identi�er is 23:

�1 = f?entry;�entry(mon; 10; 0);+entry(mon; 10; 23);

+ description(23; \Presentation")g

�2 = f?entry; ?descriptiong

Observe that �1 is read-isolated from �2, as the latter contains only read tags, while �2 is not read-

isolated from �1, which actually contains update requests for the relations entry and description.

2

The following semantical property holds for the de�ned read-isolation relation. Under the given

conditions, the updates of �0 do not have an observable e�ect w.r.t. the predicate q.

Lemma 5.20 [Independence] Let DB 2 S be an EDB instance and PIDB be an IDB program.

Let q be an EDB or an IDB predicate, and let �0 2 TCons be a consistent update request set

such that �q := f?r j r 2 DefE [PIDB](q)g is read-isolated from �0. Let � 2 TCons be another

consistent update request set.

Then the restriction ofWFM(PIDB[((DB�E�0)�E�)) to the predicate q equals the restriction

of WFM(PIDB [(DB �E �)) to q.

Proof: �q is read-isolated from �0 by assumption and contains read tags for all EDB predicates

q depends on. Thus, �0 cannot contain any update request to change an EDB relation that is

relevant for the interpretation of any EDB/IDB atom q(~t), i.e. DB �E �0 restricted to EDB

predicates in DefE[PIDB](q) equals DB restricted to DefE[PIDB](q). Hence, (DB �E �0) �E �

restricted to EDB predicates in DefE[PIDB](q) equals DB �E � restricted to DefE[PIDB](q).

Consequently, the restriction of WFM(PIDB [((DB �E �0)�E �)) to the predicate q equals the

restriction of WFM(PIDB [(DB �E �)) to q.

Note that is suÆcient to consider the syntactical dependencies, because the well-founded model

has a �xpoint characterization [vG89] which is essentially built on consequence operators based on

the given facts and rules. 2

Theorem 5.21 [Algebraic Properties] The algebraic properties of De�nition 5.7 hold for the

read-isolation relation de�ned for the extended database language (cf. De�nition 5.18).

Proof: The proof relies on the de�nitions of �E , t, �, and read-isolation. Also Lemma 5.20 is

essential.

98

1. Note that in both compositions (t and �), the read tags are merged like in the usual set union.

Thus, for arbitrary update request sets �0;�1;�2 2 T such that �1 t �2 is read-isolated from

�0 or �1 � �2 is read-isolated from �0, also both �1 and �2 must be read-isolated from �0.

Otherwise, �1 or �2 would contain a conicting read tag ?r, which would be also contained in

�1 t �2 and �1 � �2 and which thus would destroy the read-isolation property. Consequently,

properties (a) and (b) hold.

2. Recall that by de�nition

IDB(DB) =WFM(PIDB [DB)

holds for each EDB instance DB 2 S. Further

Log(A) = f?r j r 2 DefE[PIDB](q)g

holds for every ground DB atom A with predicate q. The desired equivalences (a) and (b) follow

directly from Lemma 5.20. 2

Theorem 5.21 allows us to apply the isolation and serializability results of Section 5.3 to the speci�c

database language. In particular, we can use the transaction processing protocol described in

Remark 5.17. Before we illustrate the results using our calendar example, some additional remarks

about the materialization should follow.

Remark 5.22 [Materialization of Transactions] Recall Remark 5.15, in particular the two

possible transitions �1 and �2, that have passed the isolation check and wait for materialization.

Now assume that �1 and �2 are write-compatible: Corollary 4.25 states that it is possible to

materialize the concurrent composition �1 t �2. This allows us to apply the update requests of

both transactions simultaneously (e.g. in an interleaved fashion). Such a property can be used for

optimization purposes (e.g. sorting of update requests, writing of contiguous blocks, etc.) during

the materialization phase. 2

Example 5.23 [Personal Calendar (Cont.)] Let us consider some sample transactions issued

against the database instance DB0 given in Example 3.17. The transactions could be invoked by

two di�erent users, e.g. the owner of the calendar and her secretary. For the sake of brevity, we

restrict ourselves to two transactions that are processed independently. The protocol described in

Remark 5.17, however, can deal with more than two independent transactions.

First, have a look at transactions T1 and T2 of Example 5.19. As stated there, the update request

set �1 is read-isolated from �2, so it makes sense to evaluate both transactions in parallel w.r.t.

the same database state DB0. According to Remark 5.13, the materialization of �1 after �2

corresponds to the serial execution of T1 after T2.

If two transactions read and write the same objects, a conict arises and must be handled, as the

following example shows:

T3 � do insert(mon; 10; 1; \Presentation")

T4 � do insert on day(mon; 1; \Call Mr. Martin")

99

Transaction T3 is the same as T1 above and thus produces the same update request set. T4 corre-

sponds to query Q of Example 5.3. So we get the update request set

�3 = f?entry;�entry(mon; 10; 0);+entry(mon; 10; 23);

+ description(23; \Presentation")g

for transaction T3 and three alternatives for T4, namely:

�
(1)
4 = f?entry;�entry(mon; 10; 0);+entry(mon; 10; 28);

+ description(28; \Call Mr. Martin")g

�
(2)
4 = f?entry;�entry(mon; 11; 0);+entry(mon; 11; 28);

+ description(28; \Call Mr. Martin")g

�
(3)
4 = f?entry;�entry(mon; 14; 0);+entry(mon; 14; 28);

+ description(28; \Call Mr. Martin")g

None of the computed sets �
(1)
4 through �

(3)
4 is read-isolated from �3, and �3 is not read-isolated

from any of the sets �
(1)
4 through �

(3)
4 , so the two transactions cannot be serialized anymore, when

they both have been evaluated in database state DB0. Therefore, the system has to choose one

transaction, while restarting the other after the materialization of the �rst.

Observe that if the system chooses to restart T4 while materializing T3, in the new database state

it is no longer possible to insert the entry at 10am, as this time slot now is occupied by the

\Presentation". So, for the restarted T4, the only possible transitions will be �
(2)
4 and �

(3)
4 .

On the other hand, if the system decides to materialize T4 and to restart T3, the success of T3
depends on the non-deterministic choice in transaction T4. If the second or the third update

request set is chosen, the restarted transaction T3 will succeed, as the time slot at 10am remains

free. But if the system chooses to insert the \Call" into the slot at 10am, the restarted T3 will fail,

because the time slot at 10am will be occupied.

It should be kept in mind, that the conict between T3 and T4 is not caused by the fact that both

write to a common relation, but that both read a relation that the other one writes. Two write

operations on the same relation can of course be serializable, as the transactions

T5 � do insert on day(mon; 1; \Call Mr. Martin")

T6 � do insert priority(mon; 14; \Dentist")

show. The predicate do insert priority (see Appendix B) enters appointments without checking

whether or not the requested time slot is free. When evaluated in parallel w.r.t. state DB0,

transaction T6 creates the update request set

�6 = f�entry(mon; 14; 0);+entry(mon; 14; 25);

+ description(25; \Dentist")g

assuming the assigned identi�er is 25. For T5, the same possible transitions as for T4 are used in

this example, i.e. �
(1)
5 = �

(1)
4 , �

(2)
5 = �

(2)
4 , and �

(3)
5 = �

(3)
4 . Although both transactions write

to the same EDB relation and none of the sets �
(1)
5 through �

(3)
5 is read-isolated from �6, �6 is

read-isolated from �
(1)
5 , �

(2)
5 , and �

(3)
5 . So, the two transactions can be evaluated in parallel in

100

the same database state DB0, but one of the three possible transitions for T5 must be chosen and

materialized before �6 is applied to the database.

Note that it is no error to have both entry(mon; 14; 25) and entry(mon; 14; 28) in the database,

as the former is inserted by do insert priority, which does not explicitly check the slot and thus

allows overlapping entries. For the sake of the example, we do not remove the old entry, as this

would require a read access, which in turn destroys the read-isolation property.

We conclude our running example with a reference to Remark 5.22. As write/write conicts are

de�ned on a �ner granularity than read/write conicts and in the calendar example most write

operations are accompanied by read operations on the same relation, write/write conicts between

independent transactions which have already been certi�ed to be serializable are unlikely. Indeed, in

the example cases investigated above the certi�ed possible transitions are always write-compatible

with each other, i.e. there are no requests to insert and delete the same tuple. Thus, due to Remark

5.22, also the materialization of the certi�ed possible transitions can be performed simultaneously.

In this case, the materialization does not correspond to a serial execution of the transactions, as the

intermediate state between the transactions does not need to be reached during the materialization.

However, the �nal state will be the same state as if the materialization was done in a serial fashion.

2

5.5 Read-Isolation of Pomsets

As opposed to the database-oriented ULTRA instance, the ULTRA instance based on partially or-

dered multi-sets (see Sections 3.3 and 4.4) has been de�ned with external operations and immediate

execution strategies (cf. Section 8.2) in mind. Nevertheless, the pomset approach is very universal

and could serve as the semantical basis in other domains, where a transaction processing strategy

based on deferred materialization and hypothetical reasoning is adequate. Furthermore, recall that

the results about isolation of transactions are not restricted to the top-level and could thus be

relevant for hybrid strategies that interleave multiple local evaluation and materialization phases

within a transaction. For these reasons, we are going to de�ne a read-isolation property for partially

ordered multi-sets, too, such that we are open to refer to the results of Section 5.3.

To �t with the optimistic transaction protocol of Remark 5.17, the system on which the transactions

are performed must enable the hypothetical reasoning about the e�ects of deferred operations.

Either the system behaviour has to be axiomatized, such that it can be investigated by formal

reasoning methods, or a simulation model of the system has to be provided. For instance, an

industrial robot might be simulated using physical models or software models, before the (possibly

non-retractable) actions are �nally carried out by the robot. We will adopt this point of view in

the example presented subsequently.

De�nition 5.24 [Read-Isolation] A pomset [V;�; �] 2 �z is called read-isolated from another

pomset [V0;�0; �0] 2 �
z, where V and V0 are chosen disjoint (w.l.o.g.), if for arbitrary events e 2 V

and arbitrary DB atoms A (ground or with variables X1; : : : ;Xn) the following holds:

If �(e) = Logact(A[~X = ~all]); then for all e0 2 V0 and for all ground tuples (~t) 2 Un;

A[~X =~t] is independent of �0(e
0):

2

101

The de�nition of read-isolation is well-de�ned. The isolation property depends only on the labelling

functions � and �0. Informally speaking, a pomset � is read-isolated from another pomset �0, i�

�0 does not contain any action a that a�ects the truth value of a DB atom for which a logging

action exists in �.

Lemma 5.25 Let �0;�1;�2 2 �
z be arbitrary pomsets. Then the following equivalences hold:

�1 read-isolated from �0 ^ �2 read-isolated from �0

() �1 t�2 read-isolated from �0

�1 read-isolated from �0 ^ �2 read-isolated from �0

() �1 ��2 read-isolated from �0

Proof: Choose (w.l.o.g.) representatives [V0;�0; �0], [V1;�1; �1], and [V2;�2; �2] for �0 to �2,

where the Vi are disjoint. By De�nitions 4.36 and 4.37, the event sets of �1 t �2 and �1 � �2

are both V1 [V2, and the labelling functions are both �1 [�2. Since V1 [V2 contains exactly the

events of V1 and V2, the desired properties can be shown easily. 2

The following theorem shows that also the read-isolation property de�ned in this section �ts into

the generic ULTRA framework. This allows us to apply the isolation and serializability results of

Section 5.3.

Theorem 5.26 [Algebraic Properties] The algebraic properties of De�nition 5.7 hold for the

read-isolation relation de�ned for pomsets.

Proof: Property 1 follows directly from Lemma 5.25. So, we just have to verify property 2.

Let �0 2 TCons be a consistent transition and A be a DB atom (containing the variables ~X) with

the ground instance A0 := A[~X = ~all], such that Log(A0) is read-isolated from �0. Let A00 be an

arbitrary ground instance of A, let s 2 S be a state, and let � 2 TCons be another consistent

transition.

First, we will �nd representations of (s �E �0) �E � and s �E �. Let �0

0 2 �z and �0 2 �z be

some linearizations of �0 and �, respectively. For the sake of brevity, we assume that �0 has the

list representation [a1; : : : ; am] and that � has the list representation [b1; : : : ; bn] (cf. Remark 4.48).

Applying De�nition 4.53 inductively, it is possible to show that the following equalities hold:

(s�E �0)�E � = do(bn; do(: : : ; do(b1; do(am; do(: : : ; do(a1; s)::)))::))

s�E � = do(bn; do(: : : ; do(b1; s)::))

Next, consider the read-isolation condition of De�nition 5.24. As Log(A0) is read-isolated from �0

by assumption and contains one event labelled with Logact(A[~X = ~all]), A00 must be independent

of each ai (i 2 f1; : : : ;mg). Applying De�nition 4.28 inductively, one can easily show the desired

equivalences. 2

Example 5.27 [Robot World (Cont.)] Recall Example 3.20 and consider the recursively de-

�ned operations xmove and ymove. Let us assume that the robot is at position (1; 1) in the initial

state s0 and the following transactions have been invoked:

T1 � xmove(3)

T2 � ymove(3)

102

For each update query Ti, there exists exactly one possible transition �i:

�1 = [?xpos; xstep(1); ?xpos; xstep(1); ?xpos]

�2 = [?ypos; ystep(1); ?ypos; ystep(1); ?ypos]

In Example 4.31 we have already justi�ed that arbitrary DB atoms of the form ypos(: : :) are

independent of the actions ?xpos and xstep(1). Further, there are no other DB atoms that have

the logging transition ?ypos. Consequently, the pomsets f?yposg and �2 are both read-isolated

from the pomset �1 by De�nition 5.24. It should be noted that also �1 is read-isolated from �2,

since the x- and y-components can be exchanged.

The results of Section 5.3 can be applied within an operational model based on deferred external

actions. For instance, let us consider the following environment: In state s0, a snapshot of the

robot world is taken by a camera, preprocessed, and distributed to two computer systems that

allow (local) simulations on the (virtual) robot world. If T1 is evaluated using the �rst and T2 using

the second simulator, then the locally computed transitions �1 and �2 can be materialized later

{ either �2 after �1 or vice versa {, while the e�ect on the real robot world is the same as if the

transactions were executed strictly in serial. Unfortunately, the robot example presented in this

thesis is too simple to feature more interesting transactions that satisfy the isolation conditions. 2

5.6 Read-Isolation and Stronger Constraints

Whenever a valid read-isolation relation R is found for an ULTRA instance, the relation represents

a suÆcient condition for isolation checks on the basis of computed transitions. In this section we

claim that stronger conditions can be used as well. They may lead to more restrictive protocols

but do not compromise the correctness results.

Proposition 5.28 Let R be a read-isolation relation according to De�nition 5.7 and let � be

another binary relation on the set T of transitions, such that the inclusion � � R holds, i.e.

�(�;�0) =) � read-isolated from �0

holds for arbitrary transitions �;�0 2 T . Then Theorem 5.11 and its consequences also hold, if

the read-isolation property R is continuously replaced by the property �.

Proof: As the read-isolation property always occurs as a precondition, it can be replaced by the

stronger property � without invalidating the formal results. 2

Remark 5.29 Let R and � be as in Proposition 5.28, in particular, with � � R. If further

property 1 of De�nition 5.7 holds for � analogously, i.e. the conditions

(a) �(�1 t�2;�0) =) �(�1;�0) ^ �(�2;�0)

(b) �(�1 ��2;�0) =) �(�1;�0) ^ �(�2;�0)

hold for arbitrary �1;�2 2 T and �0 2 TCons, then � is a valid read-isolation relation.

Proof: Property 1 of De�nition 5.7 holds by the precondition. Property 2 follows immediately

from the inclusion � � R. 2

103

We would like to give an outline of how to apply Proposition 5.28 to the ULTRA instance tailored

to external operations.

Example 5.30 Recall the ULTRA instance that has been presented in Sections 3.3, 4.4, and 5.5.

In particular, recall De�nition 5.24, where the read-isolation property has been de�ned using the

independence property (cf. De�nition 4.28). This notion of independence has been formulated at

the semantical level and might be inadequate for an operational treatment (see [Elk90] for more

information about the problem of checking independence). However, in analogy to the consistency

example discussed in Section 4.5.3, it would be possible to handle independence at the syntactical

level. For this purpose, the speci�c instance has to be extended by an explicit independence relation.

We require that the independence assertions are correct, i.e. that syntactical independence entails

semantical independence.

If we now de�ne an alternative version of read-isolation by replacing semantical independence

by syntactical independence in De�nition 5.24, the results presented in Section 5.3 will also hold

w.r.t. the new property (corresponding to the parameter � in Proposition 5.28), which will ob-

viously entail the semantical read-isolation. In particular, we can use the new property for an

optimistic transaction processing. Moreover, the syntactical notion of read-isolation forms a valid

read-isolation relation: the additional properties listed in Remark 5.29 can easily be shown. We

decided to de�ne read-isolation �rst of all at the semantical level, because the semantical notion is

more general.

Recall the remark about view serializability and conict serializability in Example 4.70. If we de-

�ne read-isolation in terms of semantical independence, we can consider isolated transactions (cf.

Section 5.3) as view serializable, since the isolation criterion is based on state observations. Simi-

larly, a syntactical independence relation leads to a notion of conict serializability, where conicts

correspond to missing independence assertions. Note that the serializability criteria in [BHG87]

also take compatibilities between basic update operations into account. These compatibilities can

be neglected in our operational model, because only the evaluations run concurrently, while the

materializations are performed in a serial fashion. 2

104

6 Semantical Properties of Language Constructs and Programs

In this section we are going to identify properties that hold for ULTRA constructs or update pro-

grams written in the ULTRA language. The properties refer to the generic ULTRA framework and

hold regardless of any speci�c instance. Most of the assertions shown below can be exploited for

rewriting update programs without changing their model-theoretic semantics. The assertion shown

in Section 6.4 refers to minimal models of one update program but w.r.t. di�erent initial states. On

the one hand, the properties have theoretical relevance, as they demonstrate that the ULTRA se-

mantics is a well-de�ned extension of the declarative Datalog semantics [Llo87], on the other hand,

the properties may be helpful in practice, when evaluation methods and optimization strategies

have to be developed.

6.1 Algebraic Properties of the Connectives

The connectives of the ULTRA language have several algebraic properties. The properties can be

used when rewriting update formulas. Moreover, they allow simpli�ed representations of nested

formulas.

Proposition 6.1 [Algebraic Properties] The following properties hold for the connectives \;",

\:", and _.

1. The concurrent conjunction \;" is commutative (a) and associative (b) and has NOP as a

neutral element (c).

2. The sequential conjunction \:" is associative (a) and has NOP as a neutral element (b).

3. The disjunction _ is commutative (a) and associative (b).

Proof: The proof is straight-forward mainly using De�nition 4.9 and the algebraic properties

required in De�nition 4.2. Let ', , and � be arbitrary ground update formulas. For two given

update formulas, we show the equality of their interpretation by comparing the elements (�C ;�) 2

TCons � TCons.

1. First, we show the properties of the concurrent conjunction \;".

(a) Commutativity

(�C ;�) 2 I(';)

() there exist �1;�2 2 TCons such that :

(�C ;�1) 2 I(') and (�C ;�2) 2 I() and � = �1 t�2

() there exist �2;�1 2 TCons such that :
(4:2) (�C ;�2) 2 I() and (�C ;�1) 2 I(') and � = �2 t�1

() (�C ;�) 2 I(;')

105

(b) Associativity

(�C ;�) 2 I([';]; �)

() there exist �1�2;�3 2 TCons such that :

(�C ;�1�2) 2 I(';) and (�C ;�3) 2 I(�) and � = �1�2 t�3

() there exist �1�2;�1;�2;�3 2 TCons such that :

(�C ;�1) 2 I(') and (�C ;�2) 2 I() and (�C ;�3) 2 I(�)

and �1�2 = �1 t�2 and � = �1�2 t�3

() there exist �1;�2�3;�2;�3 2 TCons such that :
(4:2) (�C ;�1) 2 I(') and (�C ;�2) 2 I() and (�C ;�3) 2 I(�)

and �2�3 = �2 t�3 and � = �1 t�2�3

() there exist �1;�2�3 2 TCons such that :

(�C ;�1) 2 I(') and (�C ;�2�3) 2 I(; �) and � = �1 t�2�3

() (�C ;�) 2 I('; [; �])

(c) Neutral element

(�C ;�) 2 I(';NOP)

() there exist �1;�2 2 TCons such that :

(�C ;�1) 2 I(') and (�C ;�2) 2 I(NOP) and � = �1 t�2

() there exist �1;�2 2 TCons such that :

(�C ;�1) 2 I(') and �2 = �" and � = �1 t�2

() (�C ;�) 2 I(')
(4:2)

We only have shown that I(';NOP) = I(') holds. The equation I(NOP;') = I(') follows

from the commutativity of \;".

2. Next, we show the properties of the sequential conjunction \:".

(a) Associativity

(�C ;�) 2 I([' :] : �)

() there exist �1�2;�3 2 TCons such that :

(�C ;�1�2) 2 I(' :) and (�C ��1�2;�3) 2 I(�) and � = �1�2 ��3

() there exist �1�2;�1;�2;�3 2 TCons such that :

(�C ;�1) 2 I(') and (�C ��1;�2) 2 I() and (�C ��1�2;�3) 2 I(�)

and �1�2 = �1 ��2 and � = �1�2 ��3

() there exist �1;�2�3;�2;�3 2 TCons such that :
(4:2) (�C ;�1) 2 I(') and (�C ��1;�2) 2 I()

and ((�C ��1)��2;�3) 2 I(�)

and �2�3 = �2 ��3 and � = �1 ��2�3

() there exist �1;�2�3 2 TCons such that :

(�C ;�1) 2 I(') and (�C ��1;�2�3) 2 I(: �) and � = �1 ��2�3

() (�C ;�) 2 I(' : [: �])

106

(b) Neutral element

(�C ;�) 2 I(' : NOP)

() there exist �1;�2 2 TCons such that :

(�C ;�1) 2 I(') and (�C ��1;�2) 2 I(NOP) and � = �1 ��2

() there exist �1;�2 2 TCons such that :

(�C ;�1) 2 I(') and �2 = �" and � = �1 ��2

() (�C ;�) 2 I(')
(4:2)

(�C ;�) 2 I(NOP : ')

() there exist �1;�2 2 TCons such that :

(�C ;�1) 2 I(NOP) and (�C ��1;�2) 2 I(') and � = �1 ��2

() there exist �1;�2 2 TCons such that :

�1 = �" and (�C ��1;�2) 2 I(') and � = �1 ��2

() (�C ;�) 2 I(')
(4:2)

3. The proof of the properties (a) and (b) of the disjunction _ is trivial. 2

As already mentioned in Section 4.2, it is legitimate to omit the precedence brackets in update

formulas of the form '1; : : : ; 'n , '1 : : : : : 'n , and '1_: : :_'n , because the associativity justi�es

arbitrary decompositions of these formulas. The commutativity of \;" and _ allows reorderings,

and the neutral update literal NOP can generally be eliminated from conjunctions.

6.2 Quanti�cations as Abbreviations

In this section we show that the existential quanti�cation can be considered as an extension of the

disjunction. Similarly, the bulk quanti�er extends the concurrent conjunction. Under �niteness

constraints, the quanti�ers behave like abbreviations. This is formalized in the following proposi-

tions.

Proposition 6.2 Let the Herbrand universe U be �nite. Let I 2 I be an interpretation of update

formulas, and let :� 9 ~X ' be an existentially quanti�ed update formula without free variables,

where ~X = X1; : : : ;Xn.

Let '1; : : : ; 'k be a �nite sequence of ground instances of ' that contains each instance '[~X =~t]

with (~t) 2 Un at least once (but possibly more than once). De�ne the disjunctive update formula

 0 :� '1 _ : : : _ 'k.

Then I() = I(0).

107

Proof: We show the assertion by comparing the elements (�C ;�) 2 TCons � TCons.

(�C ;�) 2 I(9 ~X ')

() there exists a ground term tuple (~t) 2 Un such that :
(4:9) (�C ;�) 2 I('[~X =~t])

() there exists i 2 f1; : : : ; kg such that :

(�C ;�) 2 I('i)

() (�C ;�) 2 I('1 _ : : : _ 'k)
(see below)

The last step follows inductively from case (Dj) of De�nition 4.9. Recall that the commutativity

and the associativity of _ have already been shown in Proposition 6.1. 2

To prove a relation between the bulk quanti�cation and the concurrent conjunction, we need the fol-

lowing lemma, which shows that the concurrent composition
F
of multi-sets of transitions naturally

extends the concurrent composition t of two transitions.

Lemma 6.3 Let �1; : : : ;�k be a �nite, non-empty sequence of transitions �i 2 T . De�ne T as

the multi-set built from the items �1; : : : ;�k. Then the equality

�1 t : : : t�k =
G
T

holds.

Proof: The assertion follows from De�nition 4.2, in particular from property 5. We give a formal

proof based on induction.

Base case: k = 1

�1 = �1 t�" = �1 t
G
; =

G
(f�1g] ;) =

G
f�1g

Induction step: k ! k + 1

By the induction hypothesis, the assertion holds for every multi-set of k elements, in particular

for the multi-set T 0 built from �1; : : : ;�k. Now we can prove the assertion for the multi-set

T built from the items �1; : : : ;�k+1.

�1 t : : : t�k+1 = �k+1 t (�1 t : : : t�k)

= �k+1 t
F
T 0 =

F
(f�k+1g] T

0) =
F
T

(IH)

2

Proposition 6.4 Let I 2 I be an interpretation of update formulas, and let :� # ~X [A 7! '] be

a ground bulk quanti�cation formula, where ~X = X1; : : : ;Xn. Let �C be an arbitrary consistent

transition such that

TA;�C
= f(~t) 2 Un j IDB(s0 �E �C) j= A[~X =~t]g

108

is �nite and has a cardinality of k.

If k > 0, let '1; : : : ; 'k be an enumeration of the ground instances '[~X =~t] with (~t) 2 TA;�C
.

Note that each formula 'i may occur more than once within the enumeration, if not all quanti�ed

variables occur free in '. De�ne the concurrent conjunction 0 :� '1; : : : ; 'k.

Otherwise, i.e. if k = 0, de�ne 0 :� NOP .

Then for arbitrary consistent transitions � 2 TCons the following implications hold:

(�C ;�) 2 I() =) there exists �0 2 TCons such that :

� = Log(A[~X = ~all])��0 and (�C ;�
0) 2 I(0)

(�C ; Log(A[~X = ~all])��) 2 I() (= (�C ;�) 2 I(
0)

Proof: The case k = 0 is trivial. By cases (Bulk) and (NOP) of De�nition 4.9 the following

equivalences hold for arbitrary consistent transitions � 2 TCons.

(�C ;�) 2 I() () � = Log(A[~X = ~all])

(�C ;�) 2 I(
0) () � = �"

The assertions `)' and `(' follow immediately. Recall that �" is the neutral element of �.

Next, let us assume that k > 0. Let � 2 TCons be arbitrarily chosen.

`)':

Assume that (�C ;�) 2 I() holds. By case (Bulk) of De�nition 4.9, there exists a function

f : TA;�C
! TCons such that

(�C ; f(~t)) 2 I('[~X =~t])

holds for all (~t) 2 TA;�C
and

� = Log(A[~X = ~all]) �
G

(~t)2TA;�C

f(~t):

De�ne

�0 :=
G

(~t)2TA;�C

f(~t):

By property 3 of De�nition 4.2, �0 must be consistent, since � is consistent. Using Lemma

6.3, one can show that

�0 = �1 t : : : t�k

where �i = f(~t), i� '[~X =~t] is enumerated at position i in '1; : : : ; 'k. Applying case (CCj)

of De�nition 4.9, it is easy to show that (�C ;�
0) 2 I(0) holds. Note that the properties of

the function f imply that

(�C ;�i) 2 I('i)

holds for all i 2 f1; : : : ; kg.

109

`(':

Assume that (�C ;�) 2 I(
0). Using case (CCj) of De�nition 4.9, one can easily show that

there exist consistent transitions �1; : : : ;�k 2 TCons such that

(�C ;�i) 2 I('i)

for all i 2 f1; : : : ; kg and

� = �1 t : : : t�k:

Next, de�ne f : TA;�C
! TCons by

f(~t) := �i; i� '[~X =~t] is enumerated at position i in '1; : : : ; 'k

for all (~t) 2 TA;�C
. By case (Bulk) of De�nition 4.9 and Lemma 6.3, the conclusion

(�C ; Log(A[~X = ~all])��) 2 I() follows. Note that the consistency of Log(A[~X = ~all])��

is provable using property 3 of De�nition 4.2.

2

6.3 Rewriting of Update Programs

In Proposition 6.1 we have already presented some algebraic properties that hold for the concurrent

conjunction, the sequential conjunction, and the disjunction. Obviously, these properties enable

simple program transformations. In this section we formalize some more rewriting techniques that

leave the semantics of a given update program unchanged. Finite programs can be transformed

into a normal form which does not allow nested subgoals. Furthermore, the disjunction and the ex-

istential quanti�cation can be eliminated. The results may be useful when dealing with operational

semantics and program optimization.

As in Section 4 we always refer to an arbitrary but �xed initial state s0 2 S.

Note that the rewriting techniques presented below have been adopted from logic database lan-

guages, where they are legitimate and commonly used (see e.g. [FSS91] about program simpli�cation

in the LOLA system). In this light, the properties emphasize that the ULTRA approach extends

the well-known concepts not only at the syntactical level, but also at the semantical level. In

particular, a high amount of declarativity is preserved. Many logical rewriting properties get lost,

if a declarative language is extended by impure features that are only de�ned at the operational

level (see [Wad95a] for some examples in the context of functional languages).

6.3.1 Auxiliary Rules for Complex Goals

In this section we show that update programs can be transformed in a folding style, such that

complex goals are replaced by de�nable update atoms which are de�ned by auxiliary rules.

First, we show that the minimal model of a program is kept, if the program is simply augmented

by an auxiliary rule. As is to be expected, due to the new rule, both minimal models are not equal.

However, they coincide on the relevant part of the de�nable update base.

110

De�nition 6.5 Let I1; I2 2 I be interpretations of update formulas and p 2 PredDU be a de�nable

update predicate. I1 and I2 are called equal modulo p, denoted by I1 =p I2, if

I1(q(~t)) = I2(q(~t))

holds for all ground de�nable update atoms q(~t) 2 BDU with q 6= p. 2

In the settings of De�nition 6.5, the interpretations I1 and I2 may di�er only for de�nable update

atoms over the predicate p. Whenever p is an auxiliary predicate, its interpretation is irrelevant,

and the equality =p is considered as suÆcient.

Proposition 6.6 Let I1; I2 2 I be interpretations of update formulas and p 2 PredDU be a

de�nable update predicate such that I1 =p I2 holds. Then for arbitrary ground formulas ' that do

not contain the predicate p, the following holds:

I1(') = I2(')

Proof: As the interpretation of an update formula is de�ned inductively having the de�nable

update atoms as base cases (see De�nition 4.9 for details), the assertion follows directly. 2

The next lemma shows that it is legitimate to add an auxiliary rule to a program without changing

the other rules.

Lemma 6.7 Let PUP be an update program, and let p 2 PredDU be a de�nable update predicate

which does not occur in the rules of PUP . Let p(~s) be an arbitrary de�nable update atom over p

and � be an arbitrary update goal. De�ne P 0UP as the extension of PUP by the new rule p(~s) �.

Then

MUP [PUP ; s0] =p MUP [P
0

UP ; s0]

holds.

Proof: We prove the assertion by trans�nite induction. For a given ordinal we show that

TPUP " =p TP 0
UP
"

holds.

Base case: = 0

The case is trivial, since I?(q(~t)) = ; holds for all ground de�nable update atoms q(~t) 2 BDU .

Induction step: successor ordinal �+ 1

By the induction hypothesis, the desired equality modulo p holds for the ordinal �. By

Proposition 6.6, TPUP " � (') equals TP 0UP
" � (') for all formulas that do not contain the

predicate p.

111

Now choose a ground de�nable update atom q(~t) 2 BDU with q 6= p. Note that q(~t) is not

de�ned by the new rule p(~s) � and p does not occur in any other rules. Thus, for arbitrary

consistent transitions �C ;� 2 TCons the following equivalences hold.

(�C ;�) 2 TPUP " �+ 1 (q(~t))

() (�C ;�) 2 TPUP (TPUP " �)(q(~t))
(4:86)

() there exists a ground instance U ! q(~t) of a rule r 2 PUP ;
(4:83) such that (�C ;�) 2 TPUP " � (U)

() there exists a ground instance U ! q(~t) of a rule r 2 P 0UP ;
(see above) such that (�C ;�) 2 TP 0

UP
" � (U)

() (�C ;�) 2 TP 0
UP

(TP 0
UP
" �)(q(~t))

(4:83)

() (�C ;�) 2 TP 0
UP
" �+ 1 (q(~t))

(4:86)

Induction step: limit ordinal �

By the induction hypothesis, the desired equality modulo p holds w.r.t. all ordinals � < �.

Now choose a ground de�nable update atom q(~t) 2 BDU with q 6= p. For arbitrary �C ;� 2

TCons the following equivalences hold.

(�C ;�) 2 TPUP " � (q(~t))

() (�C ;�) 2
S
�<� TPUP " � (q(~t))

(4:75)

() there exists � < � such that (�C ;�) 2 TPUP " � (q(~t))

() there exists � < � such that (�C ;�) 2 TP 0
UP
" � (q(~t))

(IH)

() (�C ;�) 2
S
�<� TP 0UP

" � (q(~t))

() (�C ;�) 2 TP 0
UP
" � (q(~t))

(4:75)

Next, let us choose an ordinal � that is greater than both closure ordinals �PUP and �P 0
UP

(cf.

Theorem 4.87). The equality of the minimal models modulo p follows directly from the inequalities

TPUP " � �MUP [PUP ; s0] = TPUP " �PUP � TPUP " �

and

TP 0
UP
" � �MUP [P

0

UP ; s0] = TP 0
UP
" �P 0

UP
� TP 0

UP
" �

which can be derived from Theorem 4.87 using �xpoint properties (see [Llo87] for details). 2

The following proposition provides a statement about the interpretation of an auxiliary predicate.

Informally speaking, the auxiliary predicate serves as an abbreviation of an update formula.

112

Proposition 6.8 Let PUP be an update program, and let p 2 PredDU be a de�nable update

predicate which does not occur in the rules of PUP . Let p(~s) be an arbitrary de�nable update

atom over p and � be an arbitrary update goal. De�ne P 0UP as the extension of PUP by the new

rule p(~s) �.

Then for arbitrary ground instances of � and p(~s) the following holds:

MUP [P
0

UP ; s0](�[
~Y =~t]) =MUP [P

0

UP ; s0](p(~s)[
~Y =~t])

Proof: De�ne M :=MUP [P
0

UP ; s0].

`�':

By Lemma 4.72, an interpretation I is a model of a program P , i� for every ground instance

U ! q(~t) of a rule r 2 P the set inclusion I(U) � I(q(~t)) holds.

As M is a model of P 0UP ,

M(�[~Y =~t]) �M(p(~s)[~Y =~t])

holds for every ground instance of the auxiliary rule.

`�':

Recall that the auxiliary rule is the only rule that de�nes the predicate p. By Theorem

4.87, M is the least �xpoint of TP 0
UP
. So, if (�C ;�) 2 M(p(~s)[~Y =~t]) and thus (�C ;�) 2

TP 0
UP
(M)(p(~s)[~Y =~t]) holds, then (�C ;�) 2M(�[~Y =~t]) must also hold by De�nition 4.83.

2

Next, we will show that under certain conditions it is possible to rewrite subgoals occurring in a

rule of an update program. Before we can present the main theorem, we need the following lemma.

Lemma 6.9 Let I 2 I be an interpretation of update formulas. Let �1 and �2 be update goals

with the same free variables ~X such that for all ground instances

I(�1[~X =~t]) � I(�2[~X =~t])

holds. Let '1 be an update goal containing �1 as a subgoal at some position, and let '2 be a

structurally identical goal, where one occurrence of �1 has been replaced by �2. Let ~Y denote the

free variables of '1, which are also the free variables of '2. Then for all ground instances

I('1[~Y =~t]) � I('2[~Y =~t])

holds.

Proof: We show the assertion by structural induction on the goals '1 and '2. Outside the

replacement area, both formulas are structurally equivalent, and corresponding subgoals have the

same free variables. In the following we mark subgoals of '1 with the index 1 and subgoals of '2

with the index 2.

113

Base cases (outside the replacement area):

These cases are trivial, since the subgoals of '1 and '2 coincide outside the replacement area.

Base case (replacement goals):

The subgoals �1 (of '1) and �2 (of '2) can be treated as a further base case. The desired

inclusions hold by the precondition.

Induction step:

By the induction hypothesis,

I('1[~Y =~t]) � I('2[~Y =~t])

holds for any direct proper subgoal '1 and the corresponding subgoal '2 of the composite goals

analyzed in the following. In each case shown below, we choose arbitrary ground instances

of the composite goals and arbitrary consistent transitions �C ;� 2 TCons, then we apply

De�nition 4.9.

1. Concurrent conjunction

(�C ;�) 2 I(('1; 1)[~Y =~t])

=) there exist �1;�2 2 TCons such that :

(�C ;�1) 2 I('1[~Y =~t]) and (�C ;�2) 2 I(1[~Y =~t])

and � = �1 t�2

=) there exist �1;�2 2 TCons such that :
(IH) (�C ;�1) 2 I('2[~Y =~t]) and (�C ;�2) 2 I(2[~Y =~t])

and � = �1 t�2

=) (�C ;�) 2 I(('2; 2)[~Y =~t])

2. Sequential conjunction

(�C ;�) 2 I(('1 : 1)[~Y =~t])

=) there exist �1;�2 2 TCons such that :

(�C ;�1) 2 I('1[~Y =~t]) and (�C ��1;�2) 2 I(1[~Y =~t])

and � = �1 ��2

=) there exist �1;�2 2 TCons such that :
(IH) (�C ;�1) 2 I('2[~Y =~t]) and (�C ��1;�2) 2 I(2[~Y =~t])

and � = �1 ��2

=) (�C ;�) 2 I(('2 : 2)[~Y =~t])

3. Disjunction

(�C ;�) 2 I(('1 _ 1)[~Y =~t])

=) (�C ;�) 2 I('1[~Y =~t]) or (�C ;�) 2 I(1[~Y =~t])

=) (�C ;�) 2 I('2[~Y =~t]) or (�C ;�) 2 I(2[~Y =~t])
(IH)

=) (�C ;�) 2 I(('2 _ 2)[~Y =~t])

114

4. Existential quanti�cation

Consider a quanti�cation 9 ~Z '1, where ~Z = Z1; : : : ; Zn. Let ~Y 0 denote the free vari-

ables of the subgoal '1. By the induction hypothesis,

I('1[~Y
0 =~t]) � I('2[~Y

0 =~t])

holds for all ground instances. The variables ~Z do not occur in the sequence ~Y of the

free variables of the existential quanti�cation. We can reason as follows:

(�C ;�) 2 I((9 ~Z '1)[~Y =~t])

=) there exists a ground term tuple (~s) 2 Un such that :

(�C ;�) 2 I('1[~Y ; ~Z = ~t ; ~s])

=) there exists a ground term tuple (~s) 2 Un such that :
(IH) (�C ;�) 2 I('2[~Y ; ~Z = ~t ; ~s])

=) (�C ;�) 2 I((9 ~Z '2)[~Y =~t])

5. Bulk quanti�cation

Consider a bulk quanti�cation # ~Z [A 7! '1], where ~Z = Z1; : : : ; Zn. Let ~Y 0 denote

the free variables of the subgoal '1. By the induction hypothesis,

I('1[~Y
0 =~t]) � I('2[~Y

0 =~t])

holds for all ground instances. The variables ~Z do not occur in the sequence ~Y of the

free variables of the bulk quanti�cation.

Let �C ;� 2 TCons be arbitrarily chosen. The set

T
A[~Y =~t];�C

= f(~s) 2 Un j IDB(s0 �E �C) j= A[~Y ; ~Z = ~t ; ~s]g

does not depend on the interpretation of the update subgoal.

The case T
A[~Y =~t];�C

= ; is trivial:

(�C ;�) 2 I((# ~Z [A 7! '1])[~Y =~t])

=) � = Log(A[~Y ; ~Z = ~t ; ~all])

=) (�C ;�) 2 I((# ~Z [A 7! '2])[~Y =~t])

For T
A[~Y =~t];�C

6= ; we get:

(�C ;�) 2 I((# ~Z [A 7! '1])[~Y =~t])

=) there exists a function f : T
A[~Y =~t];�C

! TCons such that :

8(~s) 2 T
A[~Y =~t];�C

: (�C ; f(~s)) 2 I('1[~Y ; ~Z = ~t ; ~s])

and � = Log(A[~Y ; ~Z = ~t ; ~all]) �
F
(~s)2T

A[~Y =~t];�C

f(~s)

=) there exists a function f : T
A[~Y =~t];�C

! TCons such that :
(IH) 8(~s) 2 T

A[~Y =~t];�C
: (�C ; f(~s)) 2 I('2[~Y ; ~Z = ~t ; ~s])

and � = Log(A[~Y ; ~Z = ~t ; ~all]) �
F
(~s)2T

A[~Y =~t];�C

f(~s)

=) (�C ;�) 2 I((# ~Z [A 7! '2])[~Y =~t])
2

Now we are able to present the main result about program rewriting. The relevant part of the

minimal model of an update program is kept unchanged, if an arbitrarily chosen subgoal in any

rule body is replaced by an unused de�nable update atom and a corresponding auxiliary rule is

115

added to the program. To make the theorem more general, we allow the (successive) rewriting of

multiple occurrences of the selected subgoal.

Theorem 6.10 [Rewriting of Update Programs] Let P0 be an update program, let p 2

PredDU be a de�nable update predicate which does not occur in the rules of P0, and let � be

an update goal with the free variables ~X . Let P1; : : : ; Pn be update programs such that Pi is a

rewritten version of Pi�1 where one occurrence of � in a rule body has been replaced by p(~X) for

i 2 f1; : : : ; ng. De�ne P 0i as the extension of Pi by the new rule p(~X) � for each i 2 f0; : : : ; ng.

Then the following holds:

MUP [P0; s0] =p MUP [P
0

n; s0]

Proof: By Lemma 6.7,

MUP [P0; s0] =p MUP [P
0

0; s0]

holds. We show that

MUP [P
0

i�1; s0] =MUP [P
0

i ; s0]

holds for all i 2 f1; : : : ; ng. The assertion then follows directly by induction. Note that P 0i�1 and

P 0i di�er exactly in one rule r0 and this is not the auxiliary rule p(~X) �.

`�':

We show that every model of P 0i is also a model of P 0i�1. Then MUP [P
0

i ; s0] is a model of

P 0i�1, and

MUP [P
0

i�1; s0] �MUP [P
0

i ; s0]

follows from the construction of MUP [P
0

i�1; s0] as the greatest lower bound of all models of

P 0i�1 (cf. Theorem 4.81).

By Lemma 4.72, an interpretation I is a model of a program PUP , i� for every ground instance

U ! q(~t) of a rule r 2 PUP the set inclusion I(U) � I(q(~t)) holds.

So, let I 2 I be a model of P 0i , i.e. for every ground instance U ! q(~t) of a rule r 2 P 0i ,

I(U) � I(q(~t))

holds. The same inclusion holds for the unchanged rules in P 0i�1. Consequently, we just have

to prove a similar inclusion for the rule r0, which has been rewritten in P 0i .

Let us consider a ground instance U ! q(~t) of r0 and the corresponding instance U 0 ! q(~t)

of the rewritten rule in P 0i .

Note that in particular

I(�[~X =~t]) � I(p(~t))

116

holds for all ground instances of the auxiliary rule contained in P 0i�1 and P
0

i due to the model

property of I. By Lemma 6.9,

I(U) � I(U 0)

and thus by the model property of I

I(U) � I(q(~t))

follows. We can conclude that I is also a model of P 0i�1.

`�':

First, we show that for every interpretation I 2 I such that I � TP 0i�1
(I),

I(p(~t)) � I(�[~X =~t])

holds for all ground instances of the free variables ~X of the �xed goals. The property

TP 0i (I) � TP
0

i�1
(I)

can be derived easily. In the second step we can use trans�nite induction to prove the main

assertion.

So, assume that I 2 I is an interpretation for which the precondition I � TP 0i�1
(I) holds.

Consider an arbitrary instance �[~X =~t] ! p(~t) of the auxiliary rule, which is the only rule

that de�nes p. So, if (�C ;�) 2 I(p(~t)) and thus (�C ;�) 2 TP 0i�1
(I)(p(~t)) holds, then

(�C ;�) 2 I(�[~X =~t]) must also hold by De�nition 4.83. This concludes the proof of the �rst

assertion.

Next, we have to show that

TP 0
i
(I)(q(~t)) � TP 0

i�1
(I)(q(~t))

holds for all ground de�nable update atoms q(~t) 2 BDU .

Let (�C ;�) 2 TP 0
i
(I)(q(~t)). If this property is derived according to De�nition 4.83 by a

di�erent rule than that one corresponding to r0, then (�C ;�) 2 TP 0
i�1

(I)(q(~t)) holds, too.

In the other case, there is an instance U 0 ! q(~t) of the transformed rule r0 such that

(�C ;�) 2 I(U
0). Let U be the corresponding instance of the rule body of the original rule

r0. We have to show that (�C ;�) 2 I(U) holds, too, in order to �nish the proof of the second

assertion. Recall that in the body of r0 one occurrence of the subgoal � has been rewritten

by p(~X). Further, U and U 0 are corresponding ground instances of the rule bodies. From

the assertion proved above

I(U 0) � I(U)

follows by Lemma 6.9. Thus (�C ;�) 2 I(U) holds.

117

Finally, the main assertion

MUP [P
0

i�1; s0] �MUP [P
0

i ; s0]

will be proved by trans�nite induction. For a given ordinal we show that the following

condition holds:

TP 0
i
" � TP 0

i�1
"

Base case: = 0

The case is trivial.

Induction step: successor ordinal �+ 1

By the induction hypothesis, the desired condition holds w.r.t. TP 0i " � and TP 0i�1
" �.

Hence, the inequalities

TP 0
i
(TP 0

i
" �) � TP 0

i
(TP 0

i�1
" �)

and

TP 0i�1
" � � TP 0i�1

(TP 0i�1
" �)

hold due to the monotonicity of TP 0
i�1

and TP 0
i
(see Lemma 4.84). By the assertion

proved above with I := TP 0
i�1
" �,

TP 0i (TP
0

i�1
" �) � TP 0i�1

(TP 0i�1
" �)

follows from the second inequality. Now we can reason as follows:

TP 0
i
" �+ 1

= TP 0i (TP
0

i
" �)

(4:86)

� TP 0
i
(TP 0

i�1
" �)

(see above)

� TP 0i�1
(TP 0i�1

" �)
(see above)

= TP 0i�1
" �+ 1

(4:86)

Induction step: limit ordinal �

By the induction hypothesis, the desired condition holds w.r.t. all ordinals � < �.

Now choose a ground de�nable update atom q(~t) 2 BDU . For arbitrary �C ;� 2 TCons,

the following implications hold.

(�C ;�) 2 TP 0
i
" � (q(~t))

=) (�C ;�) 2
S
�<� TP 0i " � (q(

~t))
(4:75)

=) there exists � < � such that (�C ;�) 2 TP 0i " � (q(
~t))

=) there exists � < � such that (�C ;�) 2 TP 0
i�1
" � (q(~t))

(IH)

=) (�C ;�) 2
S
�<� TP 0i�1

" � (q(~t))

=) (�C ;�) 2 TP 0
i�1
" � (q(~t))

(4:75)

118

Let us choose an ordinal � that is greater than both closure ordinals �P 0
i�1

and �P 0
i
(cf.

Theorem 4.87). The assertion about the minimal models follows directly from the inequalities

TP 0
i�1
" � �MUP [P

0

i�1; s0] = TP 0
i�1
" �P 0

i�1
� TP 0

i�1
" �

and

TP 0
i
" � �MUP [P

0

i ; s0] = TP 0
i
" �P 0

i
� TP 0

i
" �

which can be derived from Theorem 4.87 using �xpoint properties (see [Llo87] for details).

2

Remark 6.11 Theorem 6.10 formalizes an equality between minimal models. The program rewrit-

ing can be iterated and can also be applied in the reversed order. 2

Example 6.12 [Rewriting of Update Programs] Recall the setting of Example 3.20. Let P0
be the update program

act(X) [xmove(X) : pickup] : [xmove(0) : putdown]

act(X) [xmove(X) : pickup] : [putdown : xmove(0)]

and p be a new predicate that does not occur in P0. Next, we de�ne � as the subgoal

� :� xmove(X) : pickup

which occurs in both rules of P0. Note that the variable X has to be respected in the subsequent

rewriting process, as it occurs free in �.

Now we rewrite the occurrence of � in the �rst rule by p(X), do the same with the second rule, and

add the de�nition p(X) �. This way, we have constructed a program P 02 that reads as follows:

act(X) p(X) : [xmove(0) : putdown]

act(X) p(X) : [putdown : xmove(0)]

p(X) xmove(X) : pickup

By Theorem 6.10, P0 and P
0

2 have the same minimal model (modulo p). 2

6.3.2 Normal Forms of Update Programs

Theorem 6.10 can be applied successively in order to transform a �nite set of update rules into a

normal form where nested rule bodies are not allowed.

De�nition 6.13 An update rule is called normalized , if its rule body is either an update literal or

a complex goal whose direct subgoals are update literals.

An update program PUP is called normalized , if all rules r 2 PUP are normalized.

An update program is called �nite, if it is a �nite set of update rules. 2

119

Theorem 6.14 [Existence of Normal Forms] Let PUP be a �nite update program, and let the

set of de�nable update predicates PredDU be in�nite. De�ne PredDU jPUP as the (�nite) subset of

update predicates that occur in PUP and BDU jPUP as the restriction of the de�nable update base

BDU to the predicates of PredDU jPUP .

Then there exists a normalized and �nite update program P 0UP such that

MUP [PUP ; s0](p(~t)) =MUP [P
0

UP ; s0](p(~t))

holds for all ground de�nable update atoms p(~t) 2 BDU jPUP .

Proof: It is possible to construct a sequence P0; : : : ; Pn of �nite update programs with P0 = PUP
and Pn = P 0UP such that for each i 2 f1; : : : ; ng,

MUP [Pi�1; s0](p(~t)) =MUP [Pi; s0](p(~t))

holds for all ground de�nable update atoms p(~t) 2 BDU jPUP .

In every step, take a rule r0 that is not normalized and replace one of the innermost complex

subgoals of the rule body by the method of Theorem 6.10 which keeps the minimal model semantics

modulo p. p is not contained in PredDU jPUP and thus the equality above holds. The auxiliary

rule will be normalized, and the complexity of the remaining rules will strictly decrease. Thus,

termination of the rewriting process is guaranteed. Note that the in�nity of PredDU is essential to

ensure that it is always possible to �nd an unused auxiliary predicate. 2

Theorem 6.14 may be advantageous, when an operational semantics for the ULTRA concept has to

be developed and implemented. The evaluation methods can be designed to work on normalized

update programs, which are generated by a preprocessor at compile-time. The representation and

manipulation of normalized update programs will simplify the run-time system and could even lead

to a greater eÆciency. Additionally, the theoretical investigations about the operational semantics,

e.g. correctness and completeness proofs, could be restricted to normalized update programs, too.

Example 6.15 [Normal Form] The update program

act [[xstep(1) : pickup] : [xstep(�1) : putdown]] _ [pickup : putdown]

taken from the robot domain can be rewritten into the normal form

act p3 _ p4

p4 pickup : putdown

p3 p1 : p2

p2 xstep(�1) : putdown

p1 xstep(1) : pickup

using the method sketched in the proof of Theorem 6.14. The predicates p1; : : : ; p4 2 PredDU are

auxiliary predicates which must not occur in the original program. 2

120

6.3.3 Instantiated Rules

Update programs can be rewritten by replacing non-ground rules by their (possibly ground) in-

stances. The number of implicitly quanti�ed variables is reduced, possibly up to zero. In this latter

case, all remaining variables will occur in the rule bodies and always in the scope of an explicit

quanti�er (9 or #). In practice, the instantiation of rules is only viable, if the Herbrand universe

U is �nite. Otherwise in�nite update programs would be produced.

Proposition 6.16 [Instantiation of Rules] Let PUP an update program, and let P 0UP be con-

structed from PUP by instantiation of some subset R � PUP of rules as follows: if r 2 R, then r is

replaced by the set of all ground instances r[~X =~t] with (~t) 2 Un where X1; : : : ;Xn is some �nite

sequence of variables. Then

MUP [PUP ; s0] =MUP [P
0

UP ; s0]

holds.

Proof: Using De�nition 4.83, it is easy to show that

TPUP (I) = TP 0
UP
(I)

holds for all interpretations I 2 I. The assertion about the minimal models follows immediately.

2

It is also legitimate to add redundant rules, i.e. rules that are instances of existing rules.

Proposition 6.17 [Adding Redundant Rules] Let PUP an update program, and let P 0UP be

constructed from PUP by adding rules such that every (new) rule in P 0UP , is an instance of a rule

in PUP . Then

MUP [PUP ; s0] =MUP [P
0

UP ; s0]

holds.

Proof: The proof is analogous to the proof of Proposition 6.16. 2

Remark 6.18 Propositions 6.16 and 6.17 formalize equalities between minimal models. The pro-

gram rewritings can be iterated and can also be applied in the reversed order. In particular,

Proposition 6.17 allows also the elimination of a rule that is an instance of another rule in the same

program. 2

6.3.4 Elimination of Disjunction and Existential Quanti�cation

In this section we show that it is possible to eliminate disjunctions and existential quanti�cations

occurring in rule bodies. This could be exploited together with the results of Section 6.3.2 to

facilitate the development of an operational semantics.

121

Proposition 6.19 [Elimination of Disjunctions] Let PUP an update program, and let P 0UP be

constructed from PUP by replacing some rules of the form p(~t) '_ by the corresponding pairs

of rules p(~t) ' and p(~t) . Then

MUP [PUP ; s0] =MUP [P
0

UP ; s0]

holds.

Proof: Using De�nitions 4.83 and 4.9, it is easy to show that

TPUP (I) = TP 0
UP
(I)

holds for all interpretations I 2 I. The assertion about the minimal models follows immediately.

2

Example 6.20 [Elimination of Disjunctions] Let us assume that we have to implement a new

operation act for the robot world of Example 3.20: if the robot is empty it should try to pick up a

block, otherwise it should try to lay down the grabbed block onto the oor. The desired operation

can be speci�ed in a natural way using the disjunction _ in the rule body:

act [empty : pickup] _ [NOT empty : putdown]

However, Proposition 6.19 allows us to replace the single rule by the two rules

act empty : pickup

act NOT empty : putdown

without changing the semantics. 2

Proposition 6.21 [Elimination of Existential Quanti�cations] Let PUP an update program,

and let P 0UP be constructed from PUP by replacing some rules of the form p(~t) 9 ~X ', where

the variables of p(~t) do not occur in ~X , by the corresponding rules p(~t) '. Then

MUP [PUP ; s0] =MUP [P
0

UP ; s0]

holds.

Proof: The proof is analogous to the proof of Proposition 6.19. 2

Example 6.22 [Elimination of Existential Quanti�cations] Recall our introductory exam-

ple modeling a storage for transport devices (see Appendix A for details). Let us extend the set of

operations by the new operation eliminate that completely removes a transport item I from the

store table. The operation should �nd values for P and A such that store(I; P;A) holds, and it

should request the deletion of the corresponding tuple. The logically correct rule reads as follows:

eliminate(I) 9P;A [store(I; P;A); DEL store(I; P;A)]

However, it can be simpli�ed to

eliminate(I) store(I; P;A); DEL store(I; P;A)

according to Proposition 6.21. Variables that occur locally in a rule body but not in the scope of

an explicit quanti�er are implicitly existentially quanti�ed. 2

122

Remark 6.23 Propositions 6.19 and 6.21 formalize equalities between minimal models. The pro-

gram rewritings can be iterated and can also be applied in the reversed order. Note that a �nite

program is always transformed into a �nite program. 2

Corollary 6.24 Let PUP be a normalized update program. Then there exists a normalized update

program P 0UP such that no disjunctions and no existential quanti�cations occur in the rule bodies

of P 0UP and

MUP [PUP ; s0] =MUP [P
0

UP ; s0]

holds.

Proof: As PUP is normalized, its rules do not contain any nested complex goals.

Apply Proposition 6.19 to eliminate the disjunctive rule bodies. The modi�ed rules are normalized.

Next, if there are rules having (implicitly quanti�ed) variables in the rule head that also occur

bound by an existential quanti�er in the rule body, rename the concerned variables in the head.

Finally, apply Proposition 6.21 to eliminate the existentially quanti�ed rule bodies. The modi�ed

rules are normalized. 2

Theorem 6.14 and Corollary 6.24 together state that �nite update programs can be rewritten into

a normal form without disjunction and existential quanti�cation. The minimal model semantics is

kept w.r.t. the predicates that occur in the original program.

Example 6.25 [Local Variables and Existential Quanti�cations] Recall our introductory

example (see Appendix A and also Example 6.22) and consider the following rule, which speci�es

an elimination of all transport devices having a low stock:

eliminate low # I

[low(I) 7!

9P;A [store(I; P;A); DEL store(I; P;A)]]

The variables P and A must be existentially quanti�ed, as they have to be instantiated individually

for each I. The quanti�er cannot simply be dropped. However, it is possible to produce the normal

form

eliminate low # I [low(I) 7! p2(I)]

p2(I) 9P;A p1(I; P;A)

p1(I; P;A) store(I; P;A); DEL store(I; P;A)

with new auxiliary predicates p1 and p2. Now we can omit the existential quanti�er. This leads to

the following normalized update program:

eliminate low # I [low(I) 7! p2(I)]

p2(I) p1(I; P;A)

p1(I; P;A) store(I; P;A); DEL store(I; P;A)

2

123

6.4 Semantics of Programs in Di�erent Initial States

The model-theoretic semantics of an update program has been de�ned w.r.t. an arbitrary but

�xed initial state (always called s0 in Section 4). In this section we formalize relations between

interpretations that refer to di�erent initial states. The assertions may be helpful when formalizing

an operational semantics that is based on immediate updates. Note that the immediate updates will

change the physical state during the evaluation of composite operations and thus do not harmonize

directly with the logical ULTRA semantics.

To be able to deal with multiple initial states, we have to use some modi�ed notation that takes

the initial state as an explicit parameter. Let an interpretation I 2 I of the de�nable update atoms

be given, and let s 2 S be a state. We denote the interpretation of arbitrary update formulas as

de�ned by De�nition 4.9 w.r.t. the initial state s by Is. Further, for a given update program PUP
we denote the immediate consequence operator w.r.t. the initial state s by T s

PUP
. According to

De�nition 4.83, T s
PUP

: I ! I is formally de�ned by

T s
PUP

(I)(p(~t)) := f (�C ;�) 2 TCons � TCons j

there exists a ground instance U ! p(~t)

of a rule r 2 PUP ; such that (�C ;�) 2 I
s(U) g

for all p(~t) 2 BDU .

Note that in general for di�erent states s1; s2 2 S, I
s1 and Is2 do not coincide, and thus T s1

PUP
(I)

may di�er from T s2
PUP

(I).

Recall from De�nition 4.94 that MUP [PUP ; s] implicitly means MUP [PUP ; s]
s.

Now we are going to prove a relation between the interpretation of update formulas w.r.t. di�erent

initial states. This will lead to an essential property of the minimal models of update programs.

Lemma 6.26 Let s0; s1 2 S be arbitrary states and �0�1 2 TCons be a consistent transition such

that s1 = s0 �E �0�1. Let I0; I1 2 I be interpretations of the de�nable update atoms such that

for arbitrary ground atoms p(~t) 2 BDU

8�C ;� 2 TCons : (�0�1 ��C ;�) 2 I0(p(~t))() (�C ;�) 2 I1(p(~t))

holds. Then for arbitrary ground update formulas '

8�C ;� 2 TCons : (�0�1 ��C ;�) 2 I
s0
0 (')() (�C ;�) 2 I

s1
1 (')

holds.

Proof: We prove the assertion by structural induction. In each case shown below, we choose

arbitrary �C ;� 2 TCons and show the desired equivalence using De�nition 4.9.

124

Base cases:

1. DB literal

We only show the assertion for a positive DB literal. The proof for a negative DB literal

is entirely analogous.

(�0�1 ��C ;�) 2 I
s0
0 (A)

() IDB(s0 �E (�0�1 ��C)) j= A and � = Log(A)

() IDB((s0 �E �0�1)�E �C) j= A and � = Log(A)
(4:2)

() IDB(s1 �E �C) j= A and � = Log(A)

() (�C ;�) 2 I
s1
1 (A)

2. NOP literal

(�0�1 ��C ;�) 2 I
s0
0 (NOP)

() � = �"

() (�C ;�) 2 I
s1
1 (NOP)

3. Basic update atom

(�0�1 ��C ;�) 2 I
s0
0 (u(~t))

() � = Upd(u(~t))

() (�C ;�) 2 I
s1
1 (u(~t))

4. De�nable update atom

(�0�1 ��C ;�) 2 I
s0
0 (p(~t))

() (�0�1 ��C ;�) 2 I0(p(~t))

() (�C ;�) 2 I1(p(~t))

() (�C ;�) 2 I
s1
1 (p(~t))

Note that the precondition is essential for this part of the proof.

Induction step:

By the induction hypothesis, the assertion holds for any direct proper subformula ' of the

composite formulas analyzed in the following.

1. Concurrent conjunction

(�0�1 ��C ;�) 2 I
s0
0 (';)

() there exist �1;�2 2 TCons such that :

(�0�1 ��C ;�1) 2 I
s0
0 (') and (�0�1 ��C ;�2) 2 I

s0
0 ()

and � = �1 t�2

() there exist �1;�2 2 TCons such that :
(IH) (�C ;�1) 2 I

s1
1 (') and (�C ;�2) 2 I

s1
1 ()

and � = �1 t�2

() (�C ;�) 2 I
s1
1 (';)

125

2. Sequential conjunction

(�0�1 ��C ;�) 2 I
s0
0 (' :)

() there exist �1;�2 2 TCons such that :

(�0�1 ��C ;�1) 2 I
s0
0 (') and ((�0�1 ��C)��1;�2) 2 I

s0
0 ()

and � = �1 ��2

() there exist �1;�2 2 TCons such that :
(4:2) (�0�1 ��C ;�1) 2 I

s0
0 (') and (�0�1 � (�C ��1);�2) 2 I

s0
0 ()

and � = �1 ��2

() there exist �1;�2 2 TCons such that :
(IH) (�C ;�1) 2 I

s1
1 (') and (�C ��1;�2) 2 I

s1
1 ()

and � = �1 ��2

() (�C ;�) 2 I
s1
1 (' :)

3. Disjunction

(�0�1 ��C ;�) 2 I
s0
0 (' _)

() (�0�1 ��C ;�) 2 I
s0
0 (') or (�0�1 ��C ;�) 2 I

s0
0 ()

() (�C ;�) 2 I
s1
1 (') or (�C ;�) 2 I

s1
1 ()

(IH)

() (�C ;�) 2 I
s1
1 (' _)

4. Existential quanti�cation

Consider a quanti�cation 9 ~X ', where ~X = X1; : : : ;Xn.

(�0�1 ��C ;�) 2 I
s0
0 (9 ~X ')

() there exists a ground term tuple (~t) 2 Un such that :

(�0�1 ��C ;�) 2 I
s0
0 ('[~X =~t])

() there exists a ground term tuple (~t) 2 Un such that :
(IH) (�C ;�) 2 I

s1
1 ('[~X =~t])

() (�C ;�) 2 I
s1
1 (9 ~X ')

5. Bulk quanti�cation

Consider a bulk quanti�cation # ~X [A 7! '], where ~X = X1; : : : ;Xn. By the induction

hypothesis,

8�C ;� 2 TCons : (�0�1 ��C ;�) 2 I
s0
0 ('[~X =~t])() (�C ;�) 2 I

s1
1 ('[~X =~t])

holds for all instances '[~X =~t] of the update subformula '.

Let �C ;� 2 TCons be arbitrarily chosen. We de�ne

T s0
A;�0�1��C

:= f(~t) 2 Un j IDB(s0 �E (�0�1 ��C)) j= A[~X =~t]g

and

T s1
A;�C

:= f(~t) 2 Un j IDB(s1 �E �C) j= A[~X =~t]g:

Since s1 = s0 �E �0�1, the equality

T s0
A;�0�1��C

= T s1
A;�C

follows by the properties of the transition system (see De�nition 4.2).

126

The case T s0
A;�0�1��C

= ; is trivial:

(�0�1 ��C ;�) 2 I
s0
0 (# ~X [A 7! '])

() � = Log(A[~X = ~all])

() (�C ;�) 2 I
s1
1 (# ~X [A 7! '])

For the complementary case we get:

(�0�1 ��C ;�) 2 I
s0
0 (# ~X [A 7! '])

() there exists a function f : T s0
A;�0�1��C

! TCons such that :

8(~t) 2 T s0
A;�0�1��C

: (�0�1 ��C ; f(~t)) 2 I
s0
0 ('[~X =~t])

and � = Log(A[~X = ~all]) �
F
(~t)2T

s0
A;�0�1��C

f(~t)

() there exists a function f : T s1
A;�C

! TCons such that :

8(~t) 2 T s1
A;�C

: (�0�1 ��C ; f(~t)) 2 I
s0
0 ('[~X =~t])

and � = Log(A[~X = ~all]) �
F
(~t)2T

s1
A;�C

f(~t)

() there exists a function f : T s1
A;�C

! TCons such that :
(IH) 8(~t) 2 T s1

A;�C
: (�C ; f(~t)) 2 I

s1
1 ('[~X =~t])

and � = Log(A[~X = ~all]) �
F
(~t)2T

s1
A;�C

f(~t)

() (�C ;�) 2 I
s1
1 (# ~X [A 7! '])

6. Implication

(�0�1 ��C ;�) 2 I
s0
0 ('!)

() (�0�1 ��C ;�) 2 I
s0
0 (') =) (�0�1 ��C ;�) 2 I

s0
0 ()

() (�0�1 ��C ;�) 62 I
s0
0 (') or (�0�1 ��C ;�) 2 I

s0
0 ()

() (�C ;�) 62 I
s1
1 (') or (�C ;�) 2 I

s1
1 ()

(IH)

() (�C ;�) 2 I
s1
1 (') =) (�C ;�) 2 I

s1
1 ()

() (�C ;�) 2 I
s1
1 ('!)

7. Universal quanti�cation

Consider a quanti�cation 8 ~X ', where ~X = X1; : : : ;Xn.

(�0�1 ��C ;�) 2 I
s0
0 (8 ~X ')

() for all ground term tuples (~t) 2 Un;

(�0�1 ��C ;�) 2 I
s0
0 ('[~X =~t]) holds

() for all ground term tuples (~t) 2 Un;
(IH) (�C ;�) 2 I

s1
1 ('[~X =~t]) holds

() (�C ;�) 2 I
s1
1 (8 ~X ')

2

Theorem 6.27 [Minimal Model w.r.t. Di�erent Initial States] Let s0; s1 2 S be arbitrary

states and �0�1 2 TCons be a consistent transition such that s1 = s0 �E �0�1. Let ' be a ground

update formula. The following property holds for the minimal model of PUP w.r.t. the initial states

s0 and s1, respectively:

8�C ;� 2 TCons : (�0�1 ��C ;�) 2MUP [PUP ; s0](')() (�C ;�) 2MUP [PUP ; s1](')

127

Proof: It is suÆcient to prove the assertion for de�nable update atoms. The assertion for

arbitrary update formulas follows by Lemma 6.26.

We prove the assertion by trans�nite induction. For a given ordinal we show that the following

condition holds for all ground de�nable update atoms p(~t) 2 BDU :

8�C ;� 2 TCons : (�0�1 ��C ;�) 2 T
s0
PUP
" (p(~t))() (�C ;�) 2 T

s1
PUP
" (p(~t))

Base case: = 0

Let p(~t) 2 BDU be a de�nable update atom. Because I?(p(~t)) = ;, the condition trivially

holds.

Induction step: successor ordinal �+ 1

By the induction hypothesis, the desired condition holds w.r.t. T s0
PUP
" � and T s1

PUP
" �. By

Lemma 6.26, consequently, for all ground update formulas ' the following holds:

8�C ;� 2 TCons : (�0�1 ��C ;�) 2 (T
s0
PUP
" �)s0(')() (�C ;�) 2 (T

s1
PUP
" �)s1(')

Now choose a de�nable update atom p(~t) 2 BDU . For arbitrary �C ;� 2 TCons, the following

equivalences hold.

(�0�1 ��C ;�) 2 T
s0
PUP
" �+ 1 (p(~t))

() (�0�1 ��C ;�) 2 T
s0
PUP

(T s0
PUP
" �)(p(~t))

(4:86)

() there exists a ground instance U ! p(~t) of a rule r 2 PUP ;
(4:83) such that (�0�1 ��C ;�) 2 (T

s0
PUP
" �)s0(U)

() there exists a ground instance U ! p(~t) of a rule r 2 PUP ;
(IH) such that (�C ;�) 2 T

s1
PUP
" �)s1(U)

() (�C ;�) 2 T
s1
PUP

(T s1
PUP
" �)(p(~t))

(4:83)

() (�C ;�) 2 T
s1
PUP
" �+ 1 (p(~t))

(4:86)

Induction step: limit ordinal �

By the induction hypothesis, the desired condition holds w.r.t. all ordinals � < �.

Now choose a de�nable update atom p(~t) 2 BDU . For arbitrary �C ;� 2 TCons, the following

equivalences hold.

(�0�1 ��C ;�) 2 T
s0
PUP
" � (p(~t))

() (�0�1 ��C ;�) 2
S
�<� T

s0
PUP
" � (p(~t))

(4:75)

() there exists � < � such that (�0�1 ��C ;�) 2 T
s0
PUP
" � (p(~t))

() there exists � < � such that (�C ;�) 2 T
s1
PUP
" � (p(~t))

(IH)

() (�C ;�) 2
S
�<� T

s1
PUP
" � (p(~t))

() (�C ;�) 2 T
s1
PUP
" � (p(~t))

(4:75)

128

Next, we have to prove the main assertion of the theorem. Let us choose an ordinal � that is

greater than both closure ordinals �s0PUP and �s1PUP for the minimal model of PUP w.r.t. s0 and s1
(cf. Theorem 4.87). The assertion follows directly by the inequalities

T s0
PUP
" � �MUP [PUP ; s0] = T s0

PUP
" �s0PUP � T

s0
PUP
" �

and

T s1
PUP
" � �MUP [PUP ; s1] = T s1

PUP
" �s1PUP � T

s1
PUP
" �

which can be derived from Theorem 4.87 using �xpoint properties (see [Llo87] for details). 2

Theorem 6.27 states that the model-theoretic interpretations of an update formula ' w.r.t. di�erent

initial states are related to each other. The left part of the equivalences above treats s1 as a

hypothetical state represented by �0�1 w.r.t. the initial state s0, while the right part treats s1 as

the initial state. The result is not very surprising but shows that the deferred update semantics is

well-de�ned.

Finally, we present a consequence of Theorem 6.27 concerning possible transitions for an update

query U .

Corollary 6.28 Let PUP be an update program and let s0 2 S be a �xed state. Let s1 2 S be

another state that is reachable from s0 by a consistent transition �0�1 2 TCons, i.e. s1 = s0�E�0�1.

Let U be a ground update goal and � 2 TCons be a consistent transition.

Then � is a possible transition for the update query U w.r.t. the initial state s1, i� (�0�1;�) 2

MUP [PUP ; s0](U).

Proof: The assertion follows from Theorem 6.27 with �C := �". 2

Informally speaking, Corollary 6.28 states that the possible transitions w.r.t. an arbitrary initial

state s1 are expressible by the minimal model w.r.t. a �xed state s0. Note that in many transition

systems s0 can be chosen as a trivial state, e.g. the state of the empty database. The model-theoretic

semantics w.r.t. s0 captures the semantics w.r.t. all states reachable from s0, too.

129

7 Relations between ULTRA and other Approaches

In this section we are going to contrast the ULTRA approach with some related work that was

already mentioned in Section 2. After summarizing the essential contributions of ULTRA, we will

show in more detail how ULTRA can be compared to abductive logic programming and (Concurrent)

Transaction Logic [BK94, BK96]. The last subsection is devoted to the principle of monadic pro-

gramming in functional languages, which shows some similarities with the foundations of ULTRA.

7.1 Essentials of the ULTRA Approach

ULTRA has been de�ned as a rule-based update speci�cation language. It allows the modular

construction of complex operations with the possibility of reuse. We have de�ned constructs to build

concurrent and sequential operations, further we enable the speci�cation of set-oriented operations

as known from the database world in a natural style. This way, we have created a universal language

that integrates the programming features from various rule-based approaches, e.g. [BK94, Che97,

MBM97, MW88b], as well as from procedural programming languages used for the implementation

of information systems (cf. Sections 2.1 and 2.2). The compact syntax of ULTRA has been derived

from conventional logic programming languages, but it could easily be replaced by a more verbose

syntax. The main contribution of the ULTRA approach is the development of a logical semantics

that assigns a unique minimal model to every update program. This model captures the meaning

of all operations speci�ed by the program. The minimal model is de�ned independently of any

particular operational setting and remains unchanged when the program is transformed according

to rewriting strategies valid in the �eld of logic databases. Consequently, the ULTRA semantics

extends the declarative concepts of logic databases in a comprehensible way. The model-theoretic

semantics and its �xpoint characterization generate a solid foundation for transactional execution

strategies and run-time optimizations.

The second point that distinguishes ULTRA from most other approaches that deal with the speci�-

cation of update operations is the framework concept. The generic ULTRA language abstracts from

particular basic operations, and its semantics leaves the concrete notion of states and transition

objects aside. Hence, when an instance of the framework is created, the missing objects can be

de�ned according to the application domain. Many other approaches, e.g. [Che97, LHL95, MBM97,

MW88b], de�ne language and semantics in more concrete terms and merely for a database domain.

7.2 Abduction and View Updates

Abduction [EK89] is a form of logical backward reasoning that is used to �nd causes for observed

or desired e�ects. In the more speci�c context of logic databases, e�ects correspond to IDB atoms

de�ned by rules, and causes correspond to EDB atoms. In contrast to a deduction, where the

facts of the EDB are given and the facts of the IDB are derived, an abduction searches for base

facts which imply a given fact in the IDB. The rules are considered in a top-down fashion, and

the abducibles, which form a subset of the EDB atoms, can be chosen as true or false in order to

make a rule-body become true. Consistency constraints must be regarded such that no abducible

is being chosen as true and false at the same time. In general, the result of an abduction is non-

deterministic. An abductive framework can be expressed as a deductive system within a disjunctive

logic programming environment (see [IS96] for details).

130

Example 7.1 [Abduction] Let r be an EDB predicate and p be an IDB predicate de�ned by the

following rules:

p(X) r(X; a); r(a;X)

p(X) r(b;X)

Abductive reasoning on the query p(c) results in the two solutions fr(c; a); r(a; c)g and fr(b; c)g,

provided that the atoms over r are contained in the set of abducibles. 2

In the ULTRA semantics, case (BU) of De�nition 4.9 introduces an abductive component. Consider,

for example, the ULTRA instance based on partially ordered multi-sets (see Section 4.4), and assume

that the mapping Updact is de�ned as the identity. Then for every ground basic update atom u(~t)

and every consistent transition �C , the pair (�C ; fu(~t)g) is contained in the interpretation of the

formula u(~t). This can be interpreted as follows: to make the basic update atom u(~t) successful,

the corresponding action u(~t) must be included into the pomset that represents the result. Recall

that the singletons are combined by t and � to build more complex pomsets. This corresponds to

the accumulation of truth values chosen for abducibles. Furthermore, consistency constraints can

be de�ned for transitions in order to exclude intractable combinations. Consequently, the ULTRA

approach can be regarded as an extended form of abduction. A possible transition � for a query

 ' submitted to an update program can be compared to an abductive result of the query '.

Although there are still di�erences, the ULTRA instance for insertions and deletions, which is based

on update request sets, is very closely related to abduction. In the following informal comparison,

we will restrict ourselves to goals that are concurrent conjunctions of update literals, such that it

is not necessary to deal with intermediate states. Moreover, we assume that no intensional DB

predicates exist, that IDB is two-valued in the initial state DB0, and that no logging transitions

di�erent from the empty set are assigned to extensional DB atoms. We show how to transform an

update program P (based on the restricted syntax) into a normal logic program P 0 which can be

used for abduction and then has essentially the same semantics as the original program.

Let an update program P be given. In the following three steps we construct the abductive

framework, i.e. the set of abducibles and the normal logic program P 0. First, the EDB predicates

are duplicated, such that for every predicate r also a second predicate r0 with the same arity

exists. The new predicates refer to basic update requests and thus to the next state. Atoms built

over these new predicates are treated as abducibles. Secondly, we encode the truth interpretation

of each ground atom r(~t) in the �xed initial state DB0 { given by IDB(DB0) { by generating

additional facts for the resulting program P 0. Finally, we rewrite the rules of P as follows, such

that they can be included into P 0: each subgoal INS r(~t) is transformed to r0(~t), each subgoal

DEL r(~t) is transformed to NOT r0(~t), and each subgoal NOP is removed. Note that the

concurrent conjunction implicitly becomes a conventional conjunction. See Example 7.2 below for

an illustration of the transformation.

Now let a ground update query ' be given, where ' only consists of de�nable update atoms

(w.l.o.g.). Then every possible transition � of ' w.r.t. P is an abductive result (modulo renaming

of the basic update requests +r(~t) and �r(~t) to r0(~t) and :r0(~t), respectively) of ' w.r.t. the

rewritten program P 0 and vice versa.

We would like to give an informal proof. Since there is no negation through de�nable update atoms

and neither bulk quanti�cations, nor sequential conjunctions occur, we can apply a simple top-

down resolution technique for P . Recall that the model-theoretic semantics of ULTRA is equivalent

131

to a �xpoint semantics w.r.t. an immediate consequence operator (cf. Section 4.6). This operator

can also be used to reason backwards. For P 0 we can apply arbitrary standard techniques, since

P 0 is a semi-de�nite logic program [Llo87]. EDB literals are resolved in ULTRA in the same

way as in the abductive framework, where these literals do not belong to the abducibles. The

only di�erence is that the base facts are explicitly encoded in the abductive framework, while

the reference to the state DB0 in ULTRA is implicit. Basic update atoms can always be resolved

in ULTRA by collecting basic update requests. This corresponds to taking an assumption in the

abductive framework in order to resolve the corresponding abducibles. In the ULTRA semantics

as well as in the abduction semantics the results must not become inconsistent: the insertions and

deletions must be consistent, the truth values for the abducibles must be chosen uniquely. Whenever

an update request is collected more than once in ULTRA, these collections are idempotent. On the

other side, an already chosen abducible can be resolved without further assumptions. A subgoal

NOP behaves neutral in ULTRA and thus can always be resolved without any generation of update

requests. Recall that NOP was already eliminated at the construction of the abductive framework.

So, we can see that both paradigms work similarly. The abduction technique looks simple, as

we do not have negation through de�nable update atoms and no access to the result state. The

latter would require additional frame rules and more consistency checks, if it had to be handled by

abduction.

Example 7.2 [ULTRA and Abduction] Let the following update program P be given. Note that

r is an EDB predicate.

p(X) r(X); DEL r(X); INS r(a)

p(X) r(X); DEL r(b)

Further, let IDB(DB0) j= r(a) hold, and let IDB(DB0) j= :A hold for all other DB atoms A 2 B.

The transformed program P 0 looks as follows:

p(X) r(X); NOT r0(X); r0(a)

p(X) r(X); NOT r0(b)

r(a)

Next, let the update query p(a) be asked. In both programming environments it is possible

to resolve p(a) and r(a). Then the �rst rule of the update program P will produce the update

requests �r(a) and +r(a) which are conicting with each other, while the abduction over the �rst

rule of the rewritten program P 0 will require to make the abducible r0(a) false and true at the same

time. Thus, the �rst rule in both programs does not o�er a solution. The second rule of the update

program P will produce the update request set f�r(b)g, while the second rule of the rewritten

program P 0 will generate the abductive result f:r0(b)g. 2

In the following we are going to refer to the view update problem [Bry90, KM90]. When an update

request on a view is given, then it has to be translated in a set of changes on the base tables.

In contrast to view computation and view maintenance, which both have a deductive character,

processing an update request on a view is an abductive problem (see [TU95] for a classi�cation

of problems concerning views). The view update problem is also relevant in the context of logic

databases, since the IDB can be regarded as a set of views over the EDB. The approach of implicit

132

view updates only takes static information, namely the view de�nitions, into account, although

these information do not describe changes on the view. The e�ects of an automatically performed

view update are non-deterministic and often inadequate. Below we will show that an explicit

treatment of view updates is more applicable in practice. However, the theoretical results of

implicit view updates can be combined with the ULTRA paradigm. Update rules that specify

view updates can be generated per default at view de�nition time. These rules explicitly describe

the formerly implicit view updates. The rules can be made visible to the programmer of the

views, who can also make some own modi�cations. For instance, the programmer may want to

exclude inconvenient solutions or attach further operations to a view update. In a conventional

database setting, these modi�cations could only be implemented using integrity constraints and

trigger concepts. Manchanda andWarren [MW88b] describe a method of deriving rules for updating

views whose de�nitions satisfy certain constraints. The results can surely be extended to more

complex views using more sophisticated abduction techniques.

Example 7.3 [View Updates] Let us consider a simpli�ed workow application. The current

instances of business processes are stored in a relation bp(ProcNr; ProcType), where ProcNr is

the instance number and ProcType is the process type, e.g. order, review, maintenance. Further,

a relation status(ProcNr; St) is provided that assigns a status St, e.g. open, closed, to each current

process ProcNr.

Next, we assume that two views orders(ProcNr) and open orders(ProcNr) must be speci�ed,

which contain the process numbers of all orders and the orders that are not �nished yet, respectively.

The views may have to be created due to security issues or due to legacy software that is being

used in the department responsible for the orders. The following rules are suitable to de�ne the

desired views.

orders(X) bp(X; order)

open orders(X) orders(X); status(X; open)

Using abductive reasoning techniques, a compiler could determine the following update rules (in

ULTRA syntax) which describe some update operations on the views. Note that INS orders(X),

DEL orders(X), and DEL open orders(X) are de�nable update atoms in this example.

INS orders(X) INS bp(X; order)

DEL orders(X) DEL bp(X; order)

DEL open orders(X) NOT orders(X)

DEL open orders(X) orders(X); DEL status(X; open)

DEL open orders(X) NOT status(X; open)

DEL open orders(X) DEL orders(X); status(X; open)

From the semantical point of view, most of the rules are acceptable. However, the last rule is

curious: instead of a natural change of the status, it votes for a unnatural deletion of the process

instance. If the deletion on the view open orders is used to complete an order, this is not a correct

solution. In a database system where view updates are automatically performed, such inadequate

e�ects can arise, but in this explicit setting, a programmer can delete the last rule manually and

thus exclude the corresponding results.

Nevertheless, it should be mentioned that the view de�nitions alone do not contain enough seman-

tics for realistic updates. In our example it is straight-forward to assume that the status must be

133

modi�ed from open to closed, whenever an order has been completed. Similarly, when an order is

inserted, both base relations should be modi�ed adequately. For such sophisticated updates, view

update techniques come to their borders. However, in ULTRA one can easily specify the following

operations that perform the desired tasks.

add order(X) INS bp(X; order); INS status(X; open)

close order(X) open orders(X); DEL status(X; open); INS status(X; closed)

Together with the operations add order and close order, the IDB relation orders can be seen as a

data object. 2

7.3 ULTRA versus (Concurrent) Transaction Logic

(Concurrent) Transaction Logic [BK94, BK96] is an update concept similar to ULTRA. The stan-

dard predicate logic is extended by some special connectives, and a new semantics is de�ned. In

contrast to the ULTRA semantics, which is based on transitions � between states, the semantics

of Transaction Logic [BK94] is based on paths hs0; : : : ; sni of states. A rule-based fragment of the

logic is de�ned together with a model-theoretic and a proof-theoretic semantics. Although the

formal developments and the notation are di�erent from those of the ULTRA approach, the overall

concepts of rules, models, immediate consequences, etc. are essentially the same and generalize the

well-known concepts of logic databases [Llo87]. The computable semantics is restricted to sequen-

tial update programs without negation through de�ned predicates, i.e. the rule bodies must be

built using only the sequential conjunction
, and negation may only occur at the base level. In

Section 7.3.1 we show that under some minor restrictions, the computable semantics of Transaction

Logic can be captured within the ULTRA framework. Concurrent Transaction Logic [BK96] is an

extension of Transaction Logic to a parallel programming language. The extensions are signi�cantly

di�erent from the extensions made within the ULTRA approach. This will be discussed in more

detail in Section 7.3.2.

7.3.1 Sequential Operations

Next, we want to work out the similarities between ULTRA and Transaction Logic. For this purpose,

we restrict ourselves to sequentially composed update goals in both languages. In ULTRA, we

refer to the instance based on partially ordered multi-sets (see Section 4.4). The restriction to

the sequential fragment, however, implies that the relevant pomsets are �nite and linear and can

thus be represented by lists (cf. Remark 4.48). We modify the logging transition assignment Log

such that it always yields the neutral transition []. This is legitimate, since the read-isolation

problem does not lie in the scope of this comparison. For the sake of clarity, we assume that

Transaction Logic distinguishes between DB predicates PredDB, basic update predicates PredBU ,

and de�nable update predicates PredDU , i.e. we want to avoid an overloading of predicate symbols.

ULTRA (although partially instantiated by the pomset semantics) and Transaction Logic can be both

regarded as frameworks with some open parameters. If we have chosen the settings described above

and �x the sets of predicate symbols and the Herbrand universe U , the following parameters remain

open: For the ULTRA instance we must provide the set of states S, the set of actions �, the atomic

execution function do, the state interpretation IDB, and the mapping Upd
act. For Transaction Logic

we must provide the set of states S, a data oracle Od, and a transition oracle Ot. Essentially, the

134

data oracle describes truth values of DB atoms in a state and is thus comparable to IDB, while

the transition oracle provides a relation between pairs of states and basic update atoms and is thus

comparable to the function do. See [BK96] for the exact de�nitions of the oracles. Note that �

and Updact rather have formal justi�cations in the ULTRA context.

However, to be actually comparable we must de�ne two signi�cant restrictions: the DB interpreta-

tion IDB has to be two-valued in ULTRA, and the transition oracle Ot has to be totally functional

in Transaction Logic. Otherwise there may arise problems with negated DB atoms or hypothetical

executions.

De�nition 7.4 A transition oracle Ot is called totally functional , if for every ground DB atom

u(~t) 2 BBU and every state s1 2 S, there exists exactly one state s2 2 S such that

u(~t) 2 Ot(s1; s2)

holds. 2

In the following, we de�ne a mapping from the ULTRA environment onto the Transaction Logic

environment: Let S, �, do, IDB , and Updact be given, where IDB is two-valued in every state

s 2 S. We de�ne the data oracle Od by

A 2 Od(s) :() IDB(s) j= A

for all ground DB atoms A 2 B and all states s 2 S. Note that Od is implicitly extended to

negations, conjunctions, disjunctions, etc. We only deal with negated atoms :A and their standard

semantics

:A 2 Od(s) () A 62 Od(s):

We de�ne the transition oracle Ot by

u(~t) 2 Ot(s1; s2) :() do(Updact(u(~t)); s1) = s2

for all ground basic update atoms u(~t) 2 BBU and arbitrary states s1; s2 2 S.

In the following, we de�ne a converse mapping from Transaction Logic to ULTRA: Let S, Od, and

Ot be given, where Ot is totally functional. We de�ne IDB by

IDB(s) j= A :() A 2 Od(s)

IDB(s) j= :A :() :A 2 Od(s)

for all ground DB atoms A 2 B and all states s 2 S. We de�ne � := BBU and Updact as the

identity mapping. Finally, we de�ne do by

do(u(~t); s1) := s2

for all ground basic update atoms u(~t) 2 BBU and all states s1 2 S, where s2 denotes the uniquely

de�ned state for which u(~t) 2 Ot(s1; s2) holds.

135

Lemma 7.5 Both mappings between the programming environments guarantee the following prop-

erties:

1. Let A 2 B be a ground DB atom and s 2 S be a state. Then the following holds:

(a) IDB(s) j= A () A 2 Od(s)

(b) IDB(s) j= :A () :A 2 Od(s)

2. Let u(~t) be a basic update atom and s1; s2 2 S be states. Then

do(Updact(u(~t)); s1) = s2 () u(~t) 2 Ot(s1; s2)

holds.

Proof: The proof of the assertions is trivial. 2

Transaction Logic formulas are interpreted over a path structure. A path structure I entails a set

of ground formulas ' (denoted by I; hs0; : : : ; sni j= ') for a given a path hs0; : : : ; sni of states

si 2 S. In analogy to ULTRA, the interpretation of the de�nable update atoms is directly given by

I, whereas the interpretation of DB literals, basic update atoms, and the sequential conjunction

is de�ned inductively. A path interpretation I is a model of a program, i� the entailment (w.r.t.

a path) of the body of an arbitrary rule instance implies the entailment of the head. The formal

de�nitions are slightly di�erent, but correspond to this notion of a model. Transaction Logic does

not talk about a unique minimal model but considers formulas that hold in all models. However,

like in ULTRA it would be possible to de�ne a model intersection and construct a least model. The

proof-theoretic results for Transaction Logic show that the intended semantics of a program can be

computed by an immediate consequence operator.

In the next step, we will show that the semantics of composed goals is essentially the same in both

programming environments. Lemma 7.5 is applied to the cases of update literals, and the essential

work lies in comparing the sequential conjunction \:" of ULTRA with the sequential conjunction

of Transaction Logic. Note that both conjunctions have turned out to be associative.

De�nition 7.6 Let s0 2 S be a �xed initial state. Let I 2 I be an interpretation of update

formulas (w.r.t. state s0), and let I 0 be a path interpretation over S. Let ' be a ground sequential

update goal in the ULTRA syntax.

I and I 0 are called coinciding on ', if for arbitrary sequences s00; : : : ; s
0

n of states s0i 2 S and

arbitrary consistent transitions �C 2 TCons with s0 �E �C = s00 the following property holds,

where '0 results from ' by replacing each occurrence of \:" by
 and NOP by true.

I 0; hs00; : : : ; s
0

ni j= '0 () there exist actions a1; : : : ; an 2 � such that :

(�C ; [a1; : : : ; an]) 2 I(')

and 8i 2 f1; : : : ; ng : do(ai; s
0

i�1) = s0i
2

136

Lemma 7.7 Let s0, I, and I
0 be given as in De�nition 7.6. If I is coinciding with I 0 on all de�nable

update atoms p(~t) 2 BDU , then I is coinciding with I
0 on arbitrary sequential update goals '.

Proof: We prove the assertion by structural induction. In each case shown below, we choose

arbitrary sequences s00; : : : ; s
0

n of states s0i 2 S and transitions �C 2 TCons with s0�E�C = s00 and

show the desired equivalence.

Base cases:

1. DB literal

We only show the assertion for a positive DB literal A 2 B. The proof for a negative

DB literal is entirely analogous.

`)':

Assume that

I 0; hs00; : : : ; s
0

ni j= A

holds. Since we do not allow an overloading of predicate symbols, A holds on a

singleton paths conforming with the data oracle, i.e. n = 0 and A 2 Od(s00). By

Lemma 7.5,

IDB(s
0

0) j= A

must hold. Since s0 �E �C = s00 holds by precondition,

(�C ; []) 2 I(A)

follows directly by case (DB) of De�nition 4.9.

`(':

Assume that

(�C ;�) 2 I(A)

holds. Then, by de�nition, IDB(s0 �E �C) j= A and � = [] holds. So again, we

only have to consider the case n = 0. Using the arguments of the direction `)'

backwards, it is possible to show that

I 0; hs00i j= A

holds.

2. NOP literal

Recall that NOP is replaced by true when moving from ULTRA to Transaction Logic.

The special logic formula true is interpreted (by the data oracle) as valid for arbitrary

singleton paths, and NOP always yields the neutral transition []. Thus, the proof for

the case of the DB literals can easily be adapted.

3. Basic update atom

`)':

Assume that

I 0; hs00; : : : ; s
0

ni j= u(~t)

holds. Since we do not allow an overloading of predicate symbols, u(~t) holds on

a path of length 2 conforming with the transition oracle, i.e. n = 1 and u(~t) 2

Ot(s00; s
0

1). By Lemma 7.5,

do(Updact(u(~t)); s00) = s01

137

must hold. In the ULTRA context, by case (BU) of De�nition 4.9,

(�C ; [Upd
act(u(~t))]) 2 I(u(~t))

holds. De�ne a1 := Updact(u(~t)). The desired conclusion follows immediately.

`(':

Assume that

(�C ;�) 2 I(u(~t))

holds. Then, by de�nition, � = [Updact(u(~t))] holds. So again, we only have to

consider the case n = 1 with a1 = Updact(u(~t)). Provided that the precondition

do(a1; s
0

0) = s01
also holds, it is possible to show that

I 0; hs00; s
0

1i j= u(~t)

holds. The arguments of the direction `)' can be applied backwards.

4. De�nable update atom

The equivalence holds by the precondition.

Induction step:

We only have to consider sequentially composed goals. Recall that \:" is replaced by
 when

moving from ULTRA to Transaction Logic. The subgoals of a composed goal ' : correspond

to the subgoals of the rewritten goal '0
 0, and we can apply the induction hypothesis w.r.t.

' and .

`)':

Assume that

I 0; hs00; : : : ; s
0

ni j= '0
 0

holds. Then, by the de�nition of
, there exists an index i 2 f0; : : : ; ng such that the

conditions

I 0; hs00; : : : ; s
0

ii j= '0

and

I 0; hs0i; : : : ; s
0

ni j= 0

hold. By the induction hypothesis for the path hs00; : : : ; s
0

ii, there must exist actions

a1; : : : ; ai 2 � such that

(�C ; [a1; : : : ; ai]) 2 I(')

and

8j 2 f1; : : : ; ig : do(aj ; s
0

j�1) = s0j

holds. De�ne �0

C := �C � [a1; : : : ; ai]. Using De�nition 4.53 inductively, it is possible

to show that s00�E [a1; : : : ; ai] = s0i holds. Consequently, s0�E�
0

C = s0i holds, too. Now

we can apply the induction hypothesis for the path hs0i; : : : ; s
0

ni: there must exist further

actions ai+1; : : : ; an 2 � such that

(�0

C ; [ai+1; : : : ; an]) 2 I()

138

and

8j 2 fi+ 1; : : : ; ng : do(aj ; s
0

j�1) = s0j

holds. Note that the equality [a1; : : : ; ai] � [ai+1; : : : ; an] = [a1; : : : ; an] holds and that

[a1; : : : ; an] is a consistent transition. Thus, by case (SCj) of De�nition 4.9

(�C ; [a1; : : : ; an]) 2 I(' :)

holds, which completes the proof of the desired conclusion.

`(':

Assume that for some actions a1; : : : ; an 2 S

(�C ; [a1; : : : ; an]) 2 I(' :)

and

8j 2 f1; : : : ; ng : do(aj ; s
0

j�1) = s0j

holds. Then, by de�nition, there exist consistent transitions �1;�2 2 TCons such that

(�C ;�1) 2 I(')

and (�C ��1;�2) 2 I()

and [a1; : : : ; an] = �1 ��2

holds. Both �1 and �2 must be linear pomsets, and obviously equal to [a1; : : : ; ai] and

[ai+1; : : : ; an], respectively, where i is some index in f0; : : : ; ng. (The cases i = 0 and

i = n correspond to solutions where one of the pomsets is the empty list [].) Using the

induction hypothesis for the transition [a1; : : : ; ai], one can show that

I 0; hs00; : : : ; s
0

ii j= '0

holds. Further, for �0

C := �C � [a1; : : : ; ai], the property s0 �E �0

C = s0i is prov-

able (cf. direction `)'). Consequently, by the induction hypothesis for the transition

[ai+1; : : : ; an],

I 0; hs0i; : : : ; s
0

ni j= 0

holds. Applying the de�nition for
, the desired conclusion

I 0; hs00; : : : ; s
0

ni j= '0
 0

follows.

2

With standard reasoning over the immediate consequence operators, it is possible to show that

also the semantics of programs are essentially the same. The minimal model of an update program

written in the ULTRA syntax is coinciding with the intended interpretationM of the same program

(modulo renaming of \:" to
 and NOP to true) on arbitrary de�nable update atoms and thus

arbitrary update goals '. P; s0; : : : ; sn j= ' is de�ned to hold, if for all models M of P (or

alternatively for the least model M of P) M; hs0; : : : ; sni j= ' holds. Intuitively, this means that

the formula ' can cause a sequential transaction going through the states s0 to sn. P; s0|sn j= '

holds, i� there exists a sequence s0; : : : ; sn of states such that P; s0; : : : ; sn j= ' holds.

139

Proposition 7.8 Let s0 2 S be an arbitrary state. Let PUP be an update program in the ULTRA

syntax and P 0UP be the same program in the syntax of Transaction Logic. Let ' be a ground update

goal in ULTRA and '0 the corresponding goal in Transaction Logic.

Then for arbitrary sequences s00; : : : ; s
0

n of states s0i 2 S, and arbitrary consistent transitions �C 2

TCons with s0 �E �C = s00 the following holds:

P 0UP ; s
0

0; : : : ; s
0

n j= '0 () there exist actions a1; : : : ; an 2 � such that :

(�C ; [a1; : : : ; an]) 2MUP [PUP ; s0](')

and 8i 2 f1; : : : ; ng : do(ai; s
0

i�1) = s0i

Proof: The entailment of a formula '0 by a program P 0UP in Transaction Logic obeys the derivation

technique of an immediate consequence operator, i.e. P 0UP ; s0; : : : ; sn j= U implies P 0UP ; s0; : : : ; sn j=

p(~t) for arbitrary sequences s0; : : : ; sn of states, if U ! p(~t) is a ground instance of a rule in P 0UP .

Thus, by induction on the ordinal powers of the immediate consequence operators, the assertion

can be shown: the interpretations I and I 0 that arise in every step coincide on all ground formulas.

Note that Lemma 7.7 is relevant for the proof. 2

Corollary 7.9 Let s0; s 2 S be arbitrary states. Let PUP , P
0

UP , ', and '
0 be given as in Proposi-

tion 7.8. Then the following holds:

P 0UP ; s0|s j= '0 () there exists a sequence a1; : : : ; an of actions ai 2 � such that :

([]; [a1; : : : ; an]) 2MUP [PUP ; s0](')

and s0 �E [a1; : : : ; an] = s

In other words, there is a valid transaction for '0 leading from s0 to s in the Transaction Logic

environment, i� there exists a possible transition � := [a1; : : : ; an] for the query ' in the ULTRA

environment, such that s0 �E � = s.

Proof: The proof follows easily from Proposition 7.8 with �C := []. 2

Corollary 7.9 formally demonstrates the equivalence of the meanings of a sequential update program

in ULTRA and Transaction Logic.

7.3.2 Concurrency Concepts

ULTRA as well as Concurrent Transaction Logic are not restricted to sequential operations. Both

languages feature constructs for the concurrent composition of operations. The semantics of these

concepts, however, is signi�cantly di�erent. While the concurrency semantics of ULTRA is founded

on consistent compositions of locally derived increments, the concurrency semantics of Concurrent

Transaction Logic is based on interleaving as known from classical parallel programming languages.

In this section we are going to compare both approaches. This will also give some more insights

into the ULTRA semantics, which has been de�ned formally in Section 4.

At the syntactical level, both languages feature a concurrent conjunction to be used to combine two

or more subgoals. The concurrent conjunction of ULTRA is denoted by \;", the one of Concurrent

Transaction Logic by j . The latter language further provides an atomicity operator �, which is

needed to preclude the interleaving of an operation with other operations that are composed by j .

140

Next, we will show the speci�c elements in the semantics of the di�erent concurrent conjunctions.

For the sake of illustration, we assume that two sequential goals ' and are given and each of

them speci�es three subsequent state changes. Our objective is to explain the meaning of '; and

' j . Dependent on the situation, ' and are considered as goals either in ULTRA or (Concurrent)

Transaction Logic.

Recall from Section 4.2 that the semantics of ULTRA formulas is de�ned in terms of transitions

rather than in terms of states. The interpretations I(') and I() will contain pairs of consistent

transitions, where the �rst components point to hypothetical current states and the second ones

represent new increments. Let (�C ;�1) and (�C ;�2) be such pairs contained I(') and I(),

respectively. Note that both pairs refer to the same current state sCurr 2 S. �1 and �2 describe

local transitions to hypothetical �nal states without referring to the intermediate states anymore.

A valid transition for the conjunction '; is the concurrent composition �1 t�2, provided that

�1 and �2 are conforming with each other. Informally speaking, only the increments speci�ed by

' and are merged but not the states resulting by an execution of the increments. The merging

semantics is visualized in Figure 11, where the upper branch corresponds to the semantics of ' and

the lower one to the semantics of . The state transition of '; from the current state sCurr to

the next state sNext is represented by � := �1 t�2.

∆1

sCurr sNext

∆2

∆

ϕ

ψ

Figure 11: Concurrent conjunction '; in ULTRA

As described in Section 7.3.1, the semantics of sequential update formulas in Transaction Logic is

de�ned in terms of state paths. However, this notion is too weak to capture interleaving. Thus,

in Concurrent Transaction Logic the semantics of state paths is generalized to a semantics of multi-

paths. A multi-path h�1; : : : ; �ni is a �nite sequence of state paths �i. Each state path �i represents

a transition through a number of explicitly mentioned states, while the state is assumed to change

arbitrarily between two subsequent state paths in a multi-path. These changes must be speci�ed by

the context in which the multi-path is used. For instance, if a formula ' is entailed by a multi-path

hhs0; s1i; hs2; s3ii containing the states s0; : : : ; s3 2 S, then it speci�es a transition �rst from s0
to s1 and subsequently from s2 to s3. Between these two single transitions a non-speci�ed state

change from s1 to s2 is required. To be applicable at the top-level, an interleaving with another

operation that speci�es the missing transition from s1 to s2 must take place.

Two multi-paths can be combined concurrently to a new multi-path such that the elements of

both multi-paths occur in the new multi-path respecting the given orders. This combination is

non-deterministic and corresponds to a possible interleaving of the multi-paths. A sequential com-

141

position of multi-paths is de�ned by the classical concatenation. If the �nal state of a path �i in a

multi-path coincides with the �rst state of the next path �i+1, then the multi-path can be reduced

by melting �i and �i+1 to one state path. Iterated reduction may lead to a singleton multi-path

h�i, which correspond to a state path �.

Concurrent Transaction Logic implicitly de�nes two semantics of update formulas: an open and a

closed one. The open semantics of a formula is based on multi-paths and thus enables interleaving

with other operations that are speci�ed by the context. The closed semantics is based on singleton

multi-paths (i.e. state paths) and precludes further interleaving. This semantics is relevant for top-

level goals and formulas explicitly closed by the atomicity operator � (in the following also called

�-formulas). In a given interpretation I, a formula ' is entailed by a set S of multi-paths. This

set is closed under reduction, i.e. if S contains a multi-path h�1; : : : ; �ni that reduces (iteratively)

to a multi-path h�01; : : : ; �
0

mi (with m < n), then the latter is contained in S, too. To interpret '

at the top-level or to interpret �', only singleton multi-paths in S are considered. The concurrent

conjunction of �-formulas leads to arbitrary serializations as known from transaction theory (cf.

Section 2.5). However, the semantics does not state how the operations can be processed in parallel.

For two �-formulas �' and � , the semantics of � ' j � is equivalent to the semantics of the

disjunction [�'
�] _ [�
�']. The interpretation of general formulas that are composed by

j is based on interleaving. Figure 12 illustrates the semantics of the example goal ' j for one

possible interleaving. If ' is entailed by the upper and by the lower multi-path depicted in part

(a), the conjunction ' j is entailed by the merging of the multi-paths. Provided that the states

at the joined positions coincide, the multi-path can be reduced to the singleton multi-path shown

in part (b). This multi-path entails ' j , too. Moreover, it represents a valid execution path for

' j at the top-level and entails the �-formula �[' j].

ϕ

ψ

Multi-path reduction
(possible)

(b)

(a)

Figure 12: Concurrent conjunction ' j in Concurrent Transaction Logic

In the remaining of this section we will discuss merits and drawbacks of the di�erent semantics

of concurrency. The semantics of ULTRA, which is based on increments rather than on states

is compact and easy to understand. Additionally, it is compositional and thus well-suited for

veri�cation by formal means, e.g. using an extended version of Hoare's logic [Win93] developed for

the veri�cation of sequential programs. The open semantics of Concurrent Transaction Logic can

also be used for formal veri�cations, but the overall meaning of a formula is more complicated

than in the ULTRA context, as it has to take arbitrary interleaving with non-speci�ed operations

into account. Which state changes an update formula actually implies, can only be seen in the

closed semantics, where the restriction is made to state paths. This is also the reason, why top-

level update goals are interpreted by the closed semantics. The closed semantics is implementable

(see [BK96] for a proof-theoretic semantics), but it is not compositional anymore, since further

142

interleaving is excluded.

It must be admitted that the modeling power of Concurrent Transaction Logic lies above that of

ULTRA. The former enables interleaved operations that may communicate with each other, while

the latter focuses on isolated executions. Two ULTRA goals composed by the concurrent conjunction

do not see the changes of each other and thus cannot communicate via state access. Only some

form of interaction at the logical level is possible by using shared variables. The local change

requests are merged at a later time, and the results of the isolated computations can just be

checked against the consistency property of the underlying transition system. This corresponds to

an optimistic parallel execution. In contrast, what Concurrent Transaction Logic o�ers is merely

the classical parallel programming paradigm with all its bene�ts and problems. A crucial problem

in ULTRA arises only, whenever concurrently composed goals access their intermediate states (see

e.g. Figure 11). These states only exist hypothetically and do not depend on the concurrently

speci�ed changes. It is questionable under which conditions read access to these states should be

allowed. In the ULTRA instances presented in Section 4 we have permitted full access, as the use

of the concurrent conjunction is under control of the programmer { as opposed to concurrency

arising from independent transactions, which has been treated in Section 5. If this view appears

dangerous for other settings, one might strengthen the consistency constraints (see Section 4.5.3 for

technical details) such that conformity of transactions implies read-isolation properties as de�ned in

Section 5.2. In this case, concurrent operations can only be successful, if they appear fully isolated.

However, this might decrease the pro�t and usability of the concurrency semantics.

Although deferred materialization is not the �nal objective for an operational semantics, the ULTRA

approach has been designed with such a strategy in mind. It further has been conceived for

distributed and pipelined transaction processing architectures. All these operational conditions are

in contradiction with the semantics of Concurrent Transaction Logic: In this approach, the operations

cannot be hypothetically computed in isolation, as they must synchronize using the intermediate

states. Otherwise they would have to take every possible interleaving into account (according to the

open semantics), but this is intractable for an operational semantics. If basic operations that are

encountered during (top-down) evaluation are processed by an independent component and possibly

in combination with other transactions, it is unclear, whether the operational results harmonize

with the logical state path semantics: a scheduler, which is allowed to exchange compatible basic

operations, will generate other state paths than those the formal semantics describes. In distributed

environments, problems can arise from the de�nition of the semantics over global states. In ULTRA,

however, the semantics refers to transitions built from basic operations and thus harmonizes better

with commonly used scheduling and logging techniques at the level of operations.

Even though Concurrent Transaction Logic can be regarded as a viable parallel programming lan-

guage, ULTRA has many advantages due to the compact semantics, the veri�ability, and the exi-

bilities w.r.t. an operational environment. Indeed, the ULTRA semantics of concurrency is peculiar

in some points and has a touch of elements known from quantum physics. Note, however, that the

paradigm of strict sequential system evolution is not the only one allowed, in particular for dis-

tributed and unsynchronized systems. More liberal paradigms can be also viable, as long as their

semantics is clearly de�ned and complex systems can be understood, analyzed, and veri�ed. The

bulk quanti�er de�ned in ULTRA, for instance, is based on the special concurrency semantics and

can capture the semantics of update statements written in pure SQL (cf. Section 2.1). These SQL

statements would have highly non-deterministic and unpredictable meanings, if their semantics was

built on an interleaving concept.

143

7.4 Monadic Programming in Functional Languages

In the area of functional languages, a powerful programming paradigm, called monadic program-

ming , has emerged. Essentially, the well-known concept of function application is extended such

that its semantics can deal with objects that are not explicitly shown in the syntax. As sketched

in [Wad95b], it is easy to build a framework founded on a (polymorphic) abstract data type. An

instance of the framework is created by providing a concrete implementation for the abstract data

type. This data type must satisfy a few algebraic laws, such that it behaves as a monad . During

the development of the framework there is no need to provide an implementation of the data type,

the framework can even be \tested" using a trivial monad. The instantiation can then be done

without modifying the framework itself. This enables programming in a modular and polymorphic

style. The principles of programming with monads have been implicitly adopted during the devel-

opment of the generic ULTRA concept. Probably, under some constraints, the ULTRA concept can

be eÆciently implemented in a functional language using monadic programming techniques.

Monadic programming can even be exploited to enrich functional programming languages by \im-

pure" constructs, in particular by I/O operations, without losing the declarative semantics of the

programs, i.e. for a given program, it is possible to �nd a meaning that does not depend on the

evaluation strategy. In [Wad95a] Wadler describes a useful I/O monad. The semantics of an I/O

function can be compared with a function computing a list of basic I/O operations, which in turn

realize the desired side e�ect, if they are executed on the I/O system. This approach corresponds

to the ULTRA semantics, which is also (semantically) based on deferred updates. In contrast to

languages like Lisp and SML, which consider I/O operations just as side e�ects of the evaluation, in

the monad approach they are modeled as functional results and thus compatible with legal program

rewritings and di�erent evaluation techniques established for pure functional languages. Monadic

programming together with a sophisticated lazy evaluation strategy can lead to immediate I/O, i.e.

to an interleaving of evaluation and I/O. Such a strategy has been implemented for the language

Haskell [JWA+92]. Consequently, one can implement reactive systems in a pure functional style.

The goal-oriented transaction processing strategy described in [FWF00] shows strong similarities

and allows for immediate updates in the ULTRA context. Consequently, we think that some results

developed in the �eld of functional programming can be adopted for the ULTRA concept and vice

versa. In particular, ongoing work on the operational model for ULTRA might pro�t from the

results obtained for functional programming. It should be mentioned that in functional program-

ming, mainly the higher-order features have a signi�cant impact on the theoretical and operational

semantics, whereas in logic programming, several problems which result from non-determinism and

logical failure have to be solved.

144

8 Implementation of the ULTRA Language

In the previous sections, ULTRA has been designed as a logic-based speci�cation language for

complex update operations. We have put emphasis on the semantical aspects, but we have left out

the question of how to implement the language, such that the speci�ed operations can actually be

executed as transactions. Only the optimistic transaction processing strategy described in Section

5 can be seen as an operational model, although it is founded on abstract results at the semantical

level. In this section, we want to refer to operational aspects in more detail. In contrast to the

model-theoretic semantics, the operational model strongly depends on the currently chosen instance

of the ULTRA framework, because the framework is too general for an eÆcient implementation and

speci�c properties of the instances have to be taken into account.

The following fundamental settings are possible for the ULTRA language:

� ULTRA can serve as a pure modeling language without an operational semantics. In this

case, it is possible to specify complex operations and then discuss about them thanks to the

formal semantics. However, the operations must be re-implemented, if they are assigned for

executable applications.

� Compiler techniques can be applied to transform ULTRA programs into evaluable programs

of an imperative programming language, e.g. Java with calls to SQL.

� An architecture for the direct evaluation of update queries against ULTRA programs can be

designed. In addition to a component for syntactical program analysis, a dedicated run-time

system has to be developed.

In the remaining of this section we will mainly adopt the last point of view. The ULTRA architecture

described in Section 8.1 can also be seen as a compiling approach. However, it uses straight-forward

transformations, the target language is again a logic programming language, and the transaction

processing has to be performed outside the logic programming environment. Thus, we can count this

operational model to the last point, too. Note that we can just give some outlines and examples

of the processing techniques. The precise and formal development of one or more operational

semantics for the ULTRA approach is out of the scope of this thesis. It is rather conceived as one

objective of the ULTRA project for the next two years.

8.1 The Two-Phase Strategy based on Deferred Executions

A straight-forward method to execute ULTRA transactions is the two-phase strategy, which has al-

ready been in the focus of Section 5. A transaction invoked by a top-level update query is processed

in two phases: an evaluation phase, where the initial state is kept unchanged and all references

to intermediate states are handled by hypothetical reasoning, followed by a materialization phase,

where the transaction may execute one possible transition for the underlying update query. Mul-

tiple independent transactions can be handled using the optimistic protocol presented in Remark

5.17.

Although the two-phase strategy may be applicable in other settings as well (cf. Section 5.5), a

natural candidate for this operational model is the database-oriented ULTRA instance of Sections

3.2, 4.3, and 5.4. The deductive reasoning that is necessary to compute the semantics of the IDB

145

rules can easily be combined with the hypothetical reasoning about intermediate states. Recall that

these states are represented by update request sets �C 2 TCons w.r.t. the initial EDB instance.

The references to these update request sets can be explicitly encoded into the IDB rules. For this

purpose, new IDB predicates corresponding to the relevant EDB and IDB predicates of PredDB

are de�ned. The new predicates have an augmented arity, such that the additional position can

accommodate the reference to a hypothetical current state. The hypothetical reasoning is possible,

as the semantics of �E is expressible by simple axioms, which take the initial EDB instance as

well as the increments to the hypothetical states into account. This technique resembles the logical

characterization of action e�ects in the situation calculus [Rei95]. Let us give an example of the

encoding.

Example 8.1 [Transformation of EDB and IDB] Recall Example 3.17 (see Appendix B for

more details) and consider the 3-ary EDB predicate entry.

In the extended program, there will be two IDB rules specifying the truth values of EDB atoms

over entry in hypothetical states. hyp entry must be a new 4-ary IDB predicate.

hyp entry(DeltaC;D; S; ID) entry(D;S; ID); not deleted(entry(D;S; ID);DeltaC)

hyp entry(DeltaC;D; S; ID) inserted(entry(D;S; ID);DeltaC)

While entry captures the semantics in the initial database state, hyp entry can deal with arbitrary

states represented by DeltaC. Note that not deleted and inserted are built-in predicates for checking

absence or presence of update requests in the update request set referred to by the variable DeltaC.

Next, have a look at the IDB rules that de�ne the IDB predicate free.

free(D;S; 1) entry(D;S; 0)

free(D;S;L) L > 1; free(D;S; 1);

S1 = S + 1; L1 = L� 1;

free(D;S1; L1)

They lead to the following IDB rules, where hyp free is a new 4-ary IDB predicate:

hyp free(DeltaC;D; S; 1) hyp entry(DeltaC;D; S; 0)

hyp free(DeltaC;D; S; L) L > 1; hyp free(DeltaC;D; S; 1);

S1 = S + 1; L1 = L� 1;

hyp free(DeltaC;D; S1; L1)

2

Not only the hypothetical reasoning but also the creation and combination of update request sets

according to the semantics of Section 4.2 can be encoded into the logic program. The IDB rules

must explicitly specify which pairs of update request sets are contained in the model-theoretic

interpretation of an update goal. Technically, the de�nable update predicates are augmented by

two positions to accommodate references to the current state �C and the new update request set �,

and the transition assignments Log and Upd as well as the composition constructs t,
F
, and � are

realized by built-in predicates. The implementation of the bulk quanti�er can be eÆciently built on

aggregation, since the semantics refers to a collection of DB atoms entailed in a hypothetical state.

A crucial problem arises from the fact that the semantics is de�ned w.r.t. consistent transitions.

146

Theoretically, the consistency of update request sets would have to be checked within every rule.

However, due to the properties required in Section 4.1, update request sets created for update

literals are consistent, and the sequential composition of consistent update request sets leads to

consistent update request sets. Thus, inconsistent update request sets can occur only in presence of

concurrent compositions. Corresponding checks are suÆcient to guarantee that all update request

set that are created and possibly occur at the �C-position of the new predicates during an evaluation

are consistent. The �xpoint semantics of semi-de�nite logic programs [Llo87] harmonizes with the

�xpoint semantics of update programs (see Theorem 4.87). Consequently, the transformed rules

will explicitly characterize the update semantics of Section 4 for the original update program. We

now show the transformation of an update rule taken from the calendar example.

Example 8.2 [Transformation of Update Rules] The rule

do insert(D;S;L; T) newid(ID); do allocate(D;S;L; ID);

INS description(ID; T)

de�ning the operation do insert in Example 3.17 (see also Appendix B) is transformed into the

following IDB rule:

hyp do insert(DeltaC;Delta;D; S; L; T)

 newid(ID);

hyp do allocate(DeltaC;Delta1;D; S; L; ID);

collect ins(description(ID; T);Delta2);

conc comp(Delta1;Delta2;Delta); consistent(Delta)

hyp do insert and hyp do allocate are new IDB predicates for the reasoning about the semantics

of the de�nable update predicates do insert and do allocate, respectively. collect ins, conc comp,

and consistent are static built-in predicates for the implementation of Upd(INS : : :), t, and TCons,

respectively. 2

Some words should follow about the evaluation task. The rules generated from the EDB/IDB

speci�cations and those generated from the update program can be evaluated within a single

logic program. IDB rules containing negation require adequate evaluation methods (cf. Section

2.3). However, all the evaluation methods for the well-founded semantics can be used for semi-

de�nite rules and thus for the transformed update program as well. Unfortunately, the transformed

programs are not range-restricted, but as soon as a (transformed) query is provided, the rules can

be computed in a bottom-up fashion after applying the magic set transformation [BR91]. This

yields the possible transitions for the given query according to De�nition 5.2. The conventional

sideways information passing strategy �ts with the natural adornments of the built-in predicates,

such that an eÆcient evaluation is possible. The semantics of a bulk quanti�er can be correctly

computed by an aggregation engine, if the sets of result tuples for the condition atom are always

�nite. Otherwise there might be semantical problems, but the evaluation would not terminate

anyway.

A prototype system based on the methods described above has been implemented on top of the

deductive database system LOLA [FSS91, ZF97]. As the transaction processing is not integrated

into the LOLA deduction engine, the LOLA system can easily be replaced by other systems, e.g.

XSB [RSS+97]. The only requirement is an interface that allows read access to the database

147

system keeping the EDB. Soon, we will be able to use a new version of LOLA, which is based on

a signi�cantly improved evaluation concept [ZBF97, ZF99] for the well-founded semantics. In the

context of two subsequent diploma theses [K�oh96, Rim98], a compiler for IDB programs and update

programs was designed and implemented. The compiler analyzes the source programs and produces

IDB rules as illustrated in Examples 8.1 and 8.2. Also update queries can be transformed. Due to

a grammatic-driven implementation supported by JLex and JavaCup (see [App98] for details), the

compiler can easily be tailored to a more user-friendly ULTRA syntax, and syntactical extensions

in case of re�nements of the ULTRA instance are feasible.

∆i

iQ

Materialize
Updates

Materialization
Processes

Multi-Threaded
Evaluation Engine

Read
Access

EDB

PIDB

PUP

Check Isolation

∆

Figure 13: Architecture of the �rst ULTRA prototype

Figure 13 illustrates the system architecture for the evaluation and materialization of transactions

invoked by top-level update queries. Let us tacitly assume that the programs and the queries are

compiled and that a magic set transformation is applied for every query. Transactions for the given

queries now are processed in two phases according to the optimistic transaction protocol described in

Remark 5.17. Multiple transactions can be evaluated independently by multiple evaluation threads.

Synchronization between di�erent threads is not necessary, as all queries are evaluated w.r.t. the

same physical database state and no updates on the EDB are actually performed. Consequently,

no blocking can arise, provided that the underlying database system allows shared read access. The

independently derived update request sets must be checked against the read-isolation property: a

possible transition taken as a solution must be read-isolated from all solutions collected so far, which

are going to be materialized at �rst. Since the read-isolation property is de�ned at the predicate

level (see Section 5.4 for more details), it is easy to check. Due to the set-oriented bottom-up

evaluation, all possible transitions for a query are generated. This allows the system to try the

choice of another result, if the isolation checks fail. In the common materialization phase, all

existing solutions are subsequently materialized as write-only transactions on the database system.

For every successful materialization, a commit message is returned to the top-level. All transactions

that have lead to a de�nite failure in any of the phases are aborted.

We assume that the extensional database system does not allow local transactions [BHG87], i.e.

transactions not executed under control of the ULTRA system. Such local transactions can confuse

the evaluation threads or invalidate the computed results. Moreover, local transactions can lead to

deadlocks, which are precluded in the optimistic transaction processing strategy.

148

8.2 Immediate Executions in a Nested Transaction Environment

In the ULTRA approach, the execution of a transaction consists of two types of processing: the eval-

uation of update goals according to the logical semantics (for binding variables and generating basic

operation requests) and the execution of selected basic operations (materialization). The model-

theoretic semantics describes solutions in terms of transitions but does not state anything about

the materialization task. Neither the choice strategy, nor the materialization time is restricted.

Consequently, an obvious goal is to do the materialization in parallel with the logical evaluation.

Under some conditions mentioned below, this goal can be achieved, such that the materialization

can proceed as soon as possible.

As also broadly discussed in [FWF00, WFF98a], the strategy considered in Section 8.1, which

strictly separates evaluation and materialization, has several drawbacks.

� There is a need for hypothetical reasoning when referring to intermediate states: as the

operations leading to an intermediate state are known but not carried out yet, their e�ects

on the state are not visible and thus must be computed by a reasoning component. An

axiomatization of the observable e�ects is necessary to enable such hypothetical reasoning at

the logical level. Unfortunately, this is only tractable for simple basic operations like insertions

and deletions. When operations are permitted, whose semantics is not fully speci�ed or whose

semantics is too complicated to reason about, the hypothetical reasoning becomes impossible.

� A second practical problem results from performing a transaction in two strictly separated

phases (evaluation and materialization). Such a system does not show a continuous behaviour

during the evaluation and thus is not suitable to be extended by e.g. interactive components.

It merely implements a batch mode, where actions are collected to be performed later. For

instance, let a multimedia session be modeled using the ULTRA language. It is obviously not

sensible that each display action is deferred to the end of the session. It is only natural that

logical reasoning and physical changes (actions) are interleaved.

� The standard bottom-up evaluation as proposed for the ULTRA semantics always computes

all possible transitions in the evaluation phase. Especially in presence of non-deterministic

speci�cations and much hypothetical reasoning this may lead to a lot of unnecessary work,

and even small examples may not be tractable anymore.

To solve these problems we use a top-down-oriented evaluation strategy similar to the well-known

SLD resolution of Prolog [MW88a]. Our operational model features the immediate execution of

operations in combination with backtracking, recovery by compensation [KLS98], and nested trans-

actions [BBG89, Mos85, WS92]. It is conceived w.r.t. the second ULTRA instance, which has been

presented in Sections 3.3 and 4.4. During the evaluation of update queries within a top-level trans-

action, requests for basic operations are not collected for later execution, but executed immediately

using database techniques. These techniques ensure that actions can be undone in the failure

case and concurrent actions are scheduled according to isolation conditions. This enables us to

guarantee the ACID properties (see Section 2.5) for the top-level transactions. Since hypothetical

states are physically reached, there is no need for hypothetical reasoning. Evaluating queries in a

top-down fashion results in a resolution tree, which is mapped onto a nested transaction tree (see

Figure 14). Subtransactions are used as rollback spheres to implement a backtracking that �ts

with the logical semantics. If a branch in the resolution tree fails, the actions performed along this

149

branch will be undone up to the last choice point. Then the next choice can be tried or the rollback

can be cascaded. As we do not deal only with simple database operations and want to extend

the operational model to open nested transactions (see below), a classical rollback by restoring a

backup of the old state is not suÆcient. Instead we use the more general concept of compensation

[KLS98]: for every operation, a corresponding undo operation must exist, such that the execution

of both operations leaves the state (semantically) unchanged.

xpos(2) xstep(1)xstep(1)xpos(1) xpos(3)

xmove(3)

xmove(3)

xmove(3)

Figure 14: Resolution tree corresponding to a nested transaction tree

Using subtransactions only to aid backtracking is not satisfying. Nested transactions were invented

in the database community to, among other reasons, increase the possible amount of concurrency

between transactions by using the additional semantical knowledge of complex operations. This

can of course also be done in the case of logical update languages as ULTRA. For this purpose, a

scheduler for open nested transactions is needed.

An important aspect in the treatment of open nested transactions is the meta information that is

required to schedule operations and to compensate already committed subtransactions. The need

for meta information arises from the fact that the operations being in the focus of the scheduler are

not only the prede�ned basic operations but also programmed complex operations. In several cases,

meta information can be deduced automatically, but the results are either trivial or they require

sophisticated reasoning techniques at the semantical level. Thus, we adopt the point of view that

the relevant meta information is provided in form of declarations together with the update program.

On the one hand, compatibility information must be declared to allow correct scheduling, on the

other hand, compensation information is needed for recovery. The compensating operations can be

speci�ed in terms of update rules, this leads to extended update programs.

The architecture currently under construction is shown in Figure 15. An ULTRA evaluation engine

accepts top-level update queries and resolves them w.r.t. a given update program which is stored

together with meta information in a repository. The resolution-based evaluation is not instantly

performed down to the basic operations. Instead, basic operations as well as complex operations

generated in a resolution step are given to a scheduler , which decides about their further processing

in a subtransaction. The scheduler orders the operations from various transactions in such a

way that they appear to run in isolation. It is based on a classical synchronization protocol

and accesses the meta information about compatibility. The scheduler forwards basic operations

to the data manager for execution on the underlying external systems. These can be database

systems, which persistently store DB relations, as well as interfaces to external hardware and

software. The data manager returns retrieval data (for DB atoms) and additional data needed for

150

Meta Information

Update Rules

ULTRA Repository:

Log

ULTRA

ULTRA

Evaluation

Compatibility Matrix Scheduler

Retrieval and

Data

ULTRA

Compensation Information

DBMSDBMS Interface

Recovery

Device

Data Manager

Subtransactions
Operations as

(incl. Recovery Goals)

Complex Operations
to be resolved

DB

Basic Operations

Rules

External Systems

Update Queries

Retrieval Data

Persistent Logging

Figure 15: Architecture of the currently developed prototype

compensation of operations. Complex operations that have passed the scheduler are returned to

the evaluation engine to be resolved in a new thread. All operations of the scheduler are logged in

a persistent device. The log is considered backwards to undo already committed operations. While

the compensation of a basic operation is assumed to be done by the data manager, a complex

operation is compensated by executing another complex operation: the compensating update goal

is extracted from the meta information and sent to the evaluation engine.

To this time, the scheduler, the data manager, and some communication components have been

implemented in Java. The components are operable for closed nested transactions, but the exten-

sions to open nested transactions appears feasible. For test purposes, a top-down resolution engine

for update goals has been written in Common Lisp. It can deal with arbitrary basic operations and

features a connection to the the LOLA prototype [FSS91, ZF97], such that additional IDB rules

can be evaluated. However, the ULTRA evaluation engine is restricted to sequential goals and a

single evaluation thread. We have currently started with the design of a new evaluation engine in

Java. However, fundamental work about an operational semantics for ULTRA is still necessary to

implement a correct and eÆcient evaluation strategy.

151

8.3 Outlook

A central point of ongoing work is the conception and design of a new ULTRA evaluation engine for

the architecture shown in Figure 15. For this purpose, we are going to develop a proof-theoretic

semantics for the ULTRA language. The theoretical results will lead to an implementable evaluation

strategy for update goals. The central problem lies in the treatment of the concurrent conjunction

and the bulk quanti�er, whose semantics essentially rely on the merging of deferred transitions

and do not directly harmonize with immediate materializations. In this context, it is probably

necessary to tune the instances of the ULTRA framework described in this thesis or to specify

restricted program classes for which an e�ective evaluation is possible. Presently, we do not exclude

a combination of both evaluation paradigms studied so far. The deferred materialization combined

with hypothetical reasoning could be adequate to deal with internal (database) states, while the

immediate materialization might be necessary for the interaction with the external world. Of

course, a �ner-grained tuning of the operational model in combination with a meta language is

imaginable. A hybrid approach may also help to deal with the special notion of concurrency in

ULTRA: concurrently composed and set-oriented operations could be locally handled by a deferred

approach, and for sequential operations (at the top-level) global checkpoints could be materialized.

As mentioned above, the use of open nested transactions requires a lot of meta information that is

speci�ed simultaneously with the update rules. Thus, another objective within the ULTRA project

is to provide repository tools and reasoning techniques for meta information. The programmer

should be supported at the declaration task, and the system should be able to propose rudimentary

defaults that can be re�ned later.

8.4 Example Applications

To conclude this section, we mention some practical experiences with the ULTRA language and the

prototype implementations.

The personal calendar, which has been chosen as one of the running examples, was the �rst non-

trivial application for the ULTRA prototype based on the two-phase strategy (see Section 8.1). The

operations implemented in terms of update rules were motivated by a classical implementation of

a calendar tool, which was the task of two diploma theses [Bay98, Hir97]. The application was

written in Java, but the database operations are carried out by SQL statements. A comparison

between the collection of extensive SQL statements and the corresponding ULTRA rules revealed

the advantages of a clear and compact logic language: the ULTRA implementation turned out to be

better understandable and communicatable. Even the programmer had some diÆculties to debug

his own SQL code, when corrections or modi�cations were requested.

With the objective to test the modeling power and practical relevance of the ULTRA language,

we designed a workow engine based on a petri-net representation of workows. The update

rules de�ne dynamic operations at the level of workow instances, e.g. creation of a new instance,

progress of an instance, assignment of resources, noti�cations, etc. Several solutions taken from

a diploma thesis [M�ar98] (among them re�nement of workows, instance variables, locking of

resources and variables, computation of decision parameters, and role hierarchy) could be condensed

to an ULTRA program within a few days. The programming style was compact and foreseeable, local

modi�cations and tests of variants appeared as uncritical. The constructs of the ULTRA language

turned out to be suÆcient for the tasks, in particular, the bulk quanti�er could often be used

for set-oriented operations (e.g. removing of all tokens enabling a transition, locking of all relevant

152

variables, noti�cation of all participants of a workow instance, etc.). Moreover, the combination of

update programs and deductive reasoning was helpful: the role hierarchy and its exceptions could

be expressed compact and comprehensible using IDB rules. To make the system operable, a simple

graphical user interface was added. Multiple users can start a local copy of this interface, and then

communicate with the global workow engine. In e�ect, prede�ned update queries are accepted and

performed by the two-phase prototype described in Section 8.1. In addition to the classical EDB

relations that store the dynamic data, some EDB relations are considered as message containers.

The messages are sent to the local user interfaces during the materialization phase. This way, the

users get requested information or noti�cations about the progress of the workow system.

The robot example listed in Appendix C (in a slightly modi�ed version, because the current proto-

type can deal with sequential programs only) was our key application to test the second prototype,

which has been discussed in Section 8.2. In contrast to the applications above, the ULTRA archi-

tecture must deal with an external device di�erent from a database system. The robot is simulated

and visualized by a software component written in Java as a practical course, the communica-

tion with the data manager of the ULTRA prototype is based on a standard protocol. The robot

software, which behaves as a black box, performs the basic operations (xstep, ystep, pickup, and

putdown) and returns state information (xpos, ypos, and empty). As the operations of the robot

are backtrackable (e.g. xstep(�1) can be compensated by xstep(1) and vice versa), it is possible

to execute complex robot operations like move block (see Appendix C) as atomic transactions. It

should be noted that the robot software is constructed modularly and the visualization component

can thus easily be replaced or complemented by a hardware robot having the same functionality.

153

9 Conclusion

In this thesis we have developed the rule-based update language ULTRA, which serves for the

speci�cation of complex update operations at a high logical level. The language and its semantical

foundations have been formulated as a framework, such that instantiations can be de�ned for speci�c

environments and applications. ULTRA allows the modular construction of complex operations with

the possibility of reuse. The constructed update programs have a unique meaning, which has been

de�ned as a model-theoretic semantics and also has a �xpoint characterization. This distinguishes

ULTRA from other practical extensions of database languages that only have operational meanings

but no overall semantics. Moreover, the logical semantics of ULTRA can be seen as declarative and

compositional. In contrast to many other approaches that de�ne dynamics in terms of (sequences

of) states, the ULTRA semantics is based on the concept of deferred updates. This allows us

to de�ne a comprehensible and veri�able notion of concurrency. Furthermore, we claim that the

semantics dealing rather with increments than with global states is better applicable for distributed

architectures. However, the operational aspects have only been discussed as a side-issue. Referring

to a �xed initial state, the minimal model of a program just assigns possible transitions to update

queries. For each query, one of these transitions may be selected and materialized in order to

complete the corresponding transaction.

As mentioned above, ULTRA has been de�ned as a framework. The generic language abstracts from

particular basic operations, and its semantics leaves the concrete notion of states and transition

objects aside. When an implementable instance of the framework is created, the missing objects

must be speci�ed, and a collection of required preconditions has to be proved. Then, all properties

that we have shown for the ULTRA framework, in particular those concerning the model-theoretic

semantics of update programs, also hold for the instance. For the sake of illustration, we have

presented two essentially di�erent instantiations of the ULTRA framework: one tailored to logic

databases, the other one to arbitrary external operations. While the semantics of the former in-

stance is based on rather simple update request sets and the integration with the classical deductive

rules stands in the foreground, the semantics of the latter instance is based on more complex data

structures, namely partially ordered multi-sets [Pra86]. Note that these instances can be modi�ed,

extended, or composed in order to meet special requirements. We have sketched some techniques

for composing or constraining valid instances without proving the required properties from scratch.

Another section has been devoted to optimistic transaction processing. In this setting, we assume

that the materialization of updates is strictly deferred and the whole evaluation according to the

logical semantics is done by hypothetical reasoning. Since read/write conicts between concurrently

processed transactions cannot be detected during the evaluation phases, we have presented suÆcient

conditions to enable a detection at materialization time. The transitions representing the deferred

operations must include enough information about the read access that may have occurred during

the evaluation. In this case, a read-isolation relation that entails the absence of read/write conicts

can be de�ned at the level of deferred transitions. The formal results have been exploited for an

optimistic transaction protocol.

The development of the ULTRA language has been motivated by some example applications. Fur-

ther, a lot of related work in the context of logic programming and transaction theory has been

considered. The merits of most approaches for the speci�cation of update operations by logical

means can also be found in the ULTRA approach. We have presented a more detailed comparison

of ULTRA with view update concepts and the most prominent rule-based update language Transac-

tion Logic [BK94] and its extension w.r.t. concurrency [BK96]. The obvious limits of implicit view

154

updates have been discussed, and the sequential version of Transaction Logic has been formally

simulated by the second ULTRA instance presented in this thesis. Only the concurrency concepts

of Concurrent Transaction Logic are beyond those of ULTRA. Nevertheless, we have listed some good

arguments that justify the ULTRA semantics: these mainly concern compositionality, veri�ability,

and implementation aspects.

At the end of this thesis, we would like to add some remarks about the usability of the ULTRA

language. Due to the genericity of the concepts and the de�nition of ULTRA as a framework, the

language is not restricted to logic databases. Furthermore, the logic-based formalism is neither

platform- nor application-dependent and especially worthy in heterogeneous environments. The

concurrency semantics within a transaction is well-suited for distributed systems, in particular,

when the concurrent sub-operations are isolated or information that is concurrently accessed keeps

unchanged. So we can identify the following possibilities for the use of ULTRA in practice:

� Transactional database applications

� Multi-database applications

� Databases in the world-wide web

� Databases and external actions

� Databases and user interfaces

� Data migration and data warehousing

� Applications outside the database world

The major topic of ongoing work is the formal development of an implementable operational se-

mantics, which has been taken out of the scope of this thesis. Here we just have described some

ideas and sketched the architectures presently under construction. The next steps comprise the

development of a proof-theoretic semantics for the ULTRA language, i.e. for a suÆciently general

instance of the framework. A �ne tuning of the instances presented in this thesis may be necessary,

such that the concurrency semantics of ULTRA harmonizes with the nested transaction models

chosen for the evaluation. In the context of open nested transactions, the problems about meta

information must be recognized and solved. We aim at the development of intelligent tools that

support the programmer. Topics for future work are optimization issues and methods to reason

about update programs. The clear and abstract semantics with its declarative properties forms a

suitable basis to start with these investigations.

155

References

[AB94] K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of Logic

Programming, 19{20:9{71, 1994.

[ABFS97] G. Alonso, S. Blott, A. Fessler, and H. J. Schek. Correctness and parallelism in com-

posite systems. In Proc. 16th ACM Symp. on Principles of Database Systems, pages

197{208, 1997.

[ABW88] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge. In

J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages

89{148. Morgan Kaufmann Publishers, San Mateo, CA, 1988.

[AFL+88] J. Aspnes, A. Fekete, N. Lynch, M. Merritt, and W. Weihl. A theory of timestamp-

based concurrency control for nested transactions. In Proc. 14th Int. Conf. on Very

Large Data Bases, pages 431{444, 1988.

[AM89] M. Abadi and Z. Manna. Temporal logic programming. Journal of Symbolic Compu-

tation, 8:277{295, 1989.

[App98] A. W. Appel. Modern Compiler Implementation in Java. Cambridge University Press,

1998.

[AV88] S. Abiteboul and V. Vianu. Procedural and declarative database update languages. In

Proc. 7th ACM Symp. on Principles of Database Systems, pages 240{250, 1988.

[Bay98] T. Bayer. Entwurf und Implementierung eines verteilten Kalendermanagementsystems

in Java. Diploma thesis, Universit�at Passau (FMI), 1998.

[BBG89] C. Beeri, P. A. Bernstein, and N. Goodman. A model for concurrency in nested trans-

action systems. Journal of the ACM, 36(2):230{269, 1989.

[BC93] F. Benhamou and A. Colmerauer. Constraint Logic Programming: Selected Research.

MIT Press, 1993.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery

in Database Systems. Addison-Wesley Publishing Company, 1987.

[BK94] A. J. Bonner and M. Kifer. An overview of Transaction Logic. Theoretical Computer

Science, 133:205{265, 1994.

[BK96] A. J. Bonner and M. Kifer. Concurrency and communication in Transaction Logic.

In Proc. Joint Int. Conf. and Symp. on Logic Programming (JICSLP '96), Bonn,

Germany, pages 142{156, 1996.

[BK98] A. J. Bonner and M. Kifer. The state of change: A survey. In B. Freitag, H. Decker,

M. Kifer, and A. Voronkov, editors, Transactions and Change in Logic Databases,

volume 1472 of LNCS, pages 1{36. Springer-Verlag, Berlin, Germany, 1998.

[BKC93] A. J. Bonner, M. Kifer, and M. Consens. Database programming in Transaction Logic.

In Proc. 4th Int. Workshop on Database Programming Languages, New York City,

pages 309{337, 1993.

156

[BN97] P. A. Bernstein and E. Newcomer. Principles of Transaction Processing. Morgan

Kaufmann Publishers, San Francisco, CA, 1997.

[BR91] C. Beeri and R. Ramakrishnan. On the power of magic. Journal of Logic Programming,

10:255{299, 1991.

[Bry90] F. Bry. Intensional updates: Abduction via deduction. In Proc. 7th Int. Conf. on Logic

Programming (ICLP '90), Jerusalem, Israel, pages 561{575, 1990.

[Che95] W. Chen. Declarative updates of relational databases. ACM Transactions on Database

Systems, 20(1):42{70, 1995.

[Che97] W. Chen. Programming with logical queries, bulk updates, and hypothetical reasoning.

IEEE Transactions on Knowledge and Data Engineering, 9(4):587{599, 1997.

[CM93] S. Ceri and R. Manthey. Consolidated speci�cation of Chimera (CM and CL). Technical

Report IDEA.DE.2P.006, IDEA Esprit Project 6333, 1993.

[Cro90] H. J. Cronau. A transaction concept for deductive databases. Dissertation, Universit�at

Dortmund, 1990.

[CWH99] M. Campione, K. Walrath, and A. Huml. The Java Tutorial Continued. Addison-

Wesley Publishing Company, 1999.

[Das92] S. K. Das. Deductive Databases and Logic Programming. Addison-Wesley Publishing

Company, 1992.

[DBC96] U. Dayal, A. P. Buchmann, and S. Chakravarthy. The HiPAC project. In J. Widom and

S. Ceri, editors, Active Database Systems: Triggers and Rules for Advanced Database

Processing, pages 177{206. Morgan Kaufmann Publishers, San Francisco, CA, 1996.

[DD97] C. J. Date and H. Darwen. A Guide to the SQL Standard. Addison-Wesley Publishing

Company, 4th edition, 1997.

[DSW94] A. Deacon, H. J. Schek, and G. Weikum. Semantics-based multilevel transaction man-

agement in federated systems. In Proc. 10th Int. Conf. on Data Engineering (ICDE

'94), Houston, Texas, pages 452{461, 1994.

[EK89] K. Eshghi and R. A. Kowalski. Abduction compared with negation by failure. In Proc.

6th Int. Conf. on Logic Programming (ICLP '89), Lisbon, Portugal, pages 234{254,

1989.

[Elk90] C. Elkan. Independence of logic database queries and updates. In Proc. 9th ACM

Symp. on Principles of Database Systems, pages 154{160, 1990.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, volume B, pages 995{1072. Elsevier Science Publishers

B.V., Amsterdam, The Netherlands, 1990.

[FLMW90] A. Fekete, N. Lynch, M. Merritt, and W. Weihl. Commutativity-based locking for

nested transactions. Journal of Computer and System Sciences, 41(1):65{156, 1990.

157

[FSMZ95] B. Freitag, B. Ste�en, T. Margaria, and U. Zukowski. An approach to intelligent soft-

ware library management. In Proc. 4th Int. Conf. on Database Systems For Advanced

Applications, Singapore, pages 71{78, 1995.

[FSS91] B. Freitag, H. Sch�utz, and G. Specht. LOLA { a logic language for deductive databases

and its implementation. In Proc. 2nd Int. Symp. on Database Systems For Advanced

Applications, Tokyo, Japan, pages 216{225, 1991.

[FWF00] A. Fent, C. A. Wichert, and B. Freitag. Logical update queries as open nested trans-

actions. In G. Saake, K. Schwarz, and C. T�urker, editors, Transactions and Database

Dynamics, volume 1773 of LNCS, pages 46{67. Springer-Verlag, Berlin, Germany, 2000.

[GHJV98] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Publishing Company, 1998.

[GJM91] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering.

Prentice-Hall, 1991.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann Publishers, San Mateo, CA, 1993.

[GSZ95] S. Greco, D. Sacc�a, and C. Zaniolo. DATALOG queries with strati�ed negation and

choice: from P to DP . In Proc. 5th Int. Conf. on Database Theory (ICDT '95), Prague,

Czech Republic, pages 82{96, 1995.

[HAD97] U. Halici, B. Arpinar, and A. Dogac. Serializability of nested transactions in multi-

databases. In Proc. 6th Int. Conf. on Database Theory (ICDT '97), Delphi, Greece,

pages 321{335, 1997.

[H�ar84] T. H�arder. Observations on optimistic concurrency control schemes. Information Sys-

tems, 9:111{120, 1984.

[HD91] U. Halici and A. Dogac. An optimistic locking technique for concurrency control in

distributed databases. IEEE Transactions on Software Engineering, 17(7):712{724,

1991.

[Hir97] P. Hirschenauer. Datenbankgest�utzte Terminplanung und -verwaltung. Diploma thesis,

Universit�at Passau (FMI), 1997.

[IS96] K. Inoue and C. Sakama. A �xpoint characterization of abductive logic programs.

Journal of Logic Programming, 27(2):107{136, 1996.

[JWA+92] S. L. P. Jones, P. L. Wadler, Arvind, B. Boutel, J. Fairbairn, J. Fasel, M. Guzman,

K. Hammond, J. Hughes, T. Johnson, R. Kieburtz, R. S. Nikhil, W. Partain, and

J. Peterson. Report on the functional programming language Haskell, version 1.2.

SIGPLAN Notices, 27(5), 1992.

[KLS98] H. F. Korth, E. Levy, and A. Silberschatz. A formal approach to recovery by com-

pensating transactions. In V. Kumar and M. Hsu, editors, Recovery Mechanisms in

Database Systems, pages 444{465. Prentice-Hall, 1998.

158

[KM90] A. C. Kakas and P. Mancarella. Database updates through abduction. In Proc. 16th

Int. Conf. on Very Large Data Bases, pages 650{661, 1990.

[K�oh96] M. K�ohrmann. Realisierung komplexer Updates in deduktiven Datenbanken. Diploma

thesis, Universit�at Passau (FMI), 1996.

[Kow92] R. Kowalski. Database updates in the event calculus. Journal of Logic Programming,

12:121{146, 1992.

[KR81] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM

Transactions on Database Systems, 6(2):213{226, 1981.

[KT90] D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, volume B, pages 789{840. Elsevier Science Publishers

B.V., Amsterdam, The Netherlands, 1990.

[Lef94] A. Lefebvre. Towards an eÆcient evaluation of recursive aggregates in deductive

databases. New Generation Computing, 12(2):131{160, 1994.

[LHL95] B. Lud�ascher, U. Hamann, and G. Lausen. A logical framework for active rules. In

Proc. 7th Int. Conf. on Management of Data (COMAD '95), Pune, India, 1995.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, Germany,

2nd edition, 1987.

[LML96] B. Lud�ascher, W. May, and G. Lausen. Nested transactions in a logical language for

active rules. In Proc. Int. Workshop on Logic in Databases (LID '96), Pisa, Italy, 1996.

[LMWF94] N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic Transactions. Morgan Kauf-

mann Publishers, San Mateo, CA, 1994.

[LRL+97] H. J. Levesque, R. Reiter, Y. Lesp�erance, F. Lin, and R. B. Scherl. GOLOG: A logic

programming language for dynamic domains. Journal of Logic Programming, 31(1{

3):59{83, 1997.

[M�ar98] W. M�arkl. Workow-Management f�ur die Projektabwicklung im Baugewerbe. Diploma

thesis, Universit�at Passau (FMI), 1998.

[MBM97] D. Montesi, E. Bertino, and M. Martelli. Transactions and updates in deductive

databases. IEEE Transactions on Knowledge and Data Engineering, 9(5):784{797,

1997.

[Mos85] J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed Computing.

MIT Press, 1985.

[MW88a] D. Maier and D. S. Warren. Computing with Logic: Logic programming with Prolog.

Benjamin/Cummings, Menlo Park, CA, 1988.

[MW88b] S. Manchanda and D. S. Warren. A logic-based language for database updates. In

J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages

363{394. Morgan Kaufmann Publishers, San Mateo, CA, 1988.

159

[NK88] S. Naqvi and R. Krishnamurthy. Database updates in logic programming. In Proc. 7th

ACM Symp. on Principles of Database Systems, pages 251{262, 1988.

[NTR87] L. Naish, J. A. Thom, and K. Ramamohanarao. Concurrent database updates in

PROLOG. In Proc. 4th Int. Conf. on Logic Programming (ICLP '87), Melbourne,

Australia, volume 1, pages 178{195, 1987.

[Pra86] V. Pratt. Modeling concurrency with partial orders. International Journal of Parallel

Programming, 15(1):33{71, 1986.

[Prz88] T. C. Przymusinski. On the declarative semantics of deductive databases and logic

programs. In J. Minker, editor, Foundations of Deductive Databases and Logic Pro-

gramming, pages 193{216. Morgan Kaufmann Publishers, San Mateo, CA, 1988.

[Rei95] R. Reiter. On specifying database updates. Journal of Logic Programming, 25(1):53{91,

1995.

[Rim98] B. Rimmel. Entwurf und Realisierung einer Compilerarchitektur f�ur die Datenbank-

Update-Sprache ULTRA. Diploma thesis, Universit�at Passau (FMI), 1998.

[RSS+97] P. Rao, K. Sagonas, T. Swift, D. S. Warren, and J. Freire. XSB: A system for eÆciently

computing well-founded semantics. In Proc. 4th Int. Conf. on Logic Programming and

Nonmonotonic Reasoning (LPNMR '97), Dagstuhl, Germany, pages 430{440, 1997.

[RU95] R. Ramakrishnan and J. D. Ullman. A survey of deductive database systems. Journal

of Logic Programming, 23(2):125{149, 1995.

[Sha89] E. Shapiro. The family of concurrent logic programming languages. ACM Computing

Surveys, 21(3):413{510, 1989.

[Sie96] J. Siegel. CORBA Fundamentals and Programming. John Wiley and Sons, New York,

1996.

[Som96] I. Sommerville. Software Engineering. Addison-Wesley Publishing Company, 5th edi-

tion, 1996.

[SWM93] P. Spruit, R. Wieringa, and J. J. Meyer. Dynamic Database Logic: the �rst-order

case. In U. W. Lipeck and B. Thalheim, editors, Modelling Database Dynamics, pages

103{120. Springer-Verlag, Berlin, Germany, 1993.

[Tho98] A. Thomasian. Distributed optimistic concurrency control methods for high-

performance transaction processing. IEEE Transactions on Knowledge and Data En-

gineering, 10(1):173{189, 1998.

[TU95] E. Teniente and T. Urp��. A common framework for classifying and specifying deductive

database updating problems. In Proc. Int. Conf. on Data Engineering (ICDE '95),

Taipei, Taiwan, pages 173{182, 1995.

[vG89] A. van Gelder. The alternating �xpoint of logic programs with negation (extended

abstract). In Proc. 8th ACM Symp. on Principles of Database Systems, pages 1{10,

1989.

160

[vG92] A. van Gelder. The well-founded semantics of aggregation. In Proc. 11th ACM Symp.

on Principles of Database Systems, pages 127{138, 1992.

[vGRS91] A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general

logic programs. Journal of the ACM, 38(2):620{650, 1991.

[Wad95a] P. Wadler. How to declare an imperative. In Proc. Int. Symp. on Logic Programming

(ILPS '95), Portland, Oregon, pages 18{32, 1995.

[Wad95b] P. Wadler. Monads for functional programming. In J. Jeuring and E. Meijer, editors,

Advanced Functional Programming, volume 925 of LNCS, pages 24{52. Springer-Verlag,

Berlin, Germany, 1995.

[Wei91] G. Weikum. Principles and realization strategies of multilevel transaction management.

ACM Transactions on Database Systems, 16(1):132{180, 1991.

[Wex89] J. Wexler. Concurrent Programming in Occam 2. Ellis Horwood Ltd., Chichester, UK,

1989.

[WF96] C. A. Wichert and B. Freitag. Logical speci�cation of bulk updates and sequential up-

dates. In Proc. 4th Workshop on Deductive Databases and Logic Programming (DDLP

'96) in conj. with JICSLP '96, Bonn, Germany, pages 79{94, 1996.

[WF97] C. A. Wichert and B. Freitag. Capturing database dynamics by deferred updates. In

Proc. Int. Conf. on Logic Programming (ICLP '97), Leuven, Belgium, pages 226{240,

1997.

[WFF98a] C. A. Wichert, A. Fent, and B. Freitag. How to execute ULTRA transactions. Tech-

nical Report MIP-9812, Universit�at Passau (FMI), 1998. Available in the WWW:

http://daisy.fmi.uni-passau.de/papers/.

[WFF98b] C. A. Wichert, B. Freitag, and A. Fent. Logical transactions and serializability. In

B. Freitag, H. Decker, M. Kifer, and A. Voronkov, editors, Transactions and Change

in Logic Databases, volume 1472 of LNCS, pages 133{163. Springer-Verlag, Berlin,

Germany, 1998.

[Win93] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT

Press, 1993.

[WN95] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. M. Gabbay,

and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 4,

pages 1{148. Oxford University Press, 1995.

[WS92] G. Weikum and H. J. Schek. Concepts and applications of multilevel transactions and

open nested transactions. In A. K. Elmagarmid, editor, Database Transaction Models

for Advanced Applications. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[Zan93] C. Zaniolo. On the uni�cation of active databases and deductive databases. In Proc.

11th British Nat. Conf. on Databases, Keele, UK, pages 23{39, 1993.

161

[ZBF97] U. Zukowski, S. Brass, and B. Freitag. Improving the alternating �xpoint: The transfor-

mation approach. In J. Dix, U. Furbach, and A. Nerode, editors, Logic Programming

and Nonmonotonic Reasoning, volume 1265 of LNAI, pages 40{59. Springer-Verlag,

Berlin, Germany, 1997.

[ZF96] U. Zukowski and B. Freitag. Adding exibility to query evaluation for modularly strat-

i�ed databases. In Proc. Joint Int. Conf. and Symp. on Logic Programming (JICSLP

'96), Bonn, Germany, 1996.

[ZF97] U. Zukowski and B. Freitag. The deductive database system LOLA. In Proc. 4th Int.

Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR '97), Dagstuhl,

Germany, pages 375{386, 1997.

[ZF99] U. Zukowski and B. Freitag. Well-founded semantics by transformation: The non-

ground case. In Proc. Int. Conf. on Logic Programming (ICLP '99), Las Cruces, New

Mexico, pages 456{470, 1999.

162

Appendix A

Here we show the complete introductory example.

EDB Schema and Instance (DB0):

store(Item;Price;Amount) contains the price Price and the current stock Amount of a transport

item Item.

journal(Item;Amount) records the modi�cation Amount of the current stock of a transport item

Item. (In this simpli�ed example, journal should be considered as a multi-set or list.)

store Item Price Amount

box 5 2

barrel 20 13

bucket 8 5

journal Item Amount

box �1

barrel �1

IDB Program (PIDB):

low(Item) determines whether a transport item Item is low on stock.

low(I) store(I; P;A); A < 10

Basic Update Predicates:

INS : : : insertion into an EDB relation.

DEL : : : deletion from an EDB relation.

send mail order(Item;Amount) invokes the e-commerce system to order Amount pieces of trans-

port item Item.

Update Program (PUP):

order low orders 20 pieces of each transport item with a low stock.

order low # I [low(I) 7! order(I; 20)]

order(Item;Amount) orders Amount pieces of transport item Item.

order(I;A) store(I; P;A0); A1 = A0 +A;

DEL store(I; P;A0); INS store(I; P;A1);

INS journal(I;A); send mail order(I;A)

deliver(Item) books the delivery of one piece of transport item Item to a worker.

deliver(I) store(I; P;A0); A0 > 0; A1 = A0� 1;

DEL store(I; P;A0); INS store(I; P;A1);

INS journal(I;�1)

163

Appendix B

Here we show the complete calendar example.

EDB Schema and Instance (DB0):

entry(Day; Slot; ID) associates a time slot Slot on day Day with an appointment identi�er ID.

description(ID; Text) stores the descriptive text Text for appointment ID.

entry Day Slot ID

mon 9 21

mon 10 0

mon 11 0

mon 12 7

mon 13 7

mon 14 0

mon 15 8

mon 16 10

description ID Text

7 Meeting Mr. Dean

8 Hairdresser

10 Review

21 Call Mr. Miller

IDB Program (PIDB):

free(Day; Slot; L) determines whether on day Day there are L free time slots starting at time slot

Slot.

free(D;S; 1) entry(D;S; 0)

free(D;S;L) L > 1; free(D;S; 1);

S1 = S + 1; L1 = L� 1;

free(D;S1; L1)

duration of(ID;L) calculates the duration L of appointment ID by counting the number of

time slots that are occupied by this appointment. (The rule contains an aggregation con-

struct [Lef94], which is provided by LOLA [ZF97]. It states that the number L of slots

entry(D;S; ID) is counted separately for each identi�er ID. Of course, a more complex im-

plementation which is based on recursion and negation could be used instead of the quite

natural aggregation.)

duration of(ID;L) group by (entry(D;S; ID); [ID]; count(L))

browse(Day; Slot; T ext) is a retrieval predicate that joins the relations entry and description.

browse(D;S; T) entry(D;S; ID); description(ID; T)

164

Update Program (PUP):

do allocate(Day; Slot; L; ID) recursively tries to allocate L time slots on day Day, starting at time

slot Slot, for appointment ID. The predicate fails, if one of the time slots is not free.

do allocate(D;S; 1; ID) entry(D;S; 0);

DEL entry(D;S; 0); INS entry(D;S; ID)

do allocate(D;S;L; ID) L > 1; do allocate(D;S; 1; ID);

S1 = S + 1; L1 = L� 1;

do allocate(D;S1; L1; ID)

do deallocate(ID) frees all time slots that are allocated for appointment ID. Here we use the bulk

quanti�er instead of recursion.

do deallocate(ID) # D;S

[entry(D;S; ID) 7!

[DEL entry(D;S; ID); INS entry(D;S; 0)]]

do insert(Day; Slot; L; T ext) inserts an appointment with descriptive text Text and duration L

on day Day, starting at time slot Slot. The insertion fails, if one of the time slots is already

allocated for another entry. (newid(ID) is a built-in predicate that generates a new, unique

identi�er ID every time it is called. Such an operation is provided in many database systems

to avoid concurrency problems when searching for unique keys.)

do insert(D;S;L; T) newid(ID); do allocate(D;S;L; ID);

INS description(ID; T)

do insert priority(Day; Slot; T ext) inserts a high-priority appointment Text on day Day at time

slot Slot without checking whether the time slot is free or already occupied.

do insert priority(D;S; T) newid(ID);

DEL entry(D;S; 0); INS entry(D;S; ID);

INS description(ID; T)

do insert on day(Day;L; Text) looks for time slots on day Day that can hold an appointment of

duration L and inserts the entry with description Text at one of these times.

do insert on day(D;L; T) free(D;S;L) : do insert(D;S;L; T)

do delete(Day; Slot) deletes the appointment on day Day at time slot Slot by freeing all allocated

time slots and removing the description.

do delete(D;S) entry(D;S; ID); do deallocate(ID);

description(ID; T);

DEL description(ID; T)

do move(ID;Day; Slot) moves the appointment with identi�er ID to the new day Day at time

slot Slot. The predicate fails, if the time slots at the destination are not free.

do move(ID;D; S) [duration of(ID;L); do deallocate(ID)] :

do allocate(D;S;L; ID)

165

Appendix C

Here we show the complete robot example.

DB Predicates:

empty determines whether the hand of the robot is empty, i.e. does not hold any block.

xpos(X) determines the x-position X of the robot on the grid.

ypos(Y) determines the y-position Y of the robot on the grid.

Basic Update Predicates:

xstep(D) moves the robot by one step in x-direction. (D can be either �1 or 1.)

ystep(D) moves the robot by one step in y-direction. (D can be either �1 or 1.)

pickup moves the arm of the robot towards the ground trying to pick up a block. We assume that

the operation succeeds, even if no block is actually picked up (idle movement).

putdown moves the arm of the robot towards the ground trying to drop a block. As for pickup we

allow an idle movement.

Update Program (PUP):

xmove(X) moves the robot in x-direction to the x-coordinate X.

xmove(X) xpos(X)

xmove(X) xpos(X0) : X < X0 : xstep(�1) : xmove(X)

xmove(X) xpos(X0) : X > X0 : xstep(1) : xmove(X)

ymove(Y) moves the robot in y-direction to the y-coordinate Y .

ymove(Y) ypos(Y)

ymove(Y) ypos(Y 0) : Y < Y 0 : ystep(�1) : ymove(Y)

ymove(Y) ypos(Y 0) : Y > Y 0 : ystep(1) : ymove(Y)

move(X;Y) moves the robot to position (X;Y) on the grid.

move(X;Y) xmove(X); ymove(Y)

166

pickup at position(X;Y) moves the empty robot to position (X;Y) and picks up a block (idle

movement not successful).

pickup at position(X;Y) [empty; move(X;Y)] : pickup : NOT empty

putdown at position(X;Y) moves the non-empty robot to position (X;Y) and puts down the

grabbed block (idle movement not successful).

putdown at position(X;Y) [NOT empty; move(X;Y)] :

putdown : empty

move block(X1; Y 1;X2; Y 2) moves a block from position (X1; Y 1) to position (X2; Y 2). The

predicate fails, if actually no proper movement of a block is performed.

move block(X1; Y 1;X2; Y 2) pickup at position(X1; Y 1) :

putdown at position(X2; Y 2)

test position(X;Y) tests whether there is a block lying at position (X;Y) while the blocks world

is left unchanged. The robot must be empty before the test.

test position(X;Y) [empty; move(X;Y)] : pickup :

NOT empty : putdown : empty

