
Distributed Transaction Processing
in the

Escada Protocol
Alfrânio Tavares Correia Júnior

Dissertação submetida à Universidade do Minho para obtenção do grau de Mestre em Informática,

elaborada sob a orientação de Rui Carlos Mendes Oliveira

Departamento de Informática
Escola de Engenharia

Universidade do Minho
Braga, 2004

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55602385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Resumo

Replicação é uma técnica essencial para a implementação de bases de dados tolerantes a faltas,
sendo também frequentemente utilizada para melhorar o seu desempenho. Infelizmente, quando
critérios de consistência forte e a capacidade de actualização a partir de qualquer réplica são con-
sideradas, os protocolos de replicação actualmente disponíveis nos gestores de bases de dados
comerciais não apresentam um bom desempenho. O problema está relacionado ao custo produzido
pelas interacções entre as réplicas no intuito de garantir a consistência, e pelos protocolos de termi-
nação que procuram assegurar que todas as réplicas concordam com o resultado da transacção. De
uma maneira geral, o número de “aborts”, “deadlocks” e mensagens trocadas cresce de maneira
drástica, ao aumentar o número de réplicas. Em outros trabalhos, foi provado que a replicação de
base de dados num cenário desses é impraticável.

No intuito de resolver esses problemas, diversos estudos tem sido desenvolvidos. Inicialmente,
a maioria deles deixou de lado os requisitos de consistência forte ou a capacidade de actualização a
partir de qualquer réplica para conseguir soluções viáveis. Recentemente, protocolos de replicação
baseados em comunicação em grupo foram propostos, nos quais os requisitos de consistência forte
e actualização a partir de qualquer réplica são preservados e os problemas contornados. Neste
contexto encontra-se o projecto Escada. Sucintamente, ele tem como objectivo estudar, projectar
e implementar mecanismos de replicação transaccionais adequados para sistemas distribuídos de
larga escala. Em particular, o projecto explora as técnicas de replicação parcial para fornecer
critérios de consistência forte sem introduzir pesos significantes de sincronização e sem prejudicar
o desempenho.

Nesta dissertação, extendemos o projecto Escada com um modelo e um mecanismo de proces-
samento de consultas distribuído, o que é um requisito inevitável num ambiente de replicação par-
cial. Além disso, explorando características dos protocolos, propomos um cache semântico para
reduzir o peso gerado ao aceder a réplicas remotas. Também melhoramos o processo de certifi-
cação, ao procurar reduzir os “aborts”, utilizando informação semântica presente nas transacções.

Finalmente, para avaliar os protocolos desenvolvidos pelo projecto Escada, o cache semântico
e o processo de certificação utilizamos um modelo de simulação que combina código simulado e
real, o que nos permite avaliar nossas propostas em diferentes cenários e configurações. Mais do
que isso, ao invés de usar cargas fictícias, submetemos nossas propostas a cargas baseadas nos
“benchmarks” TPC-W e TPC-C.

ii

Abstract

Database replication is an invaluable technique to implement fault-tolerant databases, being also
frequently used to improve database performance. Unfortunately, when strong consistency among
the replicas and the ability to update the database at any of the replicas are considered, the repli-
cation protocols do not scale up. The problem is related to the number of interactions among the
replicas in order to guarantee consistency and to the protocols used to ensure that all the replicas
agree on transactions’ result. Roughly, the number of aborts, deadlocks and messages exchanged
among the replicas grows drastically, when the number of replicas increases. In related works, it
has been proved that database replication in such a scenario is impractical.

In order to overcome these problems, several studies have been developed. Initially, most
of them released the strong consistency and the update-anywhere requirements to achieve fea-
sible solutions. Recently, replication protocols based on group communication were proposed,
in which the strong consistency and update-anywhere requirements are preserved and the prob-
lems circumvented. This is the context of the Escada project. Briefly, it aims to study, design
and implement transaction replication mechanisms suited to large scale distributed systems. In
particular, the project exploits partial replication techniques to provide strong consistency criteria
without introducing significant synchronization and performance overheads.

In this thesis, we augment the Escada with a distributed query processing model and mecha-
nism, which is an inevitable requirement in a partially replicated environment. Moreover, exploit-
ing characteristics of its protocols, we propose a semantic cache to reduce the overhead generated
while accessing remote replicas. We also improve the certification process, while attempting to
reduce aborts using the semantic information available in the transactions.

Finally, to evaluate the Escada protocols, the semantic caching and the certification process,
we use a simulation model that combines simulated and real code, which allows to evaluate our
proposals under distinct scenarios and configurations. Furthermore, instead of using unrealistic
workloads, we test our proposals using workloads based on the TPC-W and TPC-C benchmarks.

iv

Acknowledgements

First of all, I would like to thank my parents for all support that I received since I was born. In
particular, I want to thank them for the innumerable advises and for teaching me living according
to invaluable qualities, mainly honest and simplicity; and one magic word, work. Specially, I want
to thank André Conceição Correia, my brother who is no longer alive and whose generosity and
goodness will be always remembered. I am sure that if he was alive, his theoretical contributions
and support will be essential to complete this work. I also would like to thank my adviser Rui
Carlos Mendes Oliveira for accepting me in the Distributed Systems Group at University of Minho
and for his support.

I am also thankful for the incredible discussions about the theoretical and practical aspects of
this work by Antônio Luis Souza, José Orlando Pereira, Luís Soares and Luciano Miguel Rocha,
members of the Distributed Systems Group at University of Minho. I would like also to thank the
other members of the group and the Departamento de Informática for the cordiality.

I would like to thank Gustavo Vasconcelos Arnold for establishing the first contacts with my
adviser, resulting in the opportunity to do this work. I either cannot forget to thank important
friends that besides the distance support me. I would like to thank Alba Couto, Fabricio Pinto,
Camilo Telles, Ivy Michelle and Weber Souza for the excellent discussions about computer sci-
ence and other different subjects. I would like to thank Cirlã Brasil Lopes, Danilo Mota, Eduardo
Argollo, Ronaldo Florence and Rui Burgos for their friendship. Specially, I would like to thank
Eduardo Argollo for the great moments in La Coruña and Lisbon. I also would like to thank my
new friends, brazilian friends that I met here in Portugal: Diógenes Rubert Librelotto, Fábio Cav-
alcanti, Giovani Rubert Librelotto, Marco Antonio Barbosa, Ricardo Alexandre Martins, Ronnie
Cley Alves and Tiago Chaves. For the friends that I did not mention here, I would like to say that
I am so sorry but the lack of time and space do not allow me to thank everybody. But remember,
friends are forever.

I would like to thank the LaSiD (Laboratório de Sistemas Distribuídos da UFBa) for introduc-
ing me in this amazing area called Distributed Systems, in particular, professor Flávio Morais de
Assis Silva. I want to thank the FCT (Fundação para Ciência e Tecnologia) for supporting this
work through project StrongRep (FCT POSI/CHS/41285/2001).

Finally, I would like to thank all the readers whose suggestions and corrections contributed for
the final version of this work. I also would like to apologize them for the English.

vi

Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Contributions . 3

1.3 Thesis Organization . 4

2 Model and Definitions 5

2.1 Distributed System . 5

2.2 Database . 5

2.2.1 Relational Database . 5

2.2.2 Transaction . 6

2.2.3 Relational Algebra and Calculus . 6

2.3 Distributed Database . 8

2.4 Group Communication . 8

3 Escada Project 11

3.1 Database Replication . 11

3.2 The Database State Machine . 13

3.3 Partially Replicated Database State Machine . 14

3.3.1 Transaction Execution . 15

3.3.2 Termination Protocol . 15

3.4 Implementation Issues . 17

3.4.1 Algorithms . 17

3.4.2 FastAtomic Delivery . 25

4 Distributed Query Processing 27

4.1 Query Processing Issues . 27

4.2 Criteria for analysis . 29

4.3 Optimization . 29

4.3.1 How to optimize . 30

4.3.2 When to optimize . 30

4.4 Catalog and Cost Model . 31

4.4.1 Catalog . 31

4.4.2 Plan Cost . 32

4.5 Network Technologies and Distributed Computing 33

vii

viii Contents

4.6 Caching and Replication . 34

4.6.1 Materialized views . 34

4.6.2 Replication . 34

4.7 Operators and Operations . 35

4.8 Classification of Database Systems . 36

4.9 Distributed Query Processing in the Escada . 40

5 Semantic Caching 43
5.1 Satisfiability and Implication Problems . 44

5.2 Semantic Cache . 45

5.2.1 Query Matching . 47

5.2.2 Managing Materialized Views . 48

5.2.3 Maintenance of Materialized Views . 49

5.3 Contributions . 53

5.3.1 Algorithm . 53

5.3.2 Extending the Escada . 55

5.3.3 Related Work . 57

6 PDBSM and PostgreSQL 59

6.1 Read and Write Set . 59

6.1.1 Definition and Extraction . 59

6.1.2 Phantom Anomaly . 60

6.1.3 Read Set and the Consistency Criteria 61

6.2 Extending PostgreSQL . 62

7 Results and Performance Analysis 67
7.1 Workload Pattern . 68

7.1.1 TPC-W Traffic Characterization . 68

7.1.2 TPC-C Traffic Characterization . 69

7.2 Simulation Database Model . 70

7.2.1 Database Clients . 70

7.2.2 Distributed Database Server . 71

7.2.3 Network Model . 72

7.2.4 Simulation Kernel and Centralized Simulation 72

7.3 Protocol Prototypes . 73

7.3.1 Distributed Certification . 73

7.3.2 Atomic Multicast Protocol . 73

7.4 Model Instantiation and Validation . 74

7.5 Experimental Results . 75

7.5.1 Semantic Caching . 75

7.5.2 DBSM . 79

7.5.3 PDBSM . 80

8 Conclusion 87

Contents ix

A 93

B 101

x Contents

List of Figures

2.1 Application/Broadcast Layering . 8

3.1 DBSM Architecture and Transaction’s States 14

4.1 Architecture of a Query Processor . 28

4.2 Query Optimizer’s Ste . 28

4.3 Two-Step Optimization and the Communication Problem 31

4.4 Ingres Objective Function . 36

5.1 Hierarchical Filter Graph . 49

6.1 Design Issues: Read Set Decision Flow . 61

6.2 Pruning Irrelevant Expressions . 63

7.1 Architecture of the model. 70

7.2 TPC-W Browsing Mix . 76

7.3 TPC-W Shopping Mix . 76

7.4 TPC-W Ordering Mix . 77

7.5 TPC-C . 77

7.6 TPC-W Shopping Mix (Bestsellers) . 78

7.7 TPC-C New Order . 78

7.8 TPC-C with 512Kbps . 79

7.9 DBSM - Performance results . 81

7.10 DBSM - Resource usage . 82

7.11 Partial replication and its fragments . 83

7.12 PDBSM - Performance results . 85

7.13 PDBSM - Resource usage . 86

7.14 PDBSM - Network Bandwidth . 86

xi

xii List of Figures

List of Tables

4.1 Differences between Replication and Caching 34

7.1 TPC-W Relations (K is 1000) . 68

7.2 TPC-C Relations (K is 1000) . 69

7.3 TPC-C keying time and mean of think time . 70

7.4 Configuration Parameters - Resources . 79

7.5 Configuration Parameters - CPU’s consumption per transaction 80

7.6 Configuration Parameters - Idle time per transaction 80

xiii

xiv List of Tables

Chapter 1

Introduction

The world was the stage of some revolutions that changed the course of our lives forever. And
probably, many others will come. Nowadays, we certainly passing through the ages of the infor-
mation revolution in which information means power. The companies gather information in order
to conduct their business and also transform it into knowledge about the market in an attempt to
become more competitive. Regardless how the information is used and manipulated, we need a
place to store it and mechanisms to easily access it. Ultimately, in a technological point of view,
the database systems are conceived in order to provide these features.

The databases systems are at the core of our information society, supporting a wide range
of economic, social and public administration activities. The loss of the information or even its
unavailability can cause serious damages and in some cases may result in loss of lives. For that
reason, we must rely on dependable systems and therefore, strong properties like reliability and
availability must be part of our concerns.

Database replication is an invaluable technique to implement dependable databases, being
also frequently used to improve database performance. Unfortunately, when strong consistency
among the replicas and the ability to update the database at any of the replicas are considered,
the replication protocols do not scale up. The problem is related to the number of interactions
among the replicas in order to guarantee consistency and to the protocols used to ensure that all
the replicas agree on transactions’ result. Roughly, the number of aborts, deadlocks and messages
exchanged among the replicas grows drastically, when the number of replicas increases. Gray et
al. [42], point out that a replicated database with n copies stored over n sites can have a deadlock
rate proportional to n3, which is impractical. Generally speaking, these replication protocols
attempt to guarantee that all the replicas have the same state at the end of the transaction (i.e.,
strong consistency) [9]. For each transaction’s operation a lock (i.e., two-phase lock) is acquired at
all the replicas for the respective items retrieved or updated. Upon receiving the commit request,
signaling the end of the transaction, a termination protocol is started (e.g., two-phase commit,
three-phase commit) to ensure that all the replicas achieve the same outcome, commit or abort.
The termination protocol needs more than one phase since just one does not allow a database site
to unilaterally decide to abort a transaction. In the case of the two-phase commit protocol: (i) a
site which has the role of a coordinator verifies if all the sites have the intention to commit the
transaction, requesting them to prepare to commit; (ii) if one site decides to abort the transaction,
the coordinator request the abort for all the others, otherwise, it request the commit.

Several efforts have been made to circumvent these problems, most of them, weakening the
consistency or withdrawing the ability to update the database at any of the replicas [42, 9]. Basi-

1

2 1. Introduction

cally, these efforts attempt to establish a trade-off between performance and dependability. How-
ever, in some cases the first approach may be infeasible since some applications cannot tolerate
weak consistency and the second approach may seriously affect the scalability of the system, intro-
ducing bottlenecks. For those reasons, most of the replication protocols available are not widely
used in production environments. For instance, one common solution to avoid the overhead of
the strong consistency is to return the transactions’ outcome, either commit or abort, to the client
before propagating the transactions’ updates to the replicas. It is simple to see that this solution
may generate inconsistency when the ability to update the database at any of the replicas is consid-
ered. Therefore, it is usually applied with the election of one replica to receive the updates, which
means that the transactions are carried out by this primary replica and afterwards the updates are
propagate to the other backup replicas.

Recently, in order to achieve reliability and availability without introducing these problems, a
set of replication protocols that exploit group communication was proposed [90, 74, 60, 63, 87]. In
particular, protocols such as those presented in [74, 60, 63, 87] allow a transaction to be executed
at any site and postpone the interaction among concurrent transactions, which can be seen as an
optimistic execution. Upon receiving the commit request, they propagate the set of information
read and written by the transaction to all replicas. If conflicts arise among concurrent transactions,
the order in which the transactions were delivered is used to decide which transactions must be
committed and aborted. The group communication layer (i.e., total order broadcast primitive [49])
guarantees that the order of the transactions is the same at all replicas, allowing that all the sites
achieve the same decisions. Database replication based on group communication appears as a
promise to overcome the scalability and performance problems of the traditional strong consis-
tency protocols, reducing the interactions among the replicas and eliminating the deadlocks.

However, when we consider large scale distributed systems and several replicas distributed in
a wide area network, fully replicated databases may not be suitable. We need to resort to partially
replicated databases. Basically, partial replication is done by splitting the database according to
the application semantics and then by replicating each fragment at a subset of the available sites.
It is invaluable for the scalability and performance of very large and geographically distributed
databases. For instance, fragmentation allows less relevant data items to be replicated by fewer
sites and access locality allows that data items are kept close to those sites that need them more
often. Thus, if each transaction requires only a small subset of all sites to execute and commit, the
processing and communication overhead associated with replication can be reduced.

The work presented in this thesis is on the design and implementation of a partial replicated
database system in the context of the Escada project.1 Escada is a project that aims to study, de-
sign and implement transaction replication mechanisms suited to large scale distributed systems.
In particular, the Escada exploits partial replication techniques to provide strong consistency crite-
ria without introducing significant synchronization and overheads. Escada extends the Database
State Machine (i.e., a full replication approach), or simply DBSM [74], which is based on the
group communication approach described before. The previous efforts of the Escada project were
concerned about the group communication futures, such as optimistic total order in WANs [88],
and specifically about the replication protocols for partially replicated databases, Partial Database
State Machine or simply PDBSM [87].

1The project was developed by University of Minho (Departamento de Informática da Universidade do Minho) and
funded by FCT POSI/CHS/33792/1999.

1.1. Problem Statement 3

1.1 Problem Statement

Partial replication can be troublesome when the database does not transparently handle the fact
that not all the fragments accessed by a transaction are located at the same site. In such a scenario,
it is difficult to manage and maintain large and geographically distributed databases. For instance,
changes in the location of a fragment may imply in changes in the applications. For those rea-
sons, we aim at augmenting the Escada [87] with distributed query processing capabilities, which
means that the database must transparently handle the transaction’s request, accessing the neces-
sary fragments locally or remotely available. Specifically, we concentrate our analyses and efforts
on relational databases, regarding the requirements to augment a centralized database.

Unfortunately, the distributed execution may increase transaction’s latency and reduce the
overall performance. For that reason, it is important to evaluate the impact of the distributed exe-
cution on the overall system and to develop mechanisms to help reducing its impact. We evaluate
its benefits using a simulation tool that combines real and simulated code. Such a model allows us
to evaluate the impact of the design and the implementation decisions of the protocols on the over-
all performance. In contrast with real systems, this approach allows us to set up and run multiple
tests with slight variation of configuration parameters, in scenarios with large number of replicas
and wide-area networks. When compared with a fully simulated approach, it gives us the oppor-
tunity to estimate the resources required by the protocols, since their are real code that interfaces
with the simulated environment. To reduce the impact of the distributed execution on the overall
performance, we propose the use of a semantic caching [27, 50] approach, which minimizes the
need to contact remote sites in order to answer transactions’ requests. Basically, in this approach,
the entries in the cache are identified using the predicates involved in the queries. Our approach
also takes advantage of the group communication primitives to update or invalidate the entries in
cache, eliminating the negative impact of a centralized management. It also avoids the manage-
ment overhead of the tuples, which usually involves retrieval, update and replacement per tuple. In
contrast to page caching, it reduces the management overhead and further overcomes the problem
of space consumption, which is a consequence of the page fixed size, while disregarding the size
of the result set and always allocating pages.

This replication approach can be infeasible when the amount of read information that needs
to be transfered to all the replicas is high. The main reasons are bandwidth consumption and
latency. In order to avoid this, it is possible to reference the relations instead of the read elements.
However, this solution may increase the number of aborts as a consequence of the coarse grain.
To attempt to reduce the number of possible aborts, we propose the use of a “smart certification”,
which means sending also the queries that reference the relation (i.e., our coarse grain) and in the
procedure that verifies the occurrence of conflicts use the queries to see if the conflicts are real
or just a consequence of the coarse grains. Similar to the semantic caching, the concepts of this
approach are based on the satisfiability problem [47].

Furthermore, the evaluation of the proposals, including the current protocols developed un-
der the Escada project, must be handled using realistic workloads. Without them, we cannot
effectively evaluate the impact of our decisions on the overall performance since all the problems
mentioned before are highly dependent on the application semantics.

1.2 Contributions

This thesis provides five main contributions:

4 1. Introduction

Distributed Execution - It augments the Escada project with a distributed query processing pro-
tocol, releasing the assumption that all the fragments accessed by a transaction are located
at a single site.

Semantic Caching - It proposes the use of a semantic caching to reduce the impact of the dis-
tributed execution on the overall performance, exploiting characteristics of the Escada pro-
tocols. It exploits the existing broadcast primitives to update and invalidate cache entries.

Smart Certification - It proposes a smart certification process, based on the same theories of the
semantic caching, which attempts to reduce the number of aborts in consequence of conflicts
that arise when relations are referenced.

Integration - It analyzes some issues that could arise when integrating the protocols designed
for the Escada project into a real database system. It also suggest an integration using the
PostgreSQL as the target database.

Evaluation of the PDBSM - It evaluates the Escada protocols using realistic workloads and a
simulation tool that combines simulated and real code. Specifically, it uses workloads based
on the TPC-W [101] and TPC-C [100] benchmarks.

1.3 Thesis Organization

This thesis is organized as follows. In Chapter 2, we present the computational model and defi-
nitions used throughout this thesis. In Chapter 3, we describe the Escada protocols. Namely, we
explain in detail the Partial Database State Machine (PDBSM) which is a novel approach for the
partial replication of databases. In Chapter 4, we present distributed query processing mechanisms
and design an approach to be used in the PDBSM. In Chapter 5, we present the ideas behind se-
mantic caching and discuss how to exploit it in the PDBSM. In this chapter, we also present the
”smart certification“. In Chapter 6, we design an extension to the PostgreSQL in order to provide
a distributed transaction processing. This chapter corresponds to the integration of the protocols
designed for the Escada project into a real database system. In Chapter 7, we evaluate the PDBSM
using realistic workloads. In Chapter 8, we conclude the thesis, summarizing its contributions and
outlining possible future work.

Chapter 2

Model and Definitions

In this chapter, we present concepts and definitions required by the chapters that follow. Sec-
tion 2.1 presents the distributed system model to which the contributions developed in this thesis
apply. Section 2.2 presents the database model adopted, considering the sites, the transactions ex-
ecuted on behalf of a client request and the language used to build the requests. In Section 2.3, we
introduce the distributed database model. In Section 2.3, we present the communication primitives
used, which are responsible for the communication established among the distinct database sites.

2.1 Distributed System

We consider a distributed system composed of a set of database sites S = {s1, . . . , sn} which are
fully connected. The sites communicate through message passing. The system is asynchronous in
that there is no bound on process relative speeds, clock drifts, or communication delays.

Sites can only fail by crashing and we do not rely on site recovery for correctness. However,
we assume that when a site recovers, it does so with the state that it had before the failure.1

Furthermore, we assume that our asynchronous model is augmented with a failure detector oracle
so that, consensus is solvable [16].

Since we admit that sites may recover, we distinguish between running and crashing sites. A
running site is a site that takes steps of its automaton; a crashing site takes null steps. A running
site that crashes becomes a crashing site; a crashing site that recovers becomes a running site. In
our model, a correct site is a site that eventually stops crashing [73]. An incorrect site is a site that
is not correct.

2.2 Database

2.2.1 Relational Database

A relational database DB = {R1, . . . ,Rp} is a set of relations Ri ⊆ A1 × . . . × Aq defined
over data sets not necessarily distinct. Each element (a1, a2, . . . , aq) of a relation Ri is called a
tuple and each ai is called an attribute. To uniquely identify each tuple of a relation, we assume

1This can be easily realized in practice having processes executing on non-volatile memory combined with some
mechanism of state transfer [61, 73].

5

6 2. Model and Definitions

the existence of a minimum non empty set of attributes, called the primary key. To reference an
attribute ai of a relation Ri , we use the following expression: Ri .ai .

2.2.2 Transaction

A transaction is a sequence of read and write operations over tuples and it is finished with a commit
or abort operation. In other words, a transaction t is represented by a read set, a write set and write
values. The read set of t is the set of primary keys identifying the tuples read by t . The write set
of t is the set of primary keys identifying the tuples written by t . The write values of t is the set
of tuples written by t .

2.2.3 Relational Algebra and Calculus

The transaction can also be represented as a set of read and write operations expressed using a
language based on the relational algebra or the relational calculus [71, 98]. The relational algebra
can be informally described as a procedural language that specifies how to build a relation from
one or more relations in the database. The relational calculus can be described as a non-procedural
language used to formulate a definition of a relation in terms of one or more database relations. It
has been proved that these languages are equivalent, which means that the same expressions can
be formulated using both languages.2

Some important operations from the relational algebra are presented bellow:

Selection [σf (R)] - It defines a relation that contains a horizontal subset of R, extracting tuples
that satisfy the predicate f . See the relational calculus for a definition of predicate.

Projection [πap ,...,aq (R)] - It defines a relation that contains a vertical subset of R, extracting the
attributes specified in ap , . . . , aq .

Union [R ∪ S] - It defines a relation that consists of the union of two relations R and S, which
must be domain compatible. Two relations are said to be domain compatible if they are
defined over the same sequence of data sets.

Cartesian Product [R × S] - It defines a relation that consists of the cartesian product of two
relations R and S.

Intersection [R ∩ S] - It defines a relation that consists of the intersection of two relations R
and S, which must be domain compatible.

θ-Join [R ./f S] - It can be seen as a cartesian operation followed by a selection, where the
predicate f is restricted to R.ap θ S .aq , and θ is a comparison operator (≤,≥, 6=,=, <,>).
It is one of the most important operations in relational algebra and the most difficult to im-
plement efficiently in relational databases. For an in-depth discussion about join operations
see [80].

The relational calculus has the following general form: {S1.ap , . . . ,Sk .aq | F (S1, . . . ,Sw)},
k ≤ w , where S1, . . . ,Sk are tuple variables, each ai is an attribute of the relation over which Si

2The precise statement is that the set of queries expressible in the algebra is the same as the set of queries expressible
in the calculus. For a detailed discussion of this subject see [65].

2.2. Database 7

ranges, and F is a formula. A tuple variable is a variable whose allowed values are the tuples of a
relation. The formulas are structured using the following components:3

Tuples [R(Si)], where R is a relation and Si is tuple variable. For instance {S1 | R(S1)} returns
all the tuples of a relation R.

Common tuples [Si .ap θ Sj .aq], where Si and Sj are tuple variables, ap is an attribute of the
relation over which Si ranges, aq is an attribute of the relation over which Sj ranges, and
θ is one of the comparison operators (≤,≥, 6=,=, <,>). For instance, {S1,S2 | R(S1)∧
(∃ (· S2))(S (S2) ∧ S1.a1 = S2.a1)} returns tuples with the attributes of R and S , where
R.a1 = T .a1.

Specific tuples [Si .ap θ c], where Si is a tuple variable, ap is an attribute of the relation over
which Si ranges, θ is one of the comparison operators and c is a constant value which
belongs to the same domain of Si .a1. For instance, {S1 | R(S1) ∧ S1.a1 = c} returns the
tuples from R, where R.a1 = c.

Combined components We can put together one or more formulas using conjunction and dis-
junction. We also can negate a formula.

Quantifiers In a formula, we can use the existential and universal quantifiers.

The formal and standard language used to manipulate relational databases is the SQL (Struc-
ture Query Language), which is based on the relational calculus. The subset of the SQL considered
in this thesis is presented as follows:

Select - “select A from R where fs” , where A = S .a1 . . . ,S .an ,T .b1 . . . ,T .bm ,Y .e1 . . . ,Y .ej

, . . . defines the projection over the set of attributes of the relations. R = S ,T ,Y , . . . defines
the set of relations. fs is the predicate that defines the set of tuples to be selected. This SQL
statement establishes a special pattern called SPJ, that is, set of (s)elections, (p)projections
and (j)oins.

Insert - “insert into R(R.a1 . . . ,R.an) values(c1 . . . , cn)”, where R = S is the set of relations,4

R.a1 . . . ,R.an the attributes to be updated and c1 . . . , cn the respective values, which must
belong to the same domain of the attributes.

Delete - “delete from R where fd”, where R = S is the set of relations and fd is the predicate that
defines which tuples from R must be deleted.

Update - “update R set R.a1 = c1 . . . ,R.an = cn where fu”, where R = S is the set of relations,
R.a1 . . . ,R.an the attributes to be updated, c1 . . . , cn the respective values, which must
belong to the same domain of the attributes, and fu is the predicate that defines which tuples
from R must be updated.

3This nomenclature based on components belongs to us. It is used to facilitate an informal correlation between the
calculus and the relational algebra. Basically, the predicates or formulas from the relational algebra are the formulas
from the relational calculus without the quantifiers.

4For the update operations (i.e., delete, insert and update) the cardinality of the set of relations is expressed as | R |
= 1.

8 2. Model and Definitions

Application Protocol

broadcast(m)

Group Communication
 Algorithm

send(m)

deliver(m)

receive(m)

Application Protocol

broadcast(m)

Group Communication
 Algorithm

send(m)

deliver(m)

receive(m)

Communication Network

Figure 2.1: Application/Broadcast Layering

2.3 Distributed Database

We consider a distributed relational database as a relational database whose relations are dis-
tributed, i.e. fragmented, among the set S of database sites. This distributed database is given by
DDB ⊆ DB × S .

The relations of the database can be fragmented horizontally, using a selection operation from
the relational algebra, or vertically, using a projection operation. To avoid semantic changes to the
relational database as a consequence of the fragmentation process, the following properties must
be enforced [71], where the function frags(R) gives the fragments of a relation R:

Completeness The fragmentation cannot generate any loss of information: R =
⋃

Ri , ∀ Ri ∈
frags(R).

Reconstruction It must be possible using a relational algebra operation ∇ to rebuild the original
relation R as follows: R = ∇ Ri , ∀ Ri ∈ frags(R). This operation is a union in case of
horizontal fragmentation and a join in case of vertical fragmentation.

Disjointness If a relation R is horizontally fragmented, then every two distinct fragments cannot
have a single common tuple, i.e. ∀ Ri ,Rj ∈ frags(R), Ri ∩ Rj = ∅, where i 6= j . If a
relation R is vertically fragmented, then every two fragments must have the same keys, i.e ∀
Ri ,Rj ∈ frags(R), Ri ∩ Rj = {set of primary key attributes of R}, where i 6= j .

An important assumption we make is that for every fragment of a relation there is a correct
site that replicates it.

2.4 Group Communication

Group communication is a fundamental building block for developing fault-tolerant distributed
applications. It offers strong properties on communication reliability despite failures. Besides
reliability, it usually offers message ordering such as FIFO, causal or total order [49].

The database sites communicate exchanging messages by means of group communication
primitives. Upon receiving the message, the group communication algorithms, process the mes-
sage and deliver it to the application according to Figure 2.1. The stage before delivering the
message imposes the desired requirements [49].

We assume the existence of a Uniform Reliable broadcast primitive satisfying the following
properties [49]:

2.4. Group Communication 9

• Validity: If a correct process broadcast a message m , then it eventually delivers m .

• Uniform Agreement: If a process delivers a message m , then all correct processes eventu-
ally deliver m .

• Integrity: For any message m , every correct process delivers m at most once, and only if
m was previously broadcast by some process.

Informally, it guarantees that all the correct processes eventually agree on the set of messages
to deliver despite failures.

Moreover, we assume the existence of a total order primitive satisfying the following prop-
erty [49]:

• Total Order: If correct processes p and q both deliver messages m and m ′, then p delivers
m before m ′ if and only if q delivers m before m ′.

10 2. Model and Definitions

Chapter 3

Escada Project

Escada is a project that aims to study, design and implement transaction replication mechanisms
suited to large scale distributed systems. In particular, the project exploits partial replication tech-
niques to provide strong consistency criteria without introducing significant synchronization and
performance overheads.

Escada extends the Database State Machine (i.e., a full replication approach), or simply
DBSM [74]. Briefly, the DBSM allows an optimistic local execution, postponing the interaction
with remote concurrent transactions. That is, each transaction request is optimistically executed
by a single site and interaction with other sites is only initiated after the commit request. Upon
receiving the commit, the outcome of the transaction is propagated to all replicas using atomic
multicast. A certification procedure is run upon delivery by all sites to determine conflicts with
other concurrently executed transactions, and thus whether the transaction should be committed
or aborted. Atomic multicast guarantees that all sites deliver the outcome of the transaction in the
same order. In the case of a conflict, the certification uses this order to decide which transaction
commits or aborts. The determinism of the certification ensures a strong consistency and as the
deterministic execution is confined to the certification, no restrictions impairing performance are
imposed on scheduling during the execution stage.

The goal of this chapter is twofold. First, we present the motivation to use group communi-
cation for replicating databases. Second, we present the protocols developed under the Escada
project and propose extensions, specifically, to the termination protocol.

The remaining sections of this chapter are organized as follows. In Section 3.1, we present
some concepts about database replication and describe possible classifications for the techniques
used to replicate data. In Section 3.2, we present in detail the Database State Machine approach
for database replication. In Section 3.3, we extend the DBSM to a partial replication environment,
presenting the Partial DBSM. We describe the PDBSM’s execution model and possible termination
protocols. Finally, in Section 3.4, we discuss important issues involved in the implementation of
the PDBSM approach.

3.1 Database Replication

Database replication is an invaluable technique to implement fault-tolerant databases, being also
frequently used to improve database performance. Unfortunately, when strong consistency among
the replicas and the ability to update the database at any of the replicas are considered, the repli-

11

12 3. Escada Project

cation protocols do not scale up. The problem is related to the number of interactions among the
replicas in order to guarantee consistency and to the protocols used to ensure that all the replicas
agree on transactions’ result. Roughly, the number of aborts, deadlocks and messages exchanged
among the replicas grows drastically, when the number of replicas increases. Furthermore, Gray
et al. [42], point out that a replicated database with n copies stored over n sites can have a dead
lock rate proportional to n3, which is impractical.

Several efforts have been made to circumvent these problems, most of them, weakening the
consistency or withdrawing the ability to update the database at any of the replicas. Basically,
these efforts attempt to establish a trade-off between performance and dependability. However,
in some cases the first approach may be infeasible since some applications cannot tolerate weak
consistency and the second approach may seriously affect the scalability of the system, introducing
bottlenecks. For those reasons, most of the replication protocols available are not widely used in
production environments.

Recently, in order to achieve reliability and availability without introducing these problems, a
set of replication protocols that exploit group communication was proposed [90, 74, 60, 63, 87].

According to [42], database replication protocols can be classified based on two parameters:
(i) when the updates are carried through and (ii) who carries them on.

Considering the first parameter, the replication can be classified as synchronous (eager replica-
tion) or asynchronous (lazy replication). In the former, the client has a guarantee that the updates
were sent to all the replicas and applied, upon receiving the outcome of the transaction (in this case
commit). In order to do that, the synchronization among the replicas occurs inside the transaction,
that is, before the confirmation that is sent to the client. On the other hand, in the later approach,
the client does not have the guarantee that the replicas are up to date since replication occurs after
the confirmation.

Considering the second parameter, the replication can be classified as primary copy or up-
date-anywhere. In the former case, all the updates are carried on by a single site or replica, which
incurs in scalability problems. In the later case, the updates can be sent to any replica, but it
requires complex protocols to coordinate the consistency among diverse replicas.

Specifically for eager replication protocols, which represent the basis of our study in this thesis,
another classification was proposed in [104]. It organizes the eager replications according to three
parameters, which are: (i) the site architecture, (ii) how changes are propagated across sites and
(iii) the transaction termination protocol.

The first parameter defines primary copy or update-anywhere replication protocols and it is
based on the ideas from [42].

The second parameter considers the number of messages exchanged to handle the operations
of a transaction, except its termination, as follows:

Constant Interaction characterizes the protocols that, independently of the operations in the
transactions, have a constant number of messages. Basically, protocols that correspond
to this classification group all the operations before sending. It is important to remember
that the operations can be represented using SQL, relational algebra, relational calculus or
as a set of write values, read and write sets.

Linear Interaction characterizes the protocols that generate a message on a per operations basis.

The last parameter determines how atomicity is guaranteed, which means how transactions are
terminated, and it is presented as follows:

3.2. The Database State Machine 13

Voting Termination requires an extra set of messages to coordinate the commitment of the trans-
action, which can be as complex as the atomic commitment protocol (e.g., two-phase com-
mit or three-phase commit [9]) or a simple confirmation message.

Non-Voting Termination uses a deterministic process to decide the outcome of the transaction,
allowing that each site achieves the same decision without a coordination.

The replication can also be classified as full or partial. In the full replication scenario, all
sites have copies of all the relations in a database. In contrast, partial replication has the database
split according to application semantics and each fragment replicated at a subset of the available
sites. It exploits access locality allowing each transaction to require only a small subset of all
sites to execute and commit, thus reducing processing and communication overhead associated
with replication. Partial replication is an alluring technique to ensure the reliability of very large
and geographically distributed databases while, at the same time, offering good performance. The
advantages of partial replication have however to be weighted against the added complexity that is
required to manage it. In fact, if the chosen configuration cannot make transactions execute locally
or if the overhead of consistency protocols offsets the savings of locality, potential gains cannot be
realized.

Finally, it is important to understand the issues related to data distribution and allocation for
a broad knowledge about replication. The resource allocation problem in a network computing
environment is a well known problem [71], which can be classified as static or dynamic. In
static allocation, considering the fragments F = {f1, f2, ..., fn}, the sites S = {s1, s2, ..., si}
and the set of transactions T = {t1, t2, ..., tx } that accesses the fragments F . The allocation
problem consists on finding a distribution of the fragments F over the sites S , according to a
pattern access, i.e. the application semantics, to minimize an objective function such as resource
consumption or response time. It is well known that this problem is NP-Hard in the number of
fragments and sites [30]. In addition, the access pattern is difficult to gather and can change over
time, invalidating the established distribution [21].

For those reasons, dynamic allocation techniques have been developed. It can be classified
according to the objective function as follows: (i) minimize communication cost in WANs, mi-
grating data to servers near to the places with the highest access or (ii) load balancing in LANs,
replicating the data recently accessed. For instance, in the first scenario, there is an interesting
solution: Mariposa [93] that uses an economic model to migrate its fragment.

Recently, replication protocols based on group communication are receiving a lot of attention.
The reason is that it appears as a promise to overcome the scalability and performance problems
of the traditional strong consistency protocols. Using the classification presented in this section,
the replication can be characterized as (i) eager and (ii) update-anywhere. With respect to the
number of messages we are interested in protocols with a (iii) constant interaction among the
replicas [74, 60, 63, 87] and with respect to the termination protocol, some variations can arise
according to the requirements adopted. See Sections 3.2 and 3.3 for a detailed description.

3.2 The Database State Machine

The Database State Machine [74], depicted in Figure 3.1, is based on the deferred update replica-
tion technique [9] which reduces the need for distributed coordination among concurrent transac-
tions during their execution. Using this technique, a transaction is locally synchronized during its
execution at the database where it initiated according to some concurrency control mechanism [9]

14 3. Escada Project

Transaction
Manager

Certification
Manager

Group Communication

DBSM

Executing State

Commiting State

Commited Aborted

Transaction's
States

.local execution

.local and remote interaction

.starts termination protocol

.after certification

Figure 3.1: DBSM Architecture and Transaction’s States

(e.g., two-phase locking, multiversion). From a global point of view, the transaction execution is
optimistic since there is no coordination with any other database site possibly executing some con-
current transaction. Interaction with other database sites on behalf of the transaction only occurs
when the commit is requested. At this point, a termination protocol1 is started: i) the transac-
tion write values, read and write sets are atomically propagated to all database sites, and ii) each
database site certifies the transactions determining its fate: commit or abort. Summarizing, from
the time it starts until it finishes, a transaction passes through some well-defined states. A transac-
tion is considered to be in the executing state as soon as the request is received by an initiator site
and until a commit operation is issued. The transaction then enters the committing state and the
distributed termination protocol is started.

In order for a database site to certify a committing transaction t , the site must be able to
determine which transactions conflict with t . A transaction t ′ conflicts with t if: i) t and t ′ have
conflicting operations and ii) t ′ does not precede t .

Two operations conflict when they are issued by different transactions, access the same data
item (e.g., a tuple) and at least one of them is a write operation. The precedence relation between
transactions t and t ′ is denoted t ′ → t (i.e., t ′ precedes t) and defined as: i) if t and t ′ execute
at the same database site, t ′ precedes t if t ′ enters the committing state before t ; or ii) if t and
t ′ execute at different sites, for example si and sj , respectively, t ′ precedes t if t ′ commits at si
before t enters the committing state at si .

3.3 Partially Replicated Database State Machine

The DBSM is based on a full replication scenario. Releasing the assumption that each database
site contains a full copy of the database, directly impacts both the execution and the certification
of transactions. In this section, we address the issues raised by partial replication in the Partial
Database State Machine (PDBSM). In detail, we address the execution model and two possible
termination protocols that deal with partial replication, with either independent or coordinated
certification.

1The DBSM claims to provide 1-copy-serializability [9] as its consistency criterion [74]. See Chapter 6 for a detailed
discussion of this subject.

3.3. Partially Replicated Database State Machine 15

3.3.1 Transaction Execution

Unlike the DBSM, the initiator site in a partial replication setting may not be able to locally
complete the execution of a transaction. In fact, it is possible that no single site can, if the required
fragments are nowhere held together. Therefore, the execution of a transaction t in the PDBSM
requires that the initiator site si coordinates the distributed processing of t among a set of sites
that together contain all the fragments accessed by t . Roughly, the initiator site si goes through
the following steps [66]: i) it parses each request and rewrites the operations mapping the original
database relations into the actual fragments, ii) selects the appropriate sites for each fragment
accessed and iv) starts the distributed execution. Concurrency control is performed locally by
each site when executing operations on behalf of the initiator site.

The proposed distributed transaction execution behaves as a nested transaction [6], in the sense
that the initiator can spawn one different subtransaction per site in order to process the statements.
Our distributed transaction execution has the following properties:

1. The initiator can spawn one subtransaction per site and each site performs its own concur-
rency control mechanism.

2. Only the initiator can spawn subtransactions, which avoids the possibilities of deadlocks
inside the same transaction. Considering that we are interested in avoiding deadlocks, others
sites rather than the initiator could start subtransactions if we disable the possibilities of a
child transaction to access the same sites of its parent and vice-versa. Nevertheless, we
consider that more than one level of subtransaction is not an important feature since we are
not concerned in modeling protocols to deal with long-lived transactions [6]. Besides this,
the protocol presented in this chapter could be easily extend to support this future.

3. Deadlocks among concurrent transactions can arise when the sites resort on locks as a con-
currency control mechanism. In order to avoid this, we assume that the subtransactions
execute optimistically at remote sites and we only rely on the concurrency control mech-
anisms of the initiator site to control its own transactions. For a detailed discussion about
deadlock see [67].

4. Upon the initiator abort, all the subtransactions are also aborted.

5. Upon a child abort, all the subtransactions are also aborted. It is important to notice that one
of the objectives of the nested transactions is to provide unit of recovery, which can be easily
done extending the grammar of the database without change our model. However, since we
propose to augment the PostgreSQL with a distributed execution model (see Chapter 6) and
it does not allow subtransactions, we suggest this default behavior in case of aborts.

6. We do not allow intra-transaction parallelism. To do that would be required deep modifica-
tions in the processing query mechanisms of the PostgreSQL and for that reason we do not
model this future.

3.3.2 Termination Protocol

An issue of major impact for the PDBSM is how the results of the distributed transaction pro-
cessing are handled. While in the DBSM, the whole set of write values, read and write sets were
relevant to all database sites, in a fragmented database this is no longer true. On the contrary,

16 3. Escada Project

the fragmentation of the database is meant to exploit data and operation locality and therefore the
propagation of write values should be restricted to the sites replicating the involved fragments.

With respect to the read and write sets, however, it is not obvious whether they should be
propagated to all database sites or just to those containing the relevant fragments. Indeed, this
directly influences the certification phase and establishes a trade-off between network usage and
protocol latency. If the whole read and write sets of the transaction are fully propagated, then it
will enable each site to independently certificate the transaction. Otherwise, if each site is provided
with only the parts of the read and write sets regarding the site’s fragments, then it can only make
a partial judgment and the transaction certification requires a final coordination among all sites.

Independent Certification

With the propagation of the whole read and write sets to all database sites, we adopt a termination
protocol similar to that of the DBSM, in which each site can independently certify the transactions.
As soon as a transaction t enters the committing state, all sites containing database fragments in-
volved in the transaction are requested to stabilize the transaction write values. The stabilization
of a fragment ensures that all sites are able to participate on the termination protocol and to even-
tually commit the transaction despite the failure of the sites involved in the transaction execution.
By request of the initiator site si , each database site sj involved on the execution reliably multi-
casts the transaction write values of the fragments it is responsible for to all sites replicating these
fragments. The initiator si receives a stabilization acknowledgment, in the form of read and write
sets, from sj . Should sj fail, si may unilaterally decide to abort the transaction.

Once the initiator site gathers all the acknowledgments, it atomically multicasts the transaction
read and write sets to all database sites. This message totally orders the certification of t , and thus
upon delivery of the message, along with the write set of previously certified transactions, each
site has the necessary knowledge to certify t . If t passes the certification test, all write values of
t previously obtained during t ’s stabilization phase are applied to the database and t passes to the
committed state. Otherwise, t passes to the aborted state.

The cost of independent certification is given by the cost in network bandwidth of propagating
the whole read and write sets to all sites, plus the cost, at each site, of keeping this write set while
required for the certification of pending transactions, and finally the cost of certifying the whole
transaction at each site. From these, our main concern is actually on the network usage. The write
set of a transaction t can be discarded as soon as t is known to precede every pending transaction,
that is, any transaction in the executing or committing state. The difference in the cost of doing
total or partial certification is almost negligible.

Coordinated Certification

On the other hand, to fully exploit data locality we restrict the propagation of the transaction
read and write sets to the database sites replicating the corresponding fragments. The knowledge
required to certify a transaction becomes itself fragmented and each site may only be able to certify
part of the transaction. Therefore, a final coordination protocol is required.

Once the transaction reaches the committing state the initiator site requests all sites contain-
ing database fragments involved in the transaction execution to stabilize. Each one of these sites
reliably multicasts the write values and read and write sets of the transaction’s fragments it is re-
sponsible for to all sites replicating these fragments, and acknowledges the end of the stabilization.

3.4. Implementation Issues 17

When the initiator site gathers all the acknowledgments it atomically multicasts a message to
all sites to totally order the certification of t . Upon the delivery of the message, each database
site sj certifies t against the fragments it replicates and votes on a Resilient Atomic Commitment
(RAC) [87] protocol to decide the final state of t . This protocol allows participants to decide com-
mit even if some of the replicas of a fragment read or written by the transaction are suspected to
have failed, as a single representative from each fragment suffices. Resilient Atomic Commit sat-
isfies the same agreement and termination properties of Weak Non-Blocking Atomic Commit [45]
and is defined as follows:

• Agreement: No two participants decide differently.

• Termination: Every correct participant eventually decides.

• Validity: If a site decides commit for t , then for each fragment accessed by t there is at least
a site si replicating it that voted yes for t .

• Non-triviality: If for each fragment accessed by t there is at least a site si replicating it that
votes yes for t and is not suspected to have failed, then every correct site eventually decides
commit for t .

If the outcome of the RAC is commit, then all write values of t previously obtained during t

stabilization phase are applied to the database and t passes to the committed state. Otherwise, t

passes to the aborted state.

Under the assumption that each fragment is replicated by a correct site that does not fail, the
RAC protocol is trivially implemented by having each site multicasting its vote [82]. A site decides
upon receiving a vote from at least a representative of each database fragment.

3.4 Implementation Issues

In this section, we discuss in detail possible algorithms to implement the protocols introduced
before. Furthermore, we point out an important optimization to the PDBSM, called FastAtomic
Delivery. This optimization was included in our PDBSM prototype and contribute to the exper-
imental results presented in Chapter 7. We chose to present it separately to avoid cluttering the
description of the protocols with performance oriented concerns.

3.4.1 Algorithms

In this section, we present algorithms, using a VDM-SL notation [32], to materialize the distributed
execution and termination protocols, discussing possible optimizations according to issues that
affect each algorithm. However, the Certification [74] and the Resilient Atomic Commitment
(RAC) [87] protocols were studied before and for that reason, we do no present them here.

Transaction Execution

Following, we outline an algorithm that captures the ideas of the distributed transaction execution.
Details about the termination protocol are presented in Section 3.3.2 and the topics about SQL
processing are discussed in Chapter 4.

18 3. Escada Project

In our algorithm the structure nodeOperation defines the operation2 to be processed. The
operations are based on SQL and can be a “select”, “insert”, “update” or a “delete” statement,
a “begin” to delineate the start of a transaction or a “commit” or “abort” to establish its end.
The structure replicas defines a map between the relations (i.e., fragments) and the sites. The
structure transControl traces distributed execution recording which sites were accessed during the
transaction’s execution. Specifically, it does that recording which relations were accessed and for
each relation which site was used to process the statement. Furthermore, it stores the write values,
read and write sets and registers which site is the initiator. The mechanism used to extract the write
values, read and write sets are explained in detail in Section 6.1. Finally, in order to organize these
information, we group them in a structure called DDb, which stands for D istributed Database.

The functions are organized in three main categories:

• Interfaces that must be provided by the database implementations in order to use our pro-
tocols. These interfaces can be identified by “Db” at the end of their names like initProto-
colDb.

• Interfaces responsible to establish a remote communication with other sites.

• Generic functions that do not belong to the other categories and actually outline our con-
cerns.

The function processOperation is the main point of our algorithm and does the following: (i)
verifies the operation’s class (i.e., enumOperations) and (ii) then calls the appropriate function. In
case of the “begin”, it calls the function initProtocol that is responsible to start a subtransaction.
It is important to observe that a request arriving at a initiator on behalf of client must be globally
identified and mapped to each subtransaction started, including the subtransaction created at the
initiator site. For a globally identification, it could be used the “site id” combined with a local
“transaction id”. The other operations trigger the function executeCommand which defines the
possible sites that can handle the operation and contact one of them. The set of possible sites is
chosen based on the assumption that, during execution of transaction t , whenever a site s i is used to
process a statement in which a relation R appears on, the site si will be chosen for future requests
that reference R during the activities of the transaction t . This behavior, for instance, avoids
to update a relation in one replica and read stale information from another. It also guarantees
that it will not have cycles inside a transaction, avoiding possible deadlocks that can arise as a
consequence of this situation. In particular, the function possibleSite is responsible for that. In
case that a set of sites can be used, the function chooseSiteDb tries to find the best one according
to cost policies, which are described in detail in Chapter 4. The first time that a site is contacted,
which is observed using the structure DDb.transDb.access, a new local transaction is started.

1.0 nodeOperation : : classOperation : enumOperations

.1 relationId : relation

.2 inv opr 4

.3 (opr .classOperation ∈ {SELECT, INSERT, UPDATE, DELETE}∧opr .relationId 6=
[]) ∨

.4 (opr .classOperation ∈ {COMMIT, ABORT} ∧ opr .relationId = []);

2.0 enumOperations = SELECT | INSERT | UPDATE | DELETE |
.1 BEGIN | COMMIT | ABORT;

2For a discussion about how to transform SQL in relational algebra operations see Section 4.1.

3.4. Implementation Issues 19

3.0 transControl = transId
m
-→ controlInformation;

4.0 controlInformation : : access : relation
m
-→ site

.1 dataSet : storedSets

.2 siteOrig : site

.3 inv ctr 4 (∀ r ∈ dom ctr .access · r 6= []) ∧

.4 (∀ s ∈ rng ctr .access · s 6= []);

5.0 transOrig : : idOrig : transId

.1 siteOrig : site

.2 siteExecution : site

.3 inv tx 4 (tx .siteOrig 6= []) ∧ (tx .idOrig ≥ 0);

6.0 storedSets : : rs : relation
m
-→ pk -set

.1 ws : relation
m
-→ pk -set

.2 wv : relation
m
-→ tuple-set

.3 inv sset 4

.4 (∀ idrs ∈ rng sset .rs · idrs 6= {}) ∧

.5 (∀ idws ∈ rng sset .ws · idws 6= {}) ∧

.6 (∀ idwv ∈ rng sset .wv · idwv 6= {});

7.0 replicas = relation
m
-→ site-set

.1 inv rep 4

.2 (∀ s ∈ rng rep · s 6= {}) ∧

.3 (∀ sl ∈
⋃

rng rep · sl 6= []) ∧
.4 (∀ r ∈ dom rep · r 6= []);

8.0 state DDb of
.1 transDb : transControl

.2 repDb : replicas

.3 localDb : site

.4 transMapDb : transId
m
-→ transId

.5 inv ddb 4

.6 (∀ tid ∈ dom ddb.transDb · tid ∈ dom ddb.transMapDb) ∧

.7 (let tid ∈ dom ddb.transDb in

.8 (∀ rra ∈ dom ddb.transDb (tid).access · rra ∈ dom ddb.repDb) ∧

.9 (∀ rrb ∈ dom ddb.transDb (tid).dataSet .rs · rrb ∈ dom ddb.repDb) ∧

.10 (∀ rrc ∈ dom ddb.transDb (tid).dataSet .ws · rrc ∈ dom ddb.repDb) ∧

.11 (∀ rrd ∈ dom ddb.transDb (tid).dataSet .wv · rrd ∈ dom ddb.repDb) ∧

.12 (∀ ssa ∈ rng ddb.transDb (tid).access · ssa ∈
⋃

rng ddb.repDb) ∧
.13 (ddb.transDb (tid).siteOrig ∈

⋃
rng ddb.repDb))

.14 end

9.0 regSite : transOrig × site → transOrig

.1 regSite (tx , s) 4

.2 mk-transOrig (tx .idOrig , tx .siteOrig , s);

20 3. Escada Project

10.0 regControl : transOrig × transControl → transControl

.1 regControl (tx , txControl) 4

.2 txControl†{tx .idOrig 7→ mk-controlInformation ({7→}, mk-storedSets ({7→}, {7→
}, {7→}), tx .siteOrig)}

.3 pre tx .idOrig 6∈ dom txControl ;

11.0 regContact : relation × site × relation
m
-→ site → relation

m
-→ site

.1 regContact (rel , s, access) 4

.2 access † {rel 7→ s};

12.0 processOperation : transOrig × nodeOperation
o
→ B

.1 processOperation (tx , opr) 4

.2 (cases opr .classOperation:

.3 BEGIN → return (initProtocol (tx)),

.4 COMMIT, ABORT → return (terminateProtocol (tx , opr .classOperation)),

.5 others → return (executeCommand (tx , opr))

.6 end)

.7 pre tx .siteOrig ∈
⋃

rng DDb.repDb ;

13.0 initProtocol : transOrig
o
→ B

.1 initProtocol (tx) 4

.2 (dcl r : B := false;

.3 r := initProtocolDb (tx ,DDb.transMapDb);

.4 if (r = true)

.5 then DDb.transDb := regControl (tx ,DDb.transDb);

.6 return (r))

.7 pre tx .idOrig 6∈ dom DDb.transDb ∧ tx .idOrig 6∈ dom DDb.transMapDb

.8 post tx .idOrig ∈ dom DDb.transDb ∧ tx .idOrig ∈ dom DDb.transMapDb ;

14.0 initProtocolDb (tx : transOrig ,mapLocal : (transId
m
-→ transId)) r : B

.1 pre tx .idOrig 6∈ dom mapLocal

.2 post tx .idOrig ∈ dom mapLocal ;

15.0 executeCommand : transOrig × nodeOperation
o
→ B

.1 executeCommand (tx , opr) 4

.2 (dcl c : site ,

.3 r : B := false,

.4 s : site-set := {};

.5 s := possibleSites (tx , opr .relationId);

.6 c := chooseSiteDb (tx , opr ,DDb.repDb, s);

.7 if (tx .siteExecution = c)

.8 then (dcl rmaps : relation
m
-→ site := DDb.transDb (tx .idOrig).access;

3.4. Implementation Issues 21

.9 r := executeCommandDb (tx , opr ,DDb.transMapDb);

.10 if (r = true)

.11 then (rmaps := regContact (opr .relationId , c, rmaps);

.12 DDb.transDb(tx .idOrig).access := rmaps))

.13 else (dcl settx : transOrig := regSite (tx , c),

.14 rmaps : relation
m
-→ site := DDb.transDb (settx .idOrig).access;

.15 if ({c} \ rng DDb.transDb (settx .idOrig).access 6= {})

.16 then (r := processOperationRemoteSite (settx , mk-nodeOperation (BEGIN, []), c);

.17 if (r = true)

.18 then (rmaps := regContact (opr .relationId , c, rmaps);

.19 DDb.transDb(settx .idOrig).access := rmaps;

.20 r := processOperationRemoteSite (settx , opr , c)))

.21 else (r := processOperationRemoteSite (settx , opr , c);

.22 if (r = true)

.23 then (rmaps := regContact (opr .relationId , c, rmaps);

.24 DDb.transDb(settx .idOrig).access := rmaps)));

.25 return (r))

.26 pre opr .relationId ∈ dom DDb.repDb ∧ tx .idOrig ∈ dom DDb.transDb

.27 post opr .relationId ∈ dom DDb.transDb (tx .idOrig).access ;

16.0 possibleSites : transOrig × relation
o
→ site-set

.1 possibleSites (tx , rel) 4

.2 (if (rel ∈ dom DDb.transDb (tx .idOrig).access)

.3 then return ({DDb.transDb (tx .idOrig).access (rel)})

.4 else if (tx .siteExecution ∈ DDb.repDb (rel))

.5 then return ({tx .siteExecution})

.6 else return ({r | r ∈ DDb.repDb (rel)}))

.7 pre tx .idOrig ∈ dom DDb.transDb ∧

.8 rel ∈ dom DDb.repDb∧rng DDb.transDb (tx .idOrig).access ⊆
⋃

rng DDb.repDb

;

17.0 chooseSiteDb (tx :transOrig , opr :nodeOperation, rep :replicas , s :site-set) r :site

.1 pre opr .relationId ∈ dom rep ∧ s 6= {}∧ s ⊆
⋃

rng rep ∧ tx .siteOrig ∈
⋃

rng rep

.2 post r ∈ s ;

18.0 processOperationRemoteSite (tx : transOrig , opr : nodeOperation, s : site) r : B

.1 post true ;

19.0 executeCommandDb (tx : transOrig , opr :nodeOperation,mapLocal : (transId
m
-→

transId)) r : B

.1 pre tx .idOrig ∈ dom mapLocal

.2 post true ;

20.0 terminateProtocol (tx : transOrig , opr : enumOperations) r : B

.1 pre tx .idOrig ∈ dom DDb.transDb

.2 post true

22 3. Escada Project

Independent Certification and Coordinated Certification

We present an algorithm to capture the termination protocol called independent certification. The
structure transaction gathers the write values, read and write sets produced during the transaction’s
execution. Unfortunately, this information is distributed among the database sites that handled the
transaction and thus must be gathered to initiate the certification.

The termination protocol is triggered upon receiving the “commit” or the ”abort“ operation.
In the case of an “abort”, the procedure is simple. The initiator site contacts the sites involved in
the distributed execution requesting to roll back the transaction, which is done calling the function
requestRollBack. In case of “commit”, it stabilizes the write values and then atomically multicasts
the transaction and waits for the outcome of the certification, calling the function startCertification.
In order to stabilize, it calls the function startStabilization, which finds the sites that handled the
distributed execution and proceeds with the function computeStabilization. In it, for each site
involved is requested the stabilization calling requestStabilize. Upon receiving the answers, it
gathers the results using the function rebuildTransaction. Basically, this function accumulates the
answers collectedSets in the structure transaction that will be used in certification. However, there
is a subtle detail in it. It assumes that just one site si will contribute with information about the
read and write sets of a relation R (see its pre-condition). It is important to remember that this is
a consequence of the distributed execution presented in Section 3.3.1.

21.0 collectedSets : : rs : relation
m
-→ pk -set

.1 ws : relation
m
-→ pk -set

.2 wv : relation
m
-→ tuple-set

.3 inv cset 4

.4 (∀ idrs ∈ rng cset .rs · idrs 6= {}) ∧

.5 (∀ idws ∈ rng cset .ws · idws 6= {}) ∧

.6 (∀ idwv ∈ rng cset .wv · idwv 6= {});

22.0 disregControl : transOrig × transControl → transControl

.1 disregControl (tx , txControl) 4

.2 {tx .idOrig} −C txControl

23.0 processOperationRemoteSite (tx : transOrig , opr : nodeOperation, s : site) r : B

.1 post true ;

24.0 terminateProtocol : transOrig × enumOperations
o
→ B

.1 terminateProtocol (tx , opr) 4

.2 (dcl r : B := false;

.3 cases opr :

.4 ABORT → return (executeRollBack (tx , rng DDb.transDb (tx .idOrig).access)),

.5 COMMIT →

.6 (r := executeStabilization (tx);

.7 if (r = true)

.8 then r := processCertificationRemoteSite (tx)

.9 else executeRollBack(tx , rng DDb.transDb (tx .idOrig).access))

.10 end ;

.11 return (r))

3.4. Implementation Issues 23

.12 pre tx .idOrig ∈ dom DDb.transDb

.13 post tx .idOrig 6∈ dom DDb.transDb ;

25.0 executeRollBack : transOrig × site-set
o
→ B

.1 executeRollBack (tx , setSites) 4

.2 (if (setSites 6= {})

.3 then (let s ∈ setSites in

.4 if (s 6= DDb.localDb)

.5 then processOperationRemoteSite(tx , mk-nodeOperation (ABORT, []), s)

.6 executeRollBack(tx , setSites \ {s}))

.7 else (DDb.transDb := disregControl (tx ,DDb.transDb);

.8 executeRollBackDb(tx ,DDb.transMapDb));

.9 return (true))

.10 pre tx .idOrig ∈ dom DDb.transDb ∧ tx .idOrig ∈ dom DDb.transMapDb

.11 post tx .idOrig 6∈ dom DDb.transDb ∧ tx .idOrig 6∈ dom DDb.transMapDb ;

26.0 executeRollBackDb (tx : transOrig ,mapLocal : transId
m
-→ transId) r : B

.1 post tx .idOrig 6∈ dom mapLocal ;

27.0 executeStabilization : transOrig
o
→ B

.1 executeStabilization (tx) 4

.2 (dcl stabilizeSites : site-set := rng DDb.transDb (tx .idOrig).access ,

.3 r : B := false;

.4 if (DDb.certMode = NOVOTE)

.5 then r := computeStabilizationNoVote (tx , stabilizeSites)

.6 else r := computeStabilizationVote (tx , stabilizeSites);

.7 return (r))

.8 pre tx .idOrig ∈ dom DDb.transDb

.9 post let setrs = dom DDb.transDb (tx .idOrig).dataSet .rs,

.10 setws = dom DDb.transDb (tx .idOrig).dataSet .ws in

.11 ∀ rrs ∈ setrs, rws ∈ setws ·

.12 rrs ∈ setws ∧ rws ∈ setrs ;

28.0 computeStabilizationNoVote : transOrig × site-set
o
→ B

.1 computeStabilizationNoVote (tx , sites) 4

.2 (if (sites = {})

.3 then return (true)

.4 else let site ∈ sites in

.5 let collectedSet = processStabilizationRemoteSite (tx , site) in

.6 if (collectedSet 6= nil)

.7 then (rebuildTransaction(tx , collectedSet) ;

.8 computeStabilizationNoVote(tx , sites \ {site}))

.9 else return (false));

24 3. Escada Project

29.0 computeStabilizationVote : transOrig × site-set
o
→ B

.1 computeStabilizationVote (tx , sites) 4

.2 if (sites = {})

.3 then return (true)

.4 else let site ∈ sites in

.5 let collectedSet = processStabilizationRemoteSite (tx , site) in

.6 if (collectedSet 6= nil)

.7 then computeStabilizationVote(tx , sites \ {site})

.8 else return (false) ;

30.0 rebuildTransaction : transOrig × collectedSets
o
→ B

.1 rebuildTransaction (tx , collectedSet) 4

.2 (dcl r : B := true,

.3 setrs : relation
m
-→ pk -set := DDb.transDb (tx .idOrig).dataSet .rs ,

.4 setws : relation
m
-→ pk -set := DDb.transDb (tx .idOrig).dataSet .ws;

.5 DDb.transDb(tx .idOrig).dataSet .rs := setrs m
⋃

collectedSet .rs;
.6 DDb.transDb(tx .idOrig).dataSet .ws := setws m

⋃
collectedSet .ws;

.7 return (r))

.8 pre let setrs = dom DDb.transDb (tx .idOrig).dataSet .rs,

.9 setws = dom DDb.transDb (tx .idOrig).dataSet .ws in

.10 tx .idOrig ∈ dom DDb.transDb ∧

.11 ¬ (dom collectedSet .rs ⊆ setrs) ∧ ¬ (dom collectedSet .ws ⊆ setws) ;

31.0 processStabilizationRemoteSite (tx : transOrig , cst : site) r : [collectedSets]

.1 post true ;

32.0 processCertificationRemoteSite (tx : transOrig) r : B

.1 post true

Implicit Functions

There are some implicit functions presented before which deserve more explanation:

Requesting stabilization - Ultimately the stabilization is done calling the function processSta-
bilizationRemoteSite for each site involved in the distributed transaction. However, it may
fail while contacting the remote site(s). For that reason, its return collectedSets can be nil,
which is indicated by using the brackets around collectedSets. Each site communicates with
its replicas using a uniform reliable multicast. Furthermore, to inhibit the situation in which
a site sj fails after accomplishing the stabilization and before answering the request to the
initiator, we can devise a protocol in which the initiator is also involved in the uniform
reliable multicast.

Starting certification - The initiator atomically multicasts the transaction and waits for the out-
come of the certification calling processCertificationRemoteSite. It also should fail and in
this case, a false value is returned to indicate failure and a true value is used to indicate
success. No matter what happens, the end of the transaction must be reported and the infor-
mation recorded in transControl eliminated.

3.4. Implementation Issues 25

Processing a remote command - Should the contact with a remote site fail and in this case, a
false value is returned to indicate failure and a true value is used to indicate success.

Failures

Failure of the initiator Considering that the clients access the sites using unmodified mecha-
nisms such as JDBC [96], which usually uses unicast communication, the failures of the
initiator site must roll back the transaction, since the connection with the clients will be
interrupted. In this case, the other sites detected the failure of the initiator based on changes
in the membership and undo the effects of the subtransactions.

Failure of other sites The failure of other sites can also be detected with the changes in the mem-
bership, immediately after the failure or postponed to the moment that the initiator needs to
contact these sites.

3.4.2 FastAtomic Delivery

The idea behind this protocol is simple and consists on the early delivery of transactions with a
tentative order, allowing an optimistic certification to run concurrently to the total order protocol.
This allows to overlap the final delivery of the transaction with its certification, whenever the
tentative order matches the final delivery order.

The Atomic Broadcast and Fast Atomic Broadcast are the communication abstractions used by
database sites to communicate. The Atomic Broadcast is defined by the primitives broadcast(m)
and deliver(m), and satisfies the following properties [49]: 3

• Validity: If a correct process broadcast a message m , then it eventually delivers m .

• Agreement: If a correct process delivers a message m , then all correct processes eventually
deliver m .

• Integrity: For any message m , every correct process delivers m at most once, and only if
m was previously broadcast by the senders of m .

When using an atomic broadcast primitive, all sites must wait until they agree on message
order before atomically delivering it. In the following, we present the Fast Atomic Broadcast,
which allows sites to deliver messages tentatively, that is, before the order has been agreed.

The Fast Atomic Broadcast protocol is similar to the Atomic Broadcast with Optimistic De-
livery, introduced in [62]. It is defined by the primitives broadcast(m), FST-deliver(m), and FN-
L-deliver(m) and satisfies the following properties:

Validity. If a correct site broadcasts a message m , then it eventually FNL-delivers m .

FST-Agreement. If a correct site FST-delivers a message m , then every correct site also FST-de-
livers m .

FNL-Agreement. If a correct site FNL-delivers a message m , then every correct site eventually
FNL-delivers m .

3These properties were also defined in Chapter 2 but are presented here again for simplicity and to allow a easy
comparison with the properties defined by the Fast Atomic Broadcast.

26 3. Escada Project

Integrity. For every message m , every site FST-delivers m only if m was previously broadcast;
and every site FNL-delivers m only once, and only if m was previously broadcast.

Local Order. No site FST-delivers a message m after having FNL-delivered m .

Final Order. If two sites FNL-deliver two messages m and m ′, then they do so in the same
order.

Notice that if a site FST-delivers a message and then changes its initial guess, i.e. the final
order do not matches the fast order, it is the responsibility of the application to cope with messages
FST-delivered in the wrong order.

Chapter 4

Distributed Query Processing

In this chapter, we present the distributed query processing issues and analyze the most important
mechanisms developed to accomplish its goals. Generally speaking, the distributed query pro-
cessing aims at executing queries considering resource consumption or response time. It attempts
to execute the queries in a manner that consumes minimum resources or that takes less time to
return an answer. We introduce and discuss this subject in order to understand the ideas behind
the solutions developed to overcome the different issues and hence exploit them to materialize the
distributed execution model presented in the previous chapter.

The rest of this chapter is organized as follows. In Section 4.1, we introduce the distributed
query processing issues. In Section 4.2, we adopt a well known criteria to analyze this subject.
For each criterion proposed, we devoted a particular section to explain it. In Section 4.3, we
consider the optimization mechanisms. In Section 4.4, we present information about plan cost
and catalog. In Section 4.5, we present query processing mechanisms that exploit the network
organization and infrastructure. In Section 4.6, we describe caching mechanisms, specifically
one called materialized view, and compare it with the replication approach. In Section 4.7, we
describe some operators designed exclusively for distributed databases. In Section 4.8, we classify
some important distributed database prototypes and particular solutions according to the adopted
criteria. Finally, in Section 4.9, we outline our contributions to the Escada Project.

4.1 Query Processing Issues

The centralized or distributed SQL processing mechanism can be designed according to the archi-
tecture depicted in Figure 4.1 which is described as follows [71, 98, 66]:

Parser In this stage occurs a decomposition of a high-level query language (for instance, SQL).
It passes through a lexical, syntactic and semantic analysis. On completion of the process,
the high-level language is transformed into some internal representation based on a query
graph [77], which is more suitable for the next processing step. In this stage also, the pred-
icate is transformed into a normal form, that is, a conjunctive normal form or a disjunctive
normal form. In the former, a sequence of conjuncts are connected with the ∧ operator,
where each conjunct contains one or more terms connected with the ∨ operator. In the later,
a sequence of disjuncts are connected with the ∨ operator, where each disjunct contains one
or more terms connected with the ∧ operator.

Query Rewriter It aims at optimizing the queries, using strategies that does not take into account

27

28 4. Distributed Query Processing

Query Result

Catalog

Database

Execution
Engine

OptimizerRewriterParse

Figure 4.1: Architecture of a Query Processor

Query Tree

Producing
Search Space

Transformation
Rule

Execution Plan

Cost Model

Possible
Execution Plan

Retrieve
Strategies

Figure 4.2: Query Optimizer’s Ste

where data is stored or located (i.e., it does not consider replicas, cache, resource usage
such as processor and network) and physical state of the system (i.e., it does not consider
size of tuples, relations and indices). Basically, the optimization applied consists on the
simplification of expressions [41], rewrite of subqueries and views [98]. In a distributed
system, it also considers the fragments to answer the queries. On completion of the process,
the graph is transformed into some internal representation based on the relational algebra
tree, which is more suitable for the next processing step. The relational algebra tree (query
tree) is produced as follows:

• A leaf node is constructed to each base relation in the query.

• A non-leaf node is created for each intermediate relation produced
by the relational algebra operation over a base relation(s) or other intermediate re-
sult(s).

• The root of the tree represents the result of the query.

• The sequence of operations is directed from the leaves to the root.

Query Optimizer In this stage, the relational algebra tree is optimized regarding the data local-
ization and physical state of the system. On completion of the optimization process an
execution plan is produced (Figure 4.2). The optimizer applies a set of rules to the rela-
tional algebra tree and produces possible execution plans. Basically, these rules consist on
changing the order of the operation(s) and relation(s) or substituting group of operation(s)
for equivalent one(s). To evaluate the cost of a possible execution plan, the optimizer con-
siders a cost model, defining an objective function (e.g., minimize resource consumption or
response time) and weights associate to each possible operation.

Code Generation In this stage, the chosen plan is transformed into a low level representation,
allowing an efficient evaluation of the expressions and predicates.

4.2. Criteria for analysis 29

Query Execution This stage is responsible for the execution according to the operations defined
in the plan.

4.2 Criteria for analysis

We adopt the criteria proposed in [71, 66]. In this thesis though, we group the topics in a different
manner and also attempt to evaluate particular solutions such as Microsoft SQL Server, Oracle,
DB2 and PostgreSQL. Regardless of the chosen criteria, it is difficult to evaluate and compare
query processing solutions. There are many implementations, each with its own subtleties that
makes this evaluation a complex process. The approach presented here allows us to visualize the
differences and similarities among the centralized and distributed solutions, and offers possibilities
to distinguish the critical factors for performance. The organization proposed is the following:

Optimization The optimization techniques search for the execution plan that has an optimal cost
in the space of possible execution strategies. The optimizer’s job represents the most im-
portant and complex issue in centralized or distributed query processing. In fact, the mech-
anisms presented in the other topics aims at helping the optimizer to produce optimal plans.

Catalog and Cost Model The catalog stores metadata about the database, which describe, for in-
stance, the frequency distribution of the attributes and the existence of indexes. The cost
model considers these factors and others (such as network bandwidth consumption, CPU
usage) to evaluate possible plans. For that reason, it is important an accurate maintenance
of the metadata information. In this topic we present concepts involved in the catalog main-
tenance and possible cost models.

Network Technologies and Distributed Computing In a distributed environment, the query pro-
cessing mechanism can exploit the network infrastructure to execute the queries. For in-
stance, the optimizers can exploit broadcast facilities and client’s machines in order to dis-
tribute processing or to cache information for future use.

Caching and Replication The use of caching mechanisms are common to avoid the access to
slow resources. In this topic, we describe the approaches called caching and replication,
presenting their differences and similarities.

Operators and Operations In this topic, we present how to extend the operators and operations
designed for a centralized environment to be used in a distributed environment. We also
present some operators and operations, such as semi-join, designed specifically to exploit
the distributed environment’s characteristics.

4.3 Optimization

The actual goal of an optimizer is to select an execution plan that is close to the optimal and,
perhaps more important, to avoid bad plans. However, it is known that this problem is NP-Hard
in the number of relations [52]. For complex queries, searching for the best execution plan can
incur in a prohibitive processing time. For that reason, the studies in this area attempt to find
techniques that choose with low cost the most efficient plan. In the following, we divide this
problem considering the issues involved in how to optimize and when to optimize.

30 4. Distributed Query Processing

4.3.1 How to optimize

In this section, the intuition behind the optimization techniques is presented, describing the de-
terministic and randomized classes of algorithms [68]. In spite of this classification, both classes
attempt to reduce the costs involved in the search process, considering indeed different strategies.
Basically, the difference is a trade-off between processing time and accuracy of the plan.

In the deterministic class, the algorithms based on dynamic programming are the most popular
and can be found in various commercial databases [66, 22]. Generally speaking, the algorithms
based on dynamic programming solve problems by combining the solutions to subproblems. In
our particular case, it evaluates almost all possible strategies in order to find an optimal execution
plan, which incurs in a significant processing cost, unfortunately, since the numbers of possible
strategies to evaluate can be prohibitive. To reduce the cost when a number of relations is greater
than five or six, some heuristics are applied. For instance, it is possible to prune the cartesian
operation as a possible step if not actually specified in the SQL statement; or prune initial strategies
that are a priori worse than other possibilities [71]. The use of this last approach avoids to evaluate
the combination of bad strategies with others, which would be worthless since the produced results
would not be optimal.

Other deterministic solution is based on greedy programming [71, 22]. In contrast to the dy-
namic programming approach, this algorithm works in two steps to reduce the processing cost.
First, it selects an initial feasible execution plan based on a simple objective such as “transfer all
relations to a single site minimizing the communication cost and process the query”. In this case,
the algorithm needs to determine the site that has the maximum amount of information. Second, it
attempts to reduce the cost of the initial plan searching for an equivalent solution. Unfortunately,
this algorithm can produce a non-optimal initial plan and whatever the effort to improve it will be
worthless.

The randomized strategies, such as Iterative Improvement and Simulated Annealing [66, 97,
53], attempt to search for a good solution close to the optimal, but do not guarantee the best
solution, which avoids the high inherent costs of the deterministic approaches. It is characterized
by two steps similar to the greedy programming. In fact, the first step defines one or more initial
plans using a greedy approach. The second step attempts to improve the initial plans applying
random transformations. For instance, a random transformation could be the exchanging of two
randomly chosen relations.

4.3.2 When to optimize

Other factor that categorizes the optimization process is the moment when it is applied. It is
possible to optimize before the execution, which leads to static optimization [85, 15], or during
execution, which leads to dynamic optimization [40, 20]. In the static approach, the main goal is
to avoid the optimization cost each time a query is processed. For that reason, the optimization is
applied before execution and the chosen plan is cached for future use. It is a suitable approach for
the deterministic algorithms, since an optimal plan can be selected at once. The approach relies
on statistic information to choose the optimal plan and can select sub-optimal strategies when
the statistics are inaccurate [15]. For a discussion about how statistics are used, collected and
maintained see Section 4.4. With respect to the dynamic optimization, the statistics are considered
to define the first operations and the following decisions are based on the results being obtained.
The dynamic approach is a more expensive solution due to the need of constantly process the same
queries. It is better suited for processing ad-hoc queries.

4.4. Catalog and Cost Model 31

display

join

join join

A C BD

display

join

join join

A B C D

display

join

join join

A B C D

(a)Plan at Compile Time (b)Plan at Execution Plan (c)Optimal Plan

Site A Site CSite B

Figure 4.3: Two-Step Optimization and the Communication Problem

Hybrid approaches attempt to exploit the advantages of both worlds. For instance, there are
strategies that optimize the query before its execution and compare the estimated costs of each
operation with the real ones after the execution. In case of a large difference, the old plan is
discarded and the optimizer selects a new plan from the point where the problem was detected. In
this way, it adjusts the plan to the new environment’s conditions and constraints [103].

In distributed environments, to avoid the high cost associated with the dynamic optimization
strategies, the “two-step optimization” [14] approach represents an alternative. In the first step, it
selects an execution plan for a given query and stores its choice in cache for future use. In the
second step, whenever the query is sent to execution, it accesses the cache to retrieve the plan and
carries out certain decisions before execution. Several variations of this solution can be found in
the literature [14, 93], but a simple algorithm that captures its ideas is presented in [66] as follows:
(i) at compile time, the optimization is accomplished selecting a plan suitable to be executed in
a centralized environment; (ii) on every execution, a selection of sites is performed considering
information such as network bandwidth, processor load average and available memory. Each step
can further be optimized using any suitable technique.

Nevertheless, this approach also has its weakness and problems. It ignores the communication
issues when selecting its plan in the step (i), which can lead to use sub-optimal plans with high
communication cost, as it is possible to see in Figure 4.3 [66]. The plan (a) represents the opti-
mization at compile time; the plan (b) represents the optimization regarding the site(s) selection;
the plan (c) is the optimal solution. Basically, it is not taking into account that relations A and D
are collocated at the same site and relations B and C are collocated at another site. The high com-
munication cost is related to the join ordering specified by the first step, which leads to transfer
the relations A and D to other site in order to process the plan. In contrast, if the optimal plan
could be chosen this expensive communication would be avoided, incurring in a less expensive
final transmission of the result of join A and D.

4.4 Catalog and Cost Model

4.4.1 Catalog

The catalog is essential in all phases of the query processing. For instance, the parser identifies
the relations, attributes referenced in SQL statements and their properties, accessing the catalog.
The rewriter applies some transformations to the SQL statements1 and needs to access the catalog
to determine which transformations must be applied and how. In the optimization phase, infor-
mation about replicas and statistics about the database are retrieved from the catalog and used

1It is important to notice that the optimizer in this phase manipulates an internal representation of the SQL statement
issued. However, this distinction is not relevant here and the term SQL statement is referenced instead, for simplicity.

32 4. Distributed Query Processing

to compute the costs involved in each operation. Hence, observing these aspects, we have suffi-
cient and important reasons to consider its role essential and fundamental to the query processing
mechanisms.

In a first look, the technologies used to maintain the catalog and its associated information
appear to be simple. Unfortunately, even in a centralized environment, there are challenges, such
as statistics maintenance that is quite important to produce optimal plans and whose goal must
balance precision and resources consumption. We discuss this issue in detail in the next section.
In a distributed environment, there are additional challenges, such as catalog organization and
replica management [28], that need to be taken into account.

The catalog organization in a distributed environment can be implemented in a central site
using an approach similar to a centralized environment. However, this solution introduces a single
point of failure and does not scale up. To circumvent these problems, a replication mechanism
could be used, but a full replication could incur in prohibitive overhead to guarantee consistency
among the replicas. According to [28], an intermediate solution seems to be the best proposal
and to locate the fragments and replicas it discuss the use of location dependent or independent
identifiers. In the first solution, there are server addresses associated to the identifiers expressing
where the information is located. It is a simple solution that unfortunately cannot efficiently exploit
migration and replication without a high cost to manage the server addresses. In contrast to it,
location-independent identifiers can be used to circumvent this problem. Generally speaking,
this solution implements distributed indexes which map each identifier to a server list where the
information is located. To reduce the communication cost, the approach tries to put the indexes
near to the information.

4.4.2 Plan Cost

In order to correctly evaluate the execution strategies, the cost model must be accurate, and
therefore, must consider the environment’s current state to accomplish its goal. Basically, the
cost model can be categorized according to its objective function as total time [72] or response
time [35]. The total time model, also know as classical model, tries to minimize the total resource
consumption increasing the overall throughput. Inside the total time classification, however, it
is also possible to see some specializations. For example, some solutions aim at minimizing the
total communication cost. The response time model tries to minimize the execution time exploit-
ing parallelism, which can lead to a higher resource consumption when compared to the former
approach.

In a centralized system, CPU, I/O and memory consumption are possible factors that are used
as cost components. However, in a distributed database system, it is important to consider the com-
munication factor. In some approaches, the communication factor is responsible for the biggest
impact on the cost, and in others, for the simplification of the cost model, just the communication
factor is considered [71].

The cardinality of base and intermediate relations are essential to compute the cost related to
each factor considered. The statistics stored in the catalog are used to retrieve or estimate each
cost. The following data is available into the catalog: number of tuples in each relation, attribute
size, tuple size and number of unique values per attribute. Usually, it is stored as histograms on
the frequency distribution of attributes. To avoid the selection of bad strategies, each cost must
be obtained with a high level of precision relying on accurate and updated statistics to accomplish
this. On the other hand, to maintain the statistics there is a management overhead, which leads to
an establishment of a trade-off between acceptable precision and overhead [71, 37].

4.5. Network Technologies and Distributed Computing 33

Cost models based on economic paradigms are frequent in several area of research. The use
of economic paradigms to model problems in distributed computing has been studied since the
mid-1980s (e.g, economic models for resource allocation, load balancing, flow control and quality
of service) [31]. The motivation to use an economic model is that distributed systems are too
complex to be controlled by a single centralized component with a universal cost model [66]. In
the distributed databases, the first to be based on an economic model was the Mariposa [93].

4.5 Network Technologies and Distributed Computing

The network organization and its associated technologies have a direct impact on the optimiza-
tion approaches. The first distributed database systems considered the communication factor as
preponderant to define cost models [71]. Even though this assumption absolutely simplified the
optimization problems, currently it has to be re-evaluated on the light of existing network tech-
nologies. Nowadays, communication time in LAN environments (e.g., ATM and GigabitEthernet)
is comparable to I/O time [38, 84], which increases the weight of other factors such as CPU, mem-
ory and I/O to compute the objective functions. In WAN environments, the assumption is still
valid and it is possible to consider the communication factor as preponderant.

There are optimization approaches that exploit specifics characteristics of the network [71]. It
is possible to find studies on the use of broadcast primitives to increase the number of parallel
operations, or algorithms designed specifically to star [64] and satellite [51] networks.

There are studies that attempt to use the client resources, based on the fact that the number
of clients is larger than the number of servers. They propose to transfer some activities to be
executed at the clients. For example, some approaches execute the initial steps of the query pro-
cessing at the clients: parse, rewrite and optimization steps. Other approaches go beyond these
simple activities, sending the data to be processed at the client (data shipping), instead of using
the traditional paradigm where the queries are sent to the server to be processed (query shipping).
Some important information about the data shipping effort [66] is outlined as follows:2

• This approach can scale better than other solutions, since it exploits the client resources.

• Sending the data to be processed at the client might increase the communication cost. To
reduce it, it is possible to cache3 the shipped data at the client, but this solution brings
another problem related to coherence management of the information stored at the client’s
cache.

• It increases the complexity of the optimizers, since there are new ways to process the queries.

• The use of hybrid solutions can take advantage of the benefits of both approaches. For
example, it is possible to execute transactions that do not update large amount of data at
clients, propagating the updates in batch operations to the server. This solution reduces the
communication cost, and in case of rollback, it discards the transaction without affecting the
server activities [13].

2In [34, 33] a detailed analysis about this subject can be found. Some important performance considerations are
discussed and is recommended the use of hybrid solutions to exploit the advantages of both approaches.

3The caching mechanism is presented in detail in Section 4.6.

34 4. Distributed Query Processing

4.6 Caching and Replication

4.6.1 Materialized views

Caching mechanisms exploit the principle of locality, minimizing access to slow resources (e.g.,
use the disk to avoid network access, or memory to avoid disk access). Earlier optimization tech-
niques cached information such as base relations, indexes or part of them [66]. In addition, some
studies suggest that caching of intermediate results can also dramatically increase the perfor-
mance [27, 48]. This approach is called materialized view and some commercial products such
as Oracle [7, 25] and Microsoft SQL Server [39, 79] use it.

Materialized views can be used to avoid the overhead of computing complex queries. Instead
of processing the query when the view is referenced, the results are automatically retrieved from
the cache, using disk to avoid network communication or main memory to avoid I/O access, ac-
cording to the amount of resources necessary to store the information. Besides, it is also possible to
substitute portions of a query using the view, whenever the optimizer identifies a chance to reduce
computation cost. On the other hand, this improvement in performance comes with the cost of
keeping cached information up to date. See Chapter 5 for a detailed discussion about materialized
views and their issues.

4.6.2 Replication

Replication also exploits locality and, at the same time, increases resiliency. The differences
between replication and caching (not only materialized views, but cache in a broader sense) can
be presented as follows [66]:

replication caching
placement server client, server or intermediate layer
granularity coarse fine
storage device usually disk usually main memory
impact on catalog yes no
update protocol propagation invalidation
remove copy explicit implicit
mechanism separate fetch keep copy after use

Table 4.1: Differences between Replication and Caching

placement The replication technique deals with relations that need to be stored on the server. On
other hand, the caching technique manipulates subsets of relations or result sets of queries
that can be stored anywhere.

granularity The relation is the grain of the replication whereas caching deals with sets of tuples.

storage device In consequence of the coarse grain used in replication, information is stored on
disk. In contrast, caching usually stores information in memory. Nevertheless, this decision
is highly influenced by the amount of memory necessary to store the information, and even
caching can use the disk as a storage area (e.g., materialized views).

impact on catalog When a replica is created or reallocated, this information must be updated in
the Catalog to allow the clients to find the replicas. Caching manipulates information that is
not shared. It is something particular to the place where it is stored.

4.7. Operators and Operations 35

update protocol When information is updated, this new data must be propagated to all replicas.
In a caching mechanism, it is usually invalidated. The materialized view represents an
exception because its state is kept up to date, which is a consequence of its principle: “avoid
recomputation”.

remove copy The “copied information” is removed from the cache implicitly whereas, using
replication, the remotion depends on the protocol designed.

mechanism To access the replicated information, it is necessary to refer to the replica explicitly
or implicitly. The use of the information in cache is consequence of successively operations
instead.

Basically, these differences between replication and caching are related to a simple fact: “repli-
cation deals with long duration information, large number of clients and a pattern access that do
not change frequently [66]. Observing such an information, it is simple to realize the reason for
what materialized views do not perfectly fit in the caching classification.

For more information about database replication see Chapter 3.

4.7 Operators and Operations

Several techniques available in a centralized database to implement relational algebra opera-
tors [80, 41] can be used in distributed query processing, being enough to augment them with
basic communication primitives. However, there are special techniques developed to circumvent
specific problems (e.g., communication cost) of a distributed environment [66, 91].

Semi-join is the name of an important technique developed for a distributed environment [10].
It proposes to implement the join operation among relations in different sites. In a simple man-
ner, the traditional join applied to a distributed environment would lead to transferring one of the
relations from one site to the other. This transfer unfortunately could generate unnecessary com-
munication costs, since some tuples could be discarded in the join. The semi-join tries to avoid
this unnecessary network bandwidth consumption. Basically, it sends only the attributes that are
necessary and sufficient to compute the join and after that it retrieves only the tuples that match.
On the other hand, it is important to notice that this approach uses two communication steps and
two CPU steps against one communication step and one CPU step in the traditional join. In situa-
tions that the relation to be transfered is large and the selectivity of the join is good, this solution
is better.

Experimental research shows that semi-joins are not suited to centralized environments [70,
72]. However, recently, studies show it can be appropriate for join involving large relations in
which the tuples are also large [91].

Other technique, called Pipeline [55], allows that the first results are delivered as soon as
possible, exploiting the parallelism and reducing the response time. The pipelining mechanisms
are sometimes also know as on-the-fly processing. Roughly speaking, instead of waiting to process
an operation whose results are stored on an intermediate place, it starts in parallel the next step
of a relation algebra tree. The drawback with pipelining is that the inputs to operations are not
necessarily available all at once for processing.

36 4. Distributed Query Processing

display

union

join join

A C DB

display

union

join join

A B C D

(a)Optimizes Communication Time (b)Optimizes Response Time

Site A

Site C

Site B

Figure 4.4: Ingres Objective Function

4.8 Classification of Database Systems

The interest in distributed query processing is evident and has been increased over the years.
Observing the number of studies that discuss its different aspects, such as optimization, replication
and materialized views, it is simple to realize its importance. Other evidence is the increasing
number of prototypes designed to test the ideas and concepts developed.

It would be almost impractical to introduce an uniform classification of all available sys-
tems according to the criteria defined here. Therefore, we restrict our presentation to relational
database systems. Specifically, we show and classify the first efforts in building distributed rela-
tional database systems: INGRES, System R* and ADD-1. After that, we also show the Mariposa
system that was responsible for providing an economic paradigm for query processing and data
migration. Finally, some commercial products, such as Oracle, Microsoft SQL Server, DB2 and
PostgreSQL are presented. We propose here to present the classification of some components
presented in these products that are important for the query processing. However, it is important
to notice that there are no commercial distributed relational database products available.4 Our
classification is presented as follows.

• In the Distributed INGRES [94, 71]:

Optimization It uses a deterministic dynamic optimization characterized by a limited search
of the solution space, where a decision is evaluate for each step without considering its
impact and consequences on the global optimization. In contrast to other approaches
presented here such as dynamic programming, it does not evaluate all the possibilities
to find the best one. It attempts to reduce the natural overhead imposed by the dynamic
optimizations making it a feasible solution.

Catalog and Cost Model Its objective function attempts to minimize a combination of
both communication time and response time. However, these objectives can be con-
flicting and the optimization algorithm favors one of them. For example, in Figure 4.4,
the first execution plan is adjusted to reduce the communication time, since all the
operations are executed in site A. In the second execution plan, the response time is
favored and a parallel execution plan (e.g., independent or pipeline parallelism) is cho-
sen. Each join is processed in parallel in a different site and the result is gathered in
site A. It is simple to see, that this last approach increases the communication time
and reduces the response time. Furthermore, statistics provide information about the
cardinality of the base relations which are used in the initial steps of the optimiza-

4From the best of our knowledge, there was an attempt by Choera, according to [66], to distribute a Mariposa
commercial version. Nevertheless, during the writing process, there was no information about the product in [19].

4.8. Classification of Database Systems 37

tion process. Its “on-line” approach allows it to use real information to evaluate the
intermediate steps.

Network Technologies and Distributed Computing It exploits broadcast to replicate in-
formation and to maximize the degree of parallelism.

Caching and Replication It implements replication and horizontal fragmentation.

Operators and Operations There is no semi-joins. The relations are transfered among
sites, whenever an execution plan must join relations that are in different sites.

• In the System R* [72]:

Optimization It uses a deterministic static optimization characterized by an exhaustive
search among all the alternatives. To reduce the number of possibilities in the search
space, making a feasible solution, it applies dynamic programming and heuristics.

Catalog and Cost Model Its objective function attempts to minimize a total cost improving
the overall throughput and performance. It considers local processing time (I/O and
CPU) and communication time (number of messages and message size) to accomplish
this. Its static approach implies estimation of the cardinality of the intermediate results
to produce near optimal plans. For that reason, it keeps statistic information about the
cardinality of base relations and the number of unique values per attribute.

Network Technologies and Distributed Computing It does not exploit aspects of the net-
work technologies and distributed computing.

Caching and Replication It does not implement replication nor fragmentation. Although
the algorithm described in [85] deals with fragmentation.

Operators and Operations There is no semi-joins or pipelined hash joins. Hence, the
algorithm extends traditional join operators using send and receive. It decides based
on estimations which result to transfer to each site.

• In SDD-1 [10]:

Optimization It implements a gready approach (deterministic and static) in which the ini-
tial plan is defined based on a global optimization that it is iteratively improved with an
algorithm called “hill-climbing”. Roughly speaking, its first plan is established com-
puting the intersite communication cost to schedule all operations on a single site. It is
important to notice, however, that the cost of transferring the result to the final site is
ignored. Hence, after that, it attempts to improve the initial plan allocating operations
to be executed in others sites and gathering the results in the chosen one.

Catalog and Cost Model Its objective function attempts to minimize the total communi-
cation time. It does not take into account local processing time (I/O and CPU) and
response time to accomplish this. It keeps statistic information about the base rela-
tions such as cardinality, the number of unique values per attribute, join selectivity
factor, size of projection on each join attribute, attribute size and tuple size.

Network Technologies and Distributed Computing It does not exploit aspects of the net-
work technologies and distributed computing.

Caching and Replication It does not implement replication nor fragmentation.

Operators and Operations It does use semi-joins in order to reduce the total communica-
tion time.

• In Mariposa [93]:

38 4. Distributed Query Processing

Optimization It implements an approach based on the two-step optimization. In the first
step, it uses the local PostgreSQL5 optimizer, which produces a plan without consider-
ing the fragments. Then a module called fragmenter is responsible to change the plan
to reflect the data fragmentation. In the second step, the microeconomic solution takes
place deciding where each piece of the fragmented plan will execute.

Catalog and Cost Model It argues that global optimization strategies using cost-based ap-
proaches cannot perform well in WAN. For example, they do not scale up to a large
number of possible processing sites nor adapt well to different access constraints
(e.g., workload limits and patterns). For those reasons, it proposes a microeconomic
paradigm for query and storage optimization. Furthermore, instead of using a central-
ized catalog to gather statistics about the sites, it implements a distributed advertising
service to announce sites that can be used to evaluate queries. It also maintains the
traditional statics in each site in order to evaluate its local execution cost.

Network Technologies and Distributed Computing It does not exploit aspects of the net-
work organization, but its algorithm is designed to work in WAN environments.

Caching and Replication It allows to create horizontal fragments using four partition modes:
random, round-robing, key-based and hash-based. Every new relation can be split into
two fragments, which can be split into two and so one. In the random mode, the tuples
are placed in one fragment or the other at random. In the round-robin, it provides an
equal allocation of tuples among the relations. In the key-based, the tuples are split
based on attribute value. In the hash-based, a function over an attribute and a value
define the fragment to place the tuples. Instead of providing a static allocation, the
fragments can be bought, sold, split and coalesced according to the access pattern. It
implements an asynchronous replication where the replicas periodically receive up-
dates. There are two types of Mariposa replicas: (i) a read-only that receives its update
from its parent site; (ii) a read-write that allows the children to receives updates and
propagate it to the parent.

Operators and Operations It does use semi-joins in order to reduce the total communica-
tion time, but can parallelize activities to improve performance.

• Microsoft SQL Server [78]:

Optimization It implements a static optimization approach based on dynamic programing.
It works in multiple phases. First, it produces a simple reasonable plan that satisfies
the query. If the plan takes less time than a specified threshold, it stops its work.
Otherwise, it continues to search for a plan that takes less time than the specified
threshold. In this way, its mechanism avoids unnecessary work to produce optimal
plans for queries whose performance is not critical.

Catalog and Cost Model Its cost model is computed based on statistics managed in a cen-
tral catalog. It builds and maintains statistics on relations in order to estimate distribu-
tion of the attributes and its selectivity [37]. To accomplish this, it uses histograms on
the frequency distribution of the attributes. Periodically, it updates the histograms us-
ing a complex sampling method which provides the necessary accuracy and minimizes
impact on transaction throughput [24]. Basically, this method samples random pages
where the number of pages is defined according to a minimum number of tuples. The
frequency of the updates is determined by the volume of data in the relation and the
amount of changing data.

5The single database engine distributed with Mariposa was POSTGRES: a pre-alpha release of POSTGRES95
which has the basis of the current development.

4.8. Classification of Database Systems 39

Network Technologies and Distributed Computing It does not exploit aspects of the net-
work technologies and distributed computing.

Caching and Replication It implements materialized views know as index views in SQL
Server 2000 [39, 79]. In order to transform a simple view in a materialized view, some
constraints must be followed. First, the view must be defined by a single-level SQL
statement containing selections, inner joins and aggregations. Second, the “from” must
reference just base relations. Third, if a “group by” clause is used, all attributes that
appear on the aggregation must be referenced in the “select” clause and the aggregation
functions are limited to “sum” and “count”. The objective of all these restrictions is to
allow that the view can be updated incrementally. Using this approach, it can increase
the performance of queries that reference the view, since its result set do not need to
be computed in runtime. Furthermore, it can use the view to substitute parts of queries
if possible. See Chapter 5 for a detailed discussion about this subject. In regarding
the replication, it implements the traditional approaches used in commercial solutions.
See Chapter 3 for more information.

Operators and Operations According to [78], it can use semi-joins to compute join op-
erations that deals with huge amount of data. It also provides intra-query parallelism
allowing to schedule portions of queries to be executed on multiple processors in SMP
computers.

• Oracle [25]:

Optimization It implements a static optimization approach based on dynamic programing.
Its optimizer estimates the cost for various alternative strategies and chooses the one
with the lowest cost.

Catalog and Cost Model Its cost model is defined according to the database administra-
tor’s preference. It is possible to establish a model whose goal is to minimize the time
to return the first row or first set of N rows. Or to establish a model whose goal is
to return the result set in the least amount of time. To accomplish its objectives, it
maintains a set of statistics that can be classified as object, system and user-defined
statistics. Its object statistics are similar to the others commercial databases as Mi-
crosoft SQL Server and DB2. Their principles are the same, regardless of the subtle
differences. Otherwise, the system statistics allow to consider the CPU cost and I/O
cost based on the machine’s performance, instead of relying upon a fixed formula to
combine them. The user-defined statistics allow customer to extend the functions and
information used to compute the costs.

Network Technologies and Distributed Computing It does not exploit aspects of the net-
work technologies and distributed computing.

Caching and Replication It implements materialized views [7, 25]. It can increase the
performance of queries that reference the view, since the result set do not need to be
computed in runtime. Furthermore, it can use the views to substitute parts of queries if
possible, having a low cost. It implements the traditional replication approaches used
in commercial solutions.

Operators and Operations According to [25], it uses semi-joins to compute join opera-
tions that deals with huge amount of data. It also provides intra-query parallelism
allowing to schedule portions of queries to be executed on multiple processors or dif-
ferent nodes. It is also important to notice that the optimizer actually takes into account
the impact of parallel execution when choosing the best plan.

40 4. Distributed Query Processing

• DB2 [23]:

Optimization It is simple to see that it implements a static optimization approach based on
dynamic programing. Its optimizer estimates the cost for various alternative strategies
and chooses the one with the lowest cost.

Catalog and Cost Model Similar to Oracle’s approach, its cost model can be defined based
on the application’s characteristics. It is possible to establish a model whose goal is to
minimize the time to return the first set of N rows. Or to establish a model whose goal
is to return the result set in the least amount of time. To accomplish its objectives, it
maintains a set of statistics that are similar to the others.

Network Technologies and Distributed Computing It does not exploit aspects of the net-
work technologies and distributed computing.

Caching and Replication It also has a materialized view implementation that is known as
summary table. The optimizer can use the information when requested or when it
detects that it would profit from the use of a precomputed value. It also implements
the traditional replication approaches used in commercial solutions.

Operators and Operations It does not use semi-joins. It provides intra-query parallelism
allowing to schedule portions of queries to be executed on multiple processors or dif-
ferent nodes.

• PostgreSQL [44]:

Optimization It implements a static optimization based on dynamic programming. Its op-
timizer estimates the cost for various alternatives strategies and chooses the one with
the lowest cost. However, in order to avoid the inherited overhead related to the ex-
haustive searches, it has an option that enables a genetic query optimizer (GEQO).
Basically, it is a “random” solution adapted from D. Whitley’s Genitor algorithm [36],
that supports large join queries effectively through non-exhaustive search.

Catalog and Cost Model Despite the difference regarding the GEQO, it applies a central
catalog and histograms to support the optimization. It is also possible to configure
CPU and disk performance according to the machine used, in manner similar to the
oracle approach. However, instead of being an automatic process, we need to do it
manually.

Network Technologies and Distributed Computing It does not exploit aspects of the net-
work technologies and distributed computing.

Caching and Replication Its current release 7.4.x does not implement materialized views.
Support for single master/multi slave asynchronous replication was recently devel-
oped. Regardlessly of the official development, there is also a replication solution
based on group communication (Postgres-R) developed by [60] in release 6.4.2. Fur-
ther, nowadays there are efforts to extend the traditional replication solutions and to
incorporate Postgres-R in the current release.

Operators and Operations It does not use semi-joins nor intra-query parallelism.

4.9 Distributed Query Processing in the Escada

In this section, we present the distributed query processing mechanisms designed for the Escada.
The approaches and decisions were somehow constrained by the work’s timeframe. We also took

4.9. Distributed Query Processing in the Escada 41

into account the possibilities of easily integrating the mechanisms in any database system. Gener-
ally speaking, we propose a two-step optimization, a fully replicated catalog and simple extensions
to the SQL grammar which, for instance, provides the necessary commands to configure the repli-
cation. We also exploit the atomic multicast to invalidate or update a distributed semantic caching.

Our approaches are roughly presented as follows (see Chapter 5 and Chapter 6 for a detailed
discussion):

Optimization We use a two-step optimization to process the queries. This mechanism is a good
choice when we intend to augment an available centralized database in order to provide
a distributed query processing without incurring in much effort or lots of changes. Thus,
we can preserve the normal optimization mechanisms available in the database system. In
the first step, everything is done like in a centralized execution until the queries arrive at the
execution engine. In the second step, before the execution, the execution engine must decide
in which site each node of the query tree will be executed. Initially, we propose to choose
the first possible and available site, which means any correct site that has the referenced
fragments in the node. Regardless of this decision, it is possible to construct the second step
based on any optimization policies and mechanisms without much impact on the current
implementation of the database.

Catalog and Cost Model We preserve the available mechanisms used for the cost model in the
case of local fragments and augment it to deal with remote fragments. Each site is re-
sponsible for gathering its statistics and optimize the queries without even known about
the distributed execution. In the case of queries accessing fragments that are not locally
available, we must resort to extensions of the catalog which gathers information from all
the replicas. This is done as follows. Each site is responsible for computing its statistic
for the local fragments. Periodically, the result of the computation is broadcast to the other
sites. The catalog is fully replicated and to reduce the overhead of the full replication, we
rely on lazy replication for the majority of the updates. However, some operations such
as the creation, deletion or modification of the object structures are applied synchronously
which avoids inconsistency among the replicas. Finally, this process can take advantage
of the atomic multicast used to serialize the transactions, avoiding the overhead of another
communication step.

Network Technologies and Distributed Computing We do not directly exploit the network tech-
nologies to process the queries. However, all the extensions proposed here rely on the mul-
ticast primitives used in the PDBSM. Furthermore, regarding that each site computes its
statistic and afterwards exchanges the result of the computation and that we also propose
a distributed cache management, we can consider that our approach is based on distributed
computing mechanisms.

Caching and Replication We exploit the multicast primitives in order to build a distributed cache
management. Basically, we take advantage of the atomic multicast that is used to serialize
the transactions to update or invalidate distributed cache entries. The entries in the cache
are result of the distributed execution and are used to reduce the overhead involved in the
remote communication. It is important to notice that is not build to reduce the local access
to storage resources, rather than that it is used to circumvent communication problems such
as latency and bandwidth consumption. However, instead of using tuples or pages as cache
entries, our approach is based on semantic. In other words, the entries in the cache are
identified using the predicates available in the queries.

42 4. Distributed Query Processing

Operators and Operations We do not use semi-joins nor intra-query parallelism. The imple-
mentation of the these functionalities would require several modifications to the target
database. For that reason, we do not provide them.

Chapter 5

Semantic Caching

The optimistic execution and the atomic broadcast can be seen as the fundamental characteristics
of the replication approach of the Escada. Our proposal is to exploit these properties in order to
build a semantic caching and improve the certification process.

Specifically, the first mechanism intends to develop a distributed cache management, taking
advantage of the broadcast of the transactions to update or invalidate the entries in cache. In
this case, the Escada permits the development of this distributed cache without much effort and
without the negative impact of a centralized management. However, instead of managing the
cache using tuples or pages, we propose a semantic approach [27, 50]. Basically, in this approach,
the entries in the cache are identified using the predicates involved in the queries. Doing this,
we avoid the management overhead of the tuples, which usually involves retrieval, update and
replacement per tuple. In contrast to page caching, we also reduce the management overhead and
further overcome the problem of space consumption, which is a consequence of the page fixed
size, while disregarding the size of the result set and always allocating pages. Furthermore, using
the semantic approach, it is possible to build better replacement algorithms that assign values in
fair and lightweight models; and parallelize the retrieval of local information available in the cache
with the request of missing tuples from remote sites.

The second mechanism intends to reduce the number of aborts in the certification process. In
order to do that, it tries to avoid false conflicts as a result of coarse grains, in this case relations,
which arise when instead of using the accessed tuples to compose the transaction’s outcome, we
resort to the relation(s) evicting hence to flood the network and making the Escada protocols
feasible.

The rest o this chapter is organized as follows. In Section 5.1, we present the satisfiability and
implication problems in database systems. In Section 5.2, we present the ideas behind semantic
cache and establish a comparison among other approaches of caching. We describe how to de-
tect that previous queries can be used to improve performance. We also define how the updates
invalidate the entries in cache and how to recompute some class of queries using just informa-
tion available in cache and in the updated tuples. Finally, in Section 5.3, we present a discussion
about our approach comparing it with related works and outline a possible extension to the Escada
which is currently available as a prototype [95].

43

44 5. Semantic Caching

5.1 Satisfiability and Implication Problems

The theory behind problems involving satisfiability and implication provides us background and
basis to important issues in database research. For instance, it is possible to determine the dis-
tributed horizontal fragments that must be returned to answer a request; or to find materialized
views that can improve the overall performance. Formally, these problems can be defined as fol-
lows [47]:

Expressions Let S and T be expressions based on the relational calculus except that both do not
have quantifiers.

Satisfiability/Contradiction S is satisfiable if and only if there exists at least one assignment for
S that satisfies S . Otherwise, there is a contradiction in S .

Implication - S implies T, denoted as S → T , if an only if every assignment that satisfies S also
satisfies T .

Equivalence - S and T are equivalent if and only if S implies T and T implies S , denoted as
S ↔ T .

In spite of being important for database researches and even commercial products [7, 25, 39,
79], generic algorithms to solve these problems are known to be NP-Hard [47]. For that reason,
we restrict the class of problems to achieve solutions in acceptable time. We consider formulas
connected through conjunction, variables and constants defined over either the integer or real
domain, and the following comparison operators (≤,≥,=, <,>).

We present an algorithm to detected satisfiability, 1 based on [47]:

• Step 1: Perform a transformation on each (Si .a1 θ Sj .a2) and (Si .a1 θ C) in S such that
only (Si .a1 [< | ≤] Sj .a2) and (Si .a1 [< | > | ≤ | ≥] C) remain. If (Si .a1 6= C) or (Si .a1

6= Sj .a2) is found, report NP-Hard problem and exit. At the same time, eliminate the trivial
formulas, namely, (Si .a1 θ Si .a1) and (C1 θ C2) in S. If (Si .a1 [<|> | 6=] Si .a1), or (C
[<|> | 6=] C), or (C1 [<|≤ | =] C2) with (C1 > C2), or (C1 [>|≥ | =] C2) with
(C1 < C2), then report that S is unsatisfiable, and exit.

• Step 2: Construct the minimum range [C Si .a1

low ,C Si .a1

up] for each Si .a1 by scanning all (Si .a1

[< | > | ≤ | ≥] C).

• Step 3: Construct the labeled direct graph GS ; detect all SCCs . If any “<” is found in any
SCC, then S is unsatisfiable; exit. Otherwise, collapse SCCs and obtain an acyclic graph
GScollapsed

.

• Step 4: Topologically sort all nodes of the graph to compute the “real” minimum ranges
[ASi .a1

low ,ASi .a1

up].

• Step 5: If any C Si .a1

low > C Si .a1

up or C Si .a1

low = C Si .a1

up with C Si .a1

low or C Si .a1

up open, S is unsat-
isfiable. Otherwise, report that S is satisfiable.

In Step 1, we are considering that the expressions are in a normal form, which means that
there is neither parenthesis nor negations. This assumption is valid since we are planning to use

1For a detailed discussion about graphs structures, topological sort and strongly connected components see [22].

5.2. Semantic Cache 45

this algorithm after the optimizer which normalizes the predicate. The transformations for (S i .a1

θ Sj .a2) exploit the fact that (Si .a1 = Sj .a2) ≡ (Si .a1 ≤ Sj .a2) ∧ (Si .a1 ≥ Sj .a2) and the pos-
sibility of reordering expressions putting Si .a1 before Sj .a2 and vice-versa. The transformations
for (Si .a1 θ Sj .a2) exploit the fact that (Si .a1 = C) ≡ (Si .a1 ≤ C) ∧ (Si .a1 ≥ C). In case of C

belonging to the real domain the expressions are reduced to (Si .a1 [< | > | ≤ | ≥] C) . In case
of the integer domain, we can further reduce the operators to (Si .a1 [≤ | ≤] C) because (Si .a1 <

C) is equivalent to (Si .a1 ≤ C -1) and (Si .a1 > C) is equivalent to (Si .a1 ≥ C + 1). Finally,
the step tries early to decide that S is unsatisfiable based on trivial approaches outlined before.

In Step 2, we associate a minimum range for each Si .a1 by scanning all (Si .a1 [< | > | ≤ |
≥] C). When the comparison operator is either < or > the correspondent bound is classified as
open, otherwise it is closed.2 It is important to notice that when C belongs to the integer domain,
it is always classified as closed because (Si .a1 < C) is equivalent to (Si .a1 ≤ C -1) and (Si .a1

> C) is equivalent to (Si .a1 ≥ C + 1) .

In Step 3, we build a labeled directed graph GS = (VS ,ES) for S . Each node has a direct
correspondence to a distinct variable Si .a1 in S and each edge is labeled with < or ≤. Still in this
step, all SCCs (Strongly Connected Components), which means nodes that are reachable via paths
from each other, are detected and that implies Si .a1 = Sj .a2. However, if during this process
an edge labeled with “<” is found, S is unsatisfiable because Si .a1 will not be equal to Sj .a2.
Otherwise, the SCCs must be collapsed to obtain an acyclic graph that will be used in the next
phase.

In Step 4, using the acyclic graph, we topologically sort all nodes to compute the “real” mini-
mum ranges [ASi .a1

low ,ASi .a1

up], which is defined as follows. For all Si .a1 [< | ≤] Ci and Si .a1 [> |

≥] C ′

i , we define [C Si .a1

low ,C Si .a1

up], where C Si .a1

up = min(Ci), C
Si .a1

low = max (C ′

i) and define if the
brackets are closed or open according to the comparison operators. Furthermore, we must consider
the relations established among different variables. For such, we need to traverse the topologically
sorted graph to redefine [C Si .a1

low ,C Si .a1

up], producing what is called real minimum ranges.

In Step 5, we decide whether S is unsatisfiable or not. Basically, S is unsatisfiable if any
C Si .a1

low > C Si .a1

up or C Si .a1

low = C Si .a1

up with C Si .a1

low or C Si .a1

up are open.

We just presented the satisfiability algorithm, since the implication problem can be evaluated
as follows: (S → T) ↔ (S ∧ ¬T). In [47] is presented a detailed analysis of the algorithm
outlined here and specific algorithms to solve implication.

5.2 Semantic Cache

The semantic cache is designed to avoid recomputation of queries based on previous requests.
However, instead of organizing the information using pages or tuples, it uses predicates available
in SQL statements to do that.

Shaul Dar et al. in [27] establish a comparison among semantic cache, page and tuple ap-
proaches using three factors: data granularity, request and cache replacement policies. In page
caching architectures, the unit of transfer between the servers and clients is the page. The ability
to cluster tuples in pages simulating a database organization can be a good idea when compared to
approaches that transfer one tuple at time. For instance, it has a positive impact on the bandwidth
consumption, reducing the communication steps. Unfortunately, this leads to a false sharing prob-

2This information is usually indicated changing the brackets from [to] for C
Si .a1

low and from] to [for C
Si .a1

up .
However, to a better presentation of the algorithm we omit this fact considering always closed brackets.

46 5. Semantic Caching

lem, which has noticeable impact on situations that a single tuple is requested and a whole page is
returned. In tuple caching architectures, the overhead to transfer one tuple at time is inconceivable.
To avoid this, the architecture whenever possible groups the tuples to transfer. Regardless of the
effort to reduce its high cost, it implies a management overhead that is proportional to the number
of tuples, which is reflected on entries in cache and its associated information. In contrast, the
semantic approach allows to group the tuples according to the issued queries. For that reason, the
impact on bandwidth and also on cache management is reduced. It also provides the alternative to
group entries in cache, further reducing the overhead involved in management.

The cache must somehow identify which information is locally available and which is not.
Page and tuple caching use the same idea, accomplished with an index structure that reflects the
information available in the server. When a cache miss occurs, a fault requirement based on
the page or tuple identification is sent to the server. Using predicates, the semantic caching pro-
vides a completely different approach. Just analyzing metadata available about the cached queries,
without navigating through indexed tuples, is possible to determine which information is locally
available and which must be requested from remote servers. Furthermore, the local retrieve can be
done in parallel with the remote request, improving the overall performance.

Finally, the cache replacement policies associate a value function to each cached item and
choose as victims those items with lowest values. These functions typically exploit temporal
locality or spatial locality. In the first case, the function is based on the assumption that items
referenced recently have a high possibility of being referenced again. LRU and MRU algorithms
are good examples of those approach. In the second case, the function is based on the assumption
that items physically close to that recently referenced have a high possibility of being referenced
again. The page caching tries to use this approach when accessing fixed size pages instead of
tuples. The semantic caching extends this approach allowing the spatial locality to be adapted to
the pattern of the queries.

In [27], it is also presented an evaluation of a semantic caching implementation against page
caching and tuple caching. It concludes that the semantic performance and overhead are better
under different scenarios of selection (e.g., indexed and no-indexed), altering different parameters
(disk cache, memory cache, query size and replacement policies). In the worst case, both have the
same performance or overhead, except when a semantic caching that does not coalesce entries is
used with indexed selections. In this case, the semantic caching, for queries whose size is lower
than six percent of relation, presents a worse overhead when compared with the page caching
using LRU.

Besides the comparison established among the semantic cache, page and tuple approaches, the
former can also be analyzed according to the following topics:

• (i) Definition and selection of queries suitable to be materialized. In our case, we are con-
sidering just queries constructed from an arbitrary number of (s)elect, (p)roject and (j)oin
operations SPJ. This restriction is explained in the next section. Besides, along with this
restriction the workload has a direct influence in the selection of the queries and this issue is
presented in Chapter 7. For a formal approach to select queries to be materialized see [18]
and for a commercial tool see [3].

• (ii) Storage and index creation. This topic is out of the scope of this thesis. The ideas
are borrowed from optimization strategies well known in database systems. Please refer
to [2, 81, 3, 18] for more information about this subject.

• (iii) Navigation structures to search for materialized views created. We presented in Sec-
tion 5.2.2, an organization approach based on [39].

5.2. Semantic Cache 47

• (iv) Integration of materialized views with the optimizer. This regards production and eval-
uation of plans using materialized views, as well as detection of common expressions to
replace parts of the queries with cached information. This topic too is out of scope of this
thesis. Please refer to [17, 39] for a comprehensive treatment of this subject.

• (v) Maintenance algorithms which regard incremental update, avoiding the overhead of re-
computing the materialized views. In Section 5.2.2, we analyze this subject in detail.

5.2.1 Query Matching

Paraphrasing [59], examination and maintenance of cached tuples via predicate descriptions entails
determining satisfiability of predicates. The examination process, called query matching, searches
for cached results to compute queries and can produce four distinct outcomes:

• None of the materialized views available in the cache can be used, which implies that a
counterpart to the issued predicate was not found.

• One or more materialized views covers the issued predicate, being the optimizer responsi-
ble to decide which one is the best according to the cost model designed. Furthermore, a
restricted predicate must be produced to eliminate possible exceeding tuples available in the
chosen materialized view.

• One or more materialized views overlap with the issued predicate, but none has the complete
information requested. Hence, the result must be the union of the partial overlaps and the
additional information retrieved from elsewhere to complement the request.

• The issued predicate covers one or more materialized views, meaning that each one is con-
tained within the predicate. Hence, the result must be the union of the materialized views
which were covered and the additional information retrieved from elsewhere to complement
the request.

In our approach, we consider a restricted but important class of materialized views based on
SPJ queries. According to [12], this class of queries allows the development of feasible algorithms
that can be used to detect irrelevant and autonomously computable updates regardless of some
database semantic knowledge or database instance. 3 These properties are invaluable to our ap-
proach. For instance, the possibility to detect if an update (insert, delete and update statement)
is irrelevant to the materialized views, meaning that the content of the materialized views can be
preserved without further processing, is extremely important to improve the overall performance
of the system. The possibility to refresh or recompute the materialized views using the updated
information and the view itself avoids an access to base relations located on remote site(s) or the
invalidation incurring in subsequent remote access(es). It is also important to notice that this last
behavior is essential to optimize the certification process reducing aborts. The refresh problem is
treated in detail in Section 5.2.3.

We also restrict the entries that are used to answer a request. Even though it is possible to
group different entries providing partial answers to a request, our approach disregards this behavior
considering that is the optimizer’s job to produce subqueries that can take advantage of partial
cached information. For that reason, we just consider entries in cache which cover the requested

3The term database instance is used in this case to indicate the actual state of a database system when an algorithm
is applied.

48 5. Semantic Caching

queries, being again the responsibility of the optimizer to choose the most suitable according to a
plan cost.

Formally, according to [17], we can state that a SPJ query q can be computed from a materi-
alized view v , or the predicate of v satisfies q , if there is an attribute set A and a formula F such
that, for any database instance d ,

q(d) ↔ πA(σF (v(d))). (5.1)

Before continuing we need to introduce some additional notation. Consider v a materialized
view defined as v = (Av,Rv, fv), where Av is the set of attributes projected, Rv is the set of
relations referenced and fv is the predicate. The query is similar defined as q = (Aq,Rq, fq). The
function α(x) defines a set of attributes, where x can be a relation, a set of relations, a predicate
or even a statement (i.e., a query or a materialized view). For instance,

• α(fv) the set of all attributes referenced in the predicate fv.

• α(Rv) the set of all attributes of the set of relations in Rv.

• α(v) the set of all attributes exposed by the view v being equal to Av.

The Equation 5.1 can be explained as follows. For SPJ queries the requirements presented
bellow must be satisfied in order to be possible to use a cached result:

• The base relations referenced in the cached statement must be equal to the base re-
lations referenced in the query: Rq = Rv. Despite the restriction presented here, the
integration with an optimizer can allow the production of subqueries when the queries have
more relations than the actual materialized views. Further, in [39] is presented an approach
which permits to use a materialized view with more relations whenever the cardinality of
the materialized view is not changed with the extra relations.

• The materialized relation must contain all rows needed to compute the requested ex-
pression: fq → fv and there exists a restricting formula f r on v such that fq ↔ fv ∧ f r .
This formula allows to eliminate the extra tuples belonging to v which are not of interesting
for q .

• All the required rows must be selected from the materialized view: α(v) ⊇ (α(q) ∪
α(f r) ∪ α(fq)). This guarantees that all the attributes in the projection of the queries and
the attributes required to evaluate the fr are available.

5.2.2 Managing Materialized Views

To manage the materialized views, three aspects must be considered: (i) structure to index the
cached results, allowing fast localization; (ii) storage mechanism to accommodate the results;
(iii) replacement policies when there is not enough space available. The storage mechanism and
the replacement policies are beyond the scope of this thesis. For a discussion about these topics
see [27, 2, 81, 3, 18].

Basically, we designed a mechanism to index the cached results speeding up the matching
process presented in the previous section. To accomplish this, we adapted the approach presented
in [39], which is based on lattice [1].

5.2. Semantic Cache 49

tb

t b

bc

c

root

xzx yzwroot

Relation
Hierarchy

Attribute
Hierarchy

xz

ywx

Figure 5.1: Hierarchical Filter Graph

We use a hierarchical filter graph depicted in Figure 5.1, where each node contains a key

establishing a searching condition, a set of pointers and a set of neighbors. The keys on the first
group of the hierarchical filter are associated with the set of relations referenced in the materialized
views. The keys on the second group are associated with the set of attributes exposed by the
materialized views, that is α(v). The set of pointers establishes a cover relation among the nodes.
The nodes which are not covered by any other are called root nodes. If it is not possible to
establish a cover relation among distinct nodes, a neighbor is created. In case of a node in the first
hierarchical group, there is also another set which links the first and the second groups.

The hierarchical filter is constructed connecting one or more filter graphs, where each one
represents a partitioning condition. In order to search for a materialized view, we start looking for
relations in the set of root nodes, until a match or a cover (i.e., Rv = Rq or Rv ⊇ Rq) is found. For
each cover we proceed to the next level in the same hierarchical group (i.e., relations or attributes).
For each match we access the correspondent node in the attribute hierarchy. Otherwise, we must
proceed to the neighbor nodes. The same steps are applied to the attribute hierarchy. Finally, it is
important to notice that the search algorithm must be recursively enforced until all the elements of
the root of the relation hierarchy are evaluated.

5.2.3 Maintenance of Materialized Views

The maintenance problem consists of guaranteeing that the materialized views are consistent with
the information from which they are derived. Thus, when the base relations are updated the fol-
lowing steps can be used to accomplish this: (i) compute the changes to the materialized views
from the changes to the base relations and (ii) refresh the materialized views using the computed
changes.

The last step leads us to reason about when a materialized view must be refreshed defining
possible maintenance policies as follows:

Immediate Materialized Views: The views are refreshed immediately upon an update to a base
relation. This approach can slow down update intensive transactions and increase the speed

50 5. Semantic Caching

of read intensive transactions.

Deferred Materialized Views: In this case, the updates to the materialized views are serialized
after transactions which produced the changes. In order to use this mechanism, it is nec-
essary to have a log which traces and stores the postponed updates. Different deferred
maintenance policies can be defined:

Lazy Deferred: The views do not need to be immediately consistent with the base rela-
tions. Instead of updating the views during the transaction, the refresh is postponed
until the view is required or accessed again.

Periodic Deferred (Snapshot): The views are periodically updated at pre-established times.

Forced Delay: The views are updated after a pre-established number of changes.

In our case, we cannot tolerate access to stale information since our effort is to build efficient
protocols using strong consistency criteria. We could however allow to have a lazy deferred main-
tenance postponing the refresh without compromising consistency. However, we prefer to use an
immediate maintenance approach avoiding an extra effort to trace changes.

The maintenance problem can also be observed along four dimensions [48]:

Information Dimension: The amount of information used or available to update the material-
ized views. Do we have access to all base relations? Do we know about foreign keys,
primary keys, nulls? For instance, it is possible in some cases as stated before to refresh the
materialized views using just the update statements (i.e., insert, update or delete) and the
materialized views which is called autonomously computable updates.

Modification Dimension: The restrictions imposed to the update, delete and insert statements to
base relations which the materialized views can handle.

Language Dimension: The restrictions imposed to the subset of the relational algebra, for in-
stance used to define the materialized views. In our case, we consider SPJ queries.

Instance Dimension: Can the maintenance mechanisms be used in all databases or there are re-
strictions? We propose to use generic mechanisms that can operate regardless the database.

We consider the problem of updating cached information reasoning about the overhead in-
volved to recompute it using the base relations. This perspective establishes three possibilities:
(i) detect irrelevant updates, which avoids to recompute materialized views when their results are
not changed; (ii) incremental update based on the materialized view and the changed tuples; (iii)
discard the content of the cached information since its invalid.

Irrelevant updates

In this section, we present the basic ideas behind the algorithms used to detect irrelevant updates
and to compute autonomous updates. The term update is used in a broader sense to designate
insert, delete and update operations.

One naive approach to detect irrelevant updates, could be to test each tuple individually against
the predicates defining the materialized views. Unfortunately, this solution would not scale up
well. However this alternative can be the only one available. In this case, a trade-off between

5.2. Semantic Cache 51

detecting irrelevance and invalidating entries in cache must be established. For that reason, our
effort consists in providing mechanisms that detect irrelevant updates but without incurring in
unacceptable overheads. In order to do that, we use the ideas from [12] as a start point.

First we introduce some additional notation. The insert operation is defined as {INSERT (R i ,

Ti)}, where Ri is the relation to be updated and Ti is the set of tuples to be inserted. The delete
operation is defined as {DELETE (Rd , fd)}, where Rd is the relation to be updated and fd is the
predicate to be applied. The update operation is defined as {UPDATE (Ru , fu ,Uu)}, where Uu

is the set of updated attributes Uu = {u1 = c1, ..., un = cn}, u1, ..., un ∈ Ru and cn belonging to
either the integer or real domain.4

Informally, we can define that an insert operation into a base relation is irrelevant to a mate-
rialized view if it causes no tuple to be inserted into the materialized view. In order words, this
can be expressed as follows: an operation {INSERT (Ri ,Ti)} is irrelevant to the materialized
view defined by v = (Av,Rv, fv), Ri ∈ Rv, if and only if fv(t) is unsatisfiable to every tuple
t ∈ Ti . It is worth noticing that this approach does not consider insert operations in which there
is a sub-select statement, which means that the irrelevance is evaluated using the tuples produced,
regardless of the predicate.

Informally, we can also define that a delete operation is irrelevant to a materialized view
if it causes no tuple to be deleted from the materialized view. In other words, the operation
{DELETE (Rd , fd)} is irrelevant to the materialized view defined by v = (Av,Rv, fv), Rd

∈ Rv, if and only if the condition fd ∧ fv is unsatisfiable.

It is simple to see that the definition for deletion it is quite similar to the one provided for
insertion, being enough to use a similar algorithm. However, in contrast to the insert, the delete
operation allows a predicate whose terms are attributes of Rd . Thus, we can use it to improve the
tests applied, avoiding to test each tuple. Nevertheless, whenever a sub-select, join or something
similar is allowed, we can turn out to the generic solution which verifies each tuple.

The update operation has an algorithm more complicated than insert and delete. Informally,
an update is irrelevant when the following situations happen:

• The updated tuples must be irrelevant before the statement is issued, and after its execution.
This reasoning allows to detect updated tuples that already belonged to the materialized
views, and also tuples that did not belong to them, but beginning to do, after the update.

• Even the updated tuples which are not irrelevant according to the previous definition can still
be considered irrelevant if the changed attributes exposed in the materialized views remain
with the same values.

Considering just the first situation, the operation {UPDATE (Ru , fu ,Uu)} is irrelevant to
the materialized view defined by v = (Av,Rv, fv), Ru ∈ Rv, when the following expression
evaluates to false:

(fu ∧ fv) ∨ (f ′u ∧ fv(Uu))

where f ′u is the original predicate after elimination of the attributes that appear in α(fv(Uu)).
It avoids contradictions arising upon evaluation of updates similar to update Ru set u1 = c1 where

4In [12] is presented a different definition of the update operation. Instead of using Uu , it defines FM in its place
as the set of update expressions. Unfortunately, it does not restrict the type of expressions, allowing expressions which
do not belong to the class of boolean expressions. Hence, it prevents the use of our algorithms and even the algorithms
that it proposes. In Section 5.3, we show that this distinction is irrelevant to our approach.

52 5. Semantic Caching

u1 = cn . Furthermore, observing the update operation as a delete and after an insert, the first part
of the disjunction deals with the delete operation, regarding the views which are affected before
the changes. The second part of the disjunction deals with the insert operation, regarding the views
that are affected after the changes.

Unfortunately, our approach does not consider the second situation in which the attributes ex-
posed in the derived relations remain the same. Even though it classifies some updates as relevant
when an approach which verifies the second situation does not, it never classifies an update as
irrelevant when it is relevant. To develop such an algorithm, we must evaluate the tuples which
cannot be always efficiently although the implementation is quite simple.

Autonomously Computable Updates

Using the processes previously described, we are able to detect the irrelevance of an update. How-
ever, if the irrelevance is not verified, a sequence of steps is still required to attempt to recompute
the derived relations using just the updated tuples and the materialized views.

Informally, we define that the effect of an insert operation can be autonomously computable if
the following conditions are verified:

• For each inserted tuple, it must be possible to decide whether it satisfies the materialized
view’s predicate or not.

• The values for all visible attributes in the materialized view must be obtained from the
updated tuples.

Intuitively, it is simple to realize that the first requirement is accomplished according to the
theoretical background provided to detect irrelevant inserts. However, the second requirement
needs more attention. In cases where Rv ⊃ {Ri}, the situation in which is possible to achieve
the requirement is when (α(v) ∪ α(fv)) ⊆ α(Ri). Unfortunately, regardless of this restriction,
it is not always possible to autonomously compute the inserts for all database instances when
Rv ⊃ {Ri}. For demonstration, suppose a database instance d defined over a set of relations R,
where Rv ⊆ R and Rz ,Ri ∈ Rv. Furthermore, Rz = ∅ and z 6= i . In this case, the view v

is an empty set, regardless of the inserts into Ri . Nevertheless, if we just have had followed the
previous requirements it would be necessary to insert the new tuples into Rv . As a consequence
to handle inserts autonomously the materialized view must be built using just one base relation.

Formally, the effect of an insert operation {INSERT (Ri ,Ti)} on a materialized view, defined
by v = (Av,Rv, fv), is autonomously computable if and only if Rv = {Ru}.

In order to autonomously compute delete operations, the attributes appearing on the material-
ized view must be sufficient to evaluate the delete, which means that all attributes referenced in
fd appear on v . Hence the effect of the operation {DELETE (Rd , fd)} on the materialized view
v = (Av,Rv, fv) is autonomously computable if and only if α(v) ⊇ α(fd).

In [12] is presented a weakest requirement. However, it requires a solution to an implication
problem which can contribute to reduce the performance of our approach. For that reason, we
prefer to adopt our strong proposal without incurring in this additional overhead. In Section 5.3,
we will come back to this subject giving details about the integration in Escada and demonstrating
that this choice is worthwhile.

In case of the update, we can choose to handle the problem either as a combination of a delete
and after an insert or as a different operation. In the first choice, there is a laborious work in order

5.3. Contributions 53

to remove the tuples from the materialized view and afterwards to insert some tuples which were
removed. It is also important to notice that this approach combines restrictions from the delete
operation and from the insert. Even though the second choice avoids this behavior, it requires
some steps that use satisfiability algorithms. For that reason, we adopt the first approach. For a
detailed explanation on how to handle the update operation without combining delete and insert
see [12].

5.3 Contributions

5.3.1 Algorithm

We present an algorithm based on [39] to determine whether some derived relations can be used to
compute the queries or not. Furthermore, upon receiving an update statement, the algorithm also
identifies whether it is possible to autonomously computing the changes or not. In order to do that,
we make an assumption that the derived relations are organized according to the schema outlined
in Section 5.2.2. The algorithm is presented as follows:

• Identification - The first step consists on recognizing the statement as either a select, insert,
update or delete.

Queries The queries lead to a process of query matching followed by either an answer
using a materialized view or an insertion in cache.

Updates The update statements lead to the detection of irrelevance. In case of the update
being irrelevant to the derived relations, nothing is done. Otherwise, the algorithm
tries to autonomously compute the updates for each materialized view for which the
update is relevant. When it is possible to refresh the materialized view, it applies the
correct procedures according to the statement recognized, and when it is not possible,
it removes the materialized view from the cache.

• Conjunctive Normal Form - The statements to be evaluated must have their predicates
organized in a conjunctive normal form. Usually, the query processor is responsible for that
and the algorithm does not need to consider this step. However, it is presented here for
completeness covering the case of using the algorithm outside the database mechanism.

• Extracting Information - The relations, attributes and predicates that appear on the state-
ments must be identified as follows:

Queries The queries to be evaluated must be SPJ queries as defined before. Otherwise, the
cache cannot be used. The expressions belonging to the predicate must be grouped as
either equi-join expressions, range expressions or residual expressions. The relations
appearing on the queries must be extracted and also the projected attributes.

Updates The updates, inserts and deletes must reference at most one relation. The same
classification of the predicate is valid for the update statements. If the updates do not
match the specified pattern, we use the referenced relations to invalidate all the cache
entries who have one of the relations, that is, Ri ⊆ Rv or Rd ⊆ Rv or Ru ⊆ Rv.

• Classes of Equivalence - The next step consists on organizing the attributes in classes of
equivalence. Basically, the class identifies which attributes are interchangeable. For in-
stance, this knowledge can be used to decide to autonomously compute a delete when all

54 5. Semantic Caching

the attributes appearing on its predicate are not projected by a materialized view. We start
defining a class for each referenced attribute. Recursively, for each element Ri .a1 = Rj .a2

(i.e., equi-join expressions set), we find the set containing Ri .a1 and the set containing
Rj .a2. If they are in different sets, we merge the two sets, otherwise we do nothing.

• Comparing Relations - The information extracted from the previous steps is used to search
the hierarchical filter outlined in Section 5.2.2 and to store the derived relations in cache.

Queries It is important to remember that the set of relations from the query must be equal
to the set of relations from the materialized view as defined in Section 5.2.1. This
requirement is just a simplification rather than a technical or theoretical limitation.
In [39] is presented an approach that considers supersets of the requested relations.
Furthermore, this restriction can be also circumvented changing the optimizer to pro-
duce sub-plans using subsets of the requested relations.

Updates In case of updates, it is sufficient that the relation appearing on the statement
belongs to the set of relations of each materialized view.

• Main Operations - In this phase of the algorithm the queries will continue the matching
process and the updates will be classified as irrelevant, autonomously computed or used to
invalidate cache entries. Hence, for the materialized views retrieved from the previous step
the following procedure is applied:

Queries Using the classes of equivalence defined before, we can determine if all required
attributes are available. For each equivalence class of the query, at least one of its
columns must be available in the exposed attributes of the materialized view. In fact,
this is still done searching in the hierarchical filter but now using the attribute level.
Finally, to answer the queries the algorithm chooses the first view whose predicate
satisfies the requirement fq → fv

5. If this materialized view does not exist, the queries
are inserted in the cache. Otherwise, the tuples in the materialized view that satisfy the
materialized view’s predicate are used to build the answer.

Updates We present a distinct algorithm for each update statement.

Insert In order to see if an insert is irrelevant, the algorithm proceeds as follows. For
each tuple to be inserted, we substitute the values of the attributes appearing on the
materialized view’s predicate and test the satisfiability. In the case of the predicate
being satisfied, the insert is relevant, otherwise it is not. In the second case, the
algorithm must test if the insert is autonomously computable. In order to that the
set of relations referenced in the materialized view must be equal to the set of
relations referenced in the insert. If this situation happens, the algorithm inserts
the tuples that satisfy the materialized view’s predicate, otherwise it invalidates
the materialized view.

Delete A delete is irrelevant if the expression fd ∧ fv is unsatisfiable. In case of being
relevant, the algorithm must test if the delete is autonomously computable. It does
that testing if α(v) ⊇ α(fd). When the test evaluates to false, it invalidates the
materialized view. Otherwise, for each tuple in the materialized view it tests the
tuple against the delete’s predicate and removes the tuple when the test evaluates
to true.

Update The update is treated as a sequence of delete and insert operations. First of
all, regarding the delete operation, the algorithm tests if the materialized view is

5It is important to notice that this restriction is not a limitation of our algorithm, but just a simplification since our
current prototype does not have the semantic caching integrated with the optimizer.

5.3. Contributions 55

irrelevant using the following expression (fu ∧ fv). If it is relevant, the algorithm
applies the tests to see if it is possible to autonomously compute the deletes. If it
is not possible it invalidates the materialized view and goes to next materialized
view. Considering now the insert operation, the algorithm proceeds with tests
of relevance using the following expression (f ′

u ∧ fv(Uu)). If it is relevant, the
algorithm applies the procedures to see if it is possible to autonomously compute
the inserts. If it is not possible it invalidates the materialized view. Otherwise, for
each tuple in the materialized view, it tests the tuple against the delete’s predicate.
If the test evaluates to true the tuple is removed. For each tuple to be inserted,
it tests the tuple against the materialized view’s predicate. If the test evaluates to
true the tuple is inserted.

• Satisfiability - The tests of satisfiability are applied according to the algorithms presented
in Section 5.1. This verification is made using just the equi-join expressions and range
expressions. In order to test the validity of the residual expressions, consider each one as a
sequence of characters without spaces and compare the string with the residual expressions
from the materialized views manipulated in the same way. It is important to notice that we
cannot remove spaces from constants similar to “string”. It is also important to remember
that we must use the classes of equivalences when comparing the strings. Finally, if these
expressions are equal, we can proceed. Otherwise, we can state that the whole expression is
unsatisfiable no matter what the other expressions are.

5.3.2 Extending the Escada

In this section, we present the modifications required to the Escada in order to exploit and sup-
port the semantic approach described. We outline the new distributed execution considering the
existence of the cache and discuss possible design issues in relation to the consistency criteria.
Following, we present the problem of refreshing the cache regarding the termination protocol
adopted.

Exploiting the semantic cache, we can reduce the communication among distributed sites.
Thus, before contacting a remote site, the database must evaluate the requested statement against
the cache. First of all, this process consists on determining the class of the operation: select or
update. In case of a select, the database site verifies if there is a materialized view that could
be used to compute the request. If so, it returns the result without incurring in a communication
overhead. Otherwise, it contacts the remote site and upon receiving the results generate a private
cache entry which is kept invisible to the other transactions until the end of the certification.

In case of an update, the process is more complicated because we need to guarantee one-copy
serializability (1SR). Generally speaking, we consider a shared cache per database site that is
autonomously updated or invalidated upon transaction certification. During transaction execution,
the possible changes are visible per transaction.

In other words, when an update is received, the database site verifies if the update is irrelevant
to all derived relations. If so, it simply sends the request to the remote database site. Otherwise,
it must annotate that some derived relations are not valid to a specific transaction. For each mate-
rialized view affected, it must either (i) indicate that the changed tuples are not valid and point to
the new values; or (ii) indicate that the entire materialized view is not valid. In the first case, the
update is autonomously computable. In the second case, it is not.

Upon certification, the shared cached entries must be brought up to date according to the

56 5. Semantic Caching

transaction outcome. In case of abort, nothing needs to be done. In case of commit, the changes
to the cache that were only valid to a specific transaction must be shared. It is worth noticing that
this process must be executed atomically according to the commit being applied.

Nevertheless, the reasoning described in the previous paragraphs considers the changes made
on a semantic cache in a local database site. We must regard also the impact of the transaction on
remote semantic caches. To do that, the remote site relies on the information propagated in the
broadcast in order to certify the transaction. Unfortunately, the information propagated depends
on the termination protocol implemented. For that reason, we analyze in the next paragraphs the
possibilities to manage the cache according to the termination protocols designed to Escada.

Cache and PDBSM - In the termination protocol proposed for the PDBSM, the transaction
carries read and write sets. The write values are reliably propagated just to the sites that have a
replica of the updated relations. Using this information, we can start to the delineate a protocol to
refresh the cache.

Since we just have the write sets, which means relations and primary keys of the changed tu-
ples, the best we can do is presented as follows. Using the identification of the relations according
to the write set, find for each relation the materialized views that are based on it. Following, for
each materialized view found compare the primary keys of its tuples with the primary keys of the
write sets. In case of matching, invalidate the materialized view. It is worth noticing that this
process must be executed atomically according to the commit being applied.

Cache and PDBSM with RAC - In the termination protocol proposed for the PDBSM with
RAC, the transaction carries only its identification. The write values, read and write sets are
reliably propagated just to the sites that have a replica of the accessed relations. Using this infor-
mation, we can start to the delineate a protocol to refresh the cache. In this case, there is nothing
that we can do. We must augment the transaction with additional information. For example, the
identification of the relations updated or the write sets. For the remaining portion of this section,
we assume that the write sets are propagated until otherwise stated.

In both protocols, we are supposing that the materialized views have the attributes used to build
the primary keys of each base relation referenced in the views. This assumption is completely fair
since we need to augment the query processing mechanism as explained in Chapter 3 to retrieve
the read sets. Using this assumption, we can improve our algorithms. For instance, we can always
autonomously compute the delete operation appealing to a comparison per tuple. Of course, we
must establish a trade-off between the laborious work of a comparison per tuple and an invalidation
of the materialized view.

Finally, we can use the ideas behind the materialized views to attempt to reduce the number
of aborts in consequence of coarse grains (see Chapter 3). Generally speaking, whenever the
number of tuples is above a established threshold we reference that the entire relation is accessed.
Even though this approach can reduce the required bandwidth to propagate the transaction, it can
increase the number of aborts. For that reason, we propose to augment the information carried on
by the atomic multicast in order to allow a smart certification without overloading the network. We
propose to transport also the queries that reference these relations which triggered this contention
mechanism. Doing that, we can start a detection of irrelevance whenever a conflict arises in
consequence of these coarse grains.

5.3. Contributions 57

5.3.3 Related Work

The idea of exploiting the semantic (i.e., predicates) involved in SQL processing is almost as old
as the relational database research. In the seventies, it was suggested the use of predicate locks
for concurrency control in order to avoid phantoms [29]. However, the implementations have not
been successful because of its pessimistic assumptions and its execution cost. For instance, a
transaction could be blocked waiting for another to release locks even when regarding relations
without data. Our proposal improves transaction execution reducing remote communication. It is
not designed to perform concurrency control.

According to [50], the approaches to the problem differ mainly depending whether they are
concerned with query optimization and database design or with data integration. In the case of
query optimization and database design, the main idea is related to computing queries based on
previous executions, called materialized views or derived relations. The efficient optimization of
queries using materialized views, even not being a recent concern, has been the subject of much
research [39, 50, 7]. Especially as a consequence of the increasing interest in data warehouse [50]
and data stream processing [5]. In a broad manner, this problem is concerned with: (i) the def-
inition of queries suitable to be materialized; (ii) storage and automatically index creation; (iii)
establishment of navigation structures to search for materialized views created; (iv) detection of
common expressions to replace parts of the queries with the cached information; (v) integration of
materialized views with the optimizer; (vi) incremental update of materialized views.

Data-shipping architectures [27] popularized by early generations of Object-Oriented Database
Management Systems, represent other good examples where optimization and database design are
concerns. Instead of processing queries sending the request to the server, the access occurs in a
fault basis whenever the information is not available in the cache. In contrast to our approach,
it requires that the server manages a central index structure such that when an information is up-
dated, the server is responsible to inform the pertinent clients. In our case, the existing broadcast
is used to accomplish this.

In the case of data integration [66, 86], the main focus has been on translating queries for-
mulated in terms of an integration middleware into queries formulated in terms of a specific data
source.

In a matter of fact, all the researches mentioned here are somehow related, regardless the subtle
details, since the concepts and the theoretical background involved are the same. For that reason,
we can generically define this research as studies on rewriting queries using queries. In other
words, whether some queries are capable of being satisfied using other queries or not. Neverthe-
less, from the best of our knowledge, our approach is the first suited to replication environments
based on group communication. To support our approach, we submitted our protocols to a set
of simulations described in detail in Chapter 7. Using these simulations, we aim at testing our
development efforts and demonstrating our ideas. Not less important, we also integrate our efforts
into the PostgreSQL [43] in order to make available a distributed execution mechanism augmented
with semantic cache and smart certification.

58 5. Semantic Caching

Chapter 6

PDBSM and PostgreSQL

In this chapter, we present how to materialize the approaches proposed for the PDBSM into a
real database system. Generally speaking, we choose the PostgreSQL [43] as our target database.
We discuss critical decisions that must be taken into account to integrate the PDBSM into the
PostgreSQL and analyze the consistency criteria according to the abstract definition of the DBSM
provided by [74]. We also design extensions to the PostgreSQL’s grammar, in order to provide the
commands to create, delete and change the fragments of a relation. Finally, we present how the
PostgreSQL may be extended in order to provide a simple distributed execution mechanism.

The rest of this chapter is organized as follows. In Section 6.1, we present a definition of read
and write sets based on relational algebra and describe a possible mechanism to extract them and
discuss the consistency criteria provided by the DBSM. In Section 6.2, we present how to extend
the PostgreSQL in order to materialize the distributed execution.

6.1 Read and Write Set

In this section, we present a definition of read and write sets based on the relational algebra and an
extraction mechanism. We also discuss consistency problems that can arise when this mechanism
which simply implements the definitions from [74] is used.

6.1.1 Definition and Extraction

To execute an operation a database can read an entire relation or just a subset of it, a decision that
certainly depends on the data and ultimately on the statistics available for the optimizer [56, 80,
66]. For instance, the statistics can lead the optimizer to decide for an execution using a specific
index among others, or to read an entire relation when it has a small size. In this last case, the
scan is chosen because the optimizer based on statistics decides that this is the approach that uses
minimum resources or takes less time. In order to avoid read sets with unnecessary data, which
has a negative impact on network bandwidth and on transaction’s latency, a deterministic approach
must be used.

We consider that a read set is defined as the set of tuples read during a transaction’s execution
and projected over the primary key attribute(s), such that no proper subset exists. In other words,
for each read operation it does not exist a proper subset of the primary keys produced which can be
joined with the cartesian product of the relations referenced in the read operation to get the same

59

60 6. PDBSM and PostgreSQL

results.

The write set can be defined as the updated tuples (i.e., inserted, updated and deleted) projected
over the primary key attribute(s). The write value can be defined as the updated tuples themselves.

The extraction of the write set or the write value is quite simple. On the other hand, the
extraction of the read set is a complex process based on the sequence of steps of the query trees
defined during a transaction’s execution, where each transaction’s operation leads to a different
query tree. Generally speaking, the process consists on gathering intermediate results from the
highest steps, considering a bottom-up processing, that still conserve the primary key attribute(s)
of each base relation referenced in the tree. It can be defined as follows:

• The extraction must contemplate all the relations involved in the query processing.

• The primary key attribute(s) of each base relation must be returned and if necessary artifi-
cially introduced in it projection steps.

• Can exist more than one node in the query tree from which the primary key attribute(s) must
be gathered to build the final result set.

• Once gathered the result set from a node, nothing prevent this result to be used as an input
to another set of the relational step to produce more points of extraction.

• Update and delete operations are composed by a read followed by a write.

• Aggregation functions are only considered for relations that can have its primary key at-
tribute(s) introduced in the result set without changing the meaning or the characteristics of
the result set.

• When the base relation cannot have its primary key attribute(s) as part of the result set, in
consequence of an aggregation function, as stated in the previous statement, the base relation
must be considered as a whole or just filtered according to the where clause.

6.1.2 Phantom Anomaly

It is important to notice that the read and write sets defined above and combined with the certifica-
tion process introduced in Section 3.2 do not prevent the phantom anomaly [8]. For instance, the
phantom anomalies can arise when a transaction t selects a set of tuples based on a predicate such
as R.a1 >= 10 and a concurrent transaction t ′ inserts a tuple that does not exist before t ′, where
R.a1 = 10. Even though the transactions are concurrent, there is not a conflict according to the
concepts presented in Chapter 3, since the read set of t does not intercept with the write set of t ′

and vice-versa. However, this scenario can lead to serious problems. Suppose that t is selecting
the sales above a threshold to produce an extremely important report but does not see the insertion
generated by t ′. In this case, the report will not reflect the actual state of the database.

To avoid these anomalies, the proposed definitions must also take into account relations and
indexes as read and updated information.1 Unfortunately, this solution has some drawbacks. In
the first case, upon receiving a transaction similar to t the database must indicate that the relation
R was read and upon receiving a transaction similar to t ′ that the relation R was updated. Hence
while evaluating the conflicts exists an overlap between the read and write sets of the transactions,
i.e. the relation R. Of course that such an approach may increase the number of aborts. It is

1This solution is similar to hierarchy of locks in database systems. See [102] for additional information.

6.1. Read and Write Set 61

Figure 6.1: Design Issues: Read Set Decision Flow

enough having a transaction that reads a tuple of a relation and another concurrent transaction that
updates a completely different tuple at the same relation to arise a conflict and later an abort. In
order to attempt to reduce this problem, we can create indexes and indicate read operations also on
indexes. However, this approach is possible if and only if there are indexes with the same attributes
of the predicates, which is not always true. Thus, whenever an index is available we indicate that
the index was read or updated. Otherwise, we resort to the relation.

6.1.3 Read Set and the Consistency Criteria

Unfortunately, despite our concerns and optimizations, sometimes it is prohibitive to send the read
sets as a consequence of the amount of information to transfer.

In order to help us to decide about possible changes in the protocols involving the read set
issue, consider the Figure 6.1. One of the first choices is on the definition of a threshold per
relation from which the read set is sent by comprehension.2 This solution can reduce the usage of
network bandwidth and transaction’s latency, although it makes difficult the detection of conflicts
since the “accessed tuples” are not sent. A simple possibility is to detect conflict with a coarser
grain based on the relation that was sent by comprehension. Unfortunately, this solution topically
implies the growth of the number of aborts as a consequence of the “false read tuples”. It is a
situation similar to the phantom anomaly.

We can attempt to reduce the usage of network bandwidth and also control the growth of the
number of aborts, sending the relation by comprehension as stated before and also the queries
involving the relation. In case of a conflict, we evaluate the updated tuples against the queries in a
similar process to that used to manage semantic caching. See Chapter 5 for a detailed explanation
of this subject.

A different alternative to avoid the problems of sending the read set by comprehension or by
extension has been presented in [63]. In this approach, just the write set is sent to certification.
However, the initiator site is the only one that can decide about the outcome of the transaction.
This happens since the read set used to detect conflicts is local to it, which in turn requires a final

2The term comprehension is used to indicate the read and write sets represented in a high level format (e.g., SQL
statement) or even in a coarse grain (e.g., relation).

62 6. PDBSM and PostgreSQL

round in the protocol to decide about the abort or commit.

The last alternative available is also presented in [63]. It releases the strong consistency crite-
rion resorting to a snapshot isolation level where only write/write conflicts are detected. Unfortu-
nately, this approach brings the phantom and write skew anomalies. Finally, it is worth noticing
that this consistency criterion is implemented by Oracle and PostgreSQL.

6.2 Extending PostgreSQL

Our first step in the direction of the distributed execution consists on extending the PostgreSQL
with the notion of logical and physical objects. PostgreSQL considers as an object any element
created in the database, such as relations, triggers, constraints and rules. However, in order to
restrict the impact of the changes on PostgreSQL, specifically on the catalog and the semantic data
control3 (i.e., permissions, rules, triggers), we propose to augment just the relations. The logical
relations correspond to the original relations prior the fragmentation and the physical relations
correspond to horizontal fragments. We again restrict our proposal, in this case to horizontal
fragmentation, to easily integrate with future releases. The main ideas are:

• The physical relations are created using the normal mechanisms available in the Post-
greSQL.

• Except rules, no object can be create based on a logical relation.

• The logical relations act like a view, almost having the same properties.

• In contrast to a view, it is not possible to create a logical relation based on another logical
relation.

• The rules are used to define the fragmentation, establishing a connection between the logical
relation and the physical relation(s).

• The user can manipulate logical or physical relations. When a logical relation is referenced,
the system must transparently accesses the physical relation(s).

• The fragments can be located in any database site.

In order to materialize these ideas, we can exploit the fact that PostgreSQL has a central-
ized query processing mechanism with the same components or modules of Figure 4.2. Thus,
we augmented the parse module, changing the SQL Grammar of the PostgreSQL to allow the
manipulation of logical relations. See “Extensions to PostgreSQL’s Grammar” at the end of this
chapter.

The first step consists on allowing the creation of logical relations. It is important to notice that
the logical relation and the fragments must have the same structure, although each one is created
in different steps. The user must guarantee this. Internally, as stated before, the logical relations
must be treated like a view and physical relations are created using separate commands available
in PostgreSQL.

The next step consists on allowing the mapping between the logical and physical relations.
Once more, we resort to modifications on the SQL Grammar and exploit the rule system (i.e.,

3See [71] for a detailed discussion about semantic data control in distributed databases.

6.2. Extending PostgreSQL 63

R - Logical Relation
S and T - Physical Relations

select * from S where S.a = 10
union

select * from T where T.a = 20

select * from R where R.a = 20

select * from S where S.a = 10
and S.a = 20

select * from T where T.a = 20
and T.a = 20

union

R ={

Do not Compute it Compute it

Figure 6.2: Pruning Irrelevant Expressions

rewriter) in PostgreSQL [43, 92]. It gives users the capability of defining rules as well as data.
Basically, it specifies actions that must be done instead or with the original request, according
to the operation (i.e., insert, delete or update) and when a pre-defined condition (i.e., predicate)
evaluates to true. Using it, we want that whenever a logical relation is referenced in a select, insert,
delete and update statement, it is unconditionally substituted by physical relation(s) according to
the mapping established.

Select Operation

When a select is requested the rewriter must produce the following transformation: σfs (R) =
⋃

σfs (Ri), ∀ Ri ∈ frags(R), where R is the logical relation, each Ri is a physical relation and
fs is the predicate that appears on the statement. Unfortunately, the current parser available in
PostgreSQL does not allow to create selection rules with union. We needed to extend it. Further,
we needed to stop the progress of irrelevant selections. In this case, these selections are produced
while combining the predicate of the statement with the predicate of the fragment, resulting in a
worthless predicate. In other words, there is no tuple that satisfies this predicate. For instance, see
Figure 6.2, where the select referencing the relation S does not need to be executed. Its predicate
is a contradiction, which means that it always evaluates to false without bringing additional tuples
to the final result. Instead, its execution can contribute to reduce the overall performance, being
worse when a remote site must be contacted. See Chapter 5 for a detailed explanation about
predicate contradiction.4

Update Operation

In case of the update statements, the reasoning is not so simple. The horizontal fragmentation
is built creating selections over the set of attributes of a relation. For that reason, when an up-
date is requested, the rewriter must redirect it to the correct fragment, which means that it must
redirect the update according to the predicates available in the statement combining it with the
fragments’s definition. For instance, suppose that we have two distinct fragments5, R1 and R2,
defined respectively as R1 = σf1(R) and R2 = σf2(R), where f1 6= f2. The update statement is
delete from R where fu , where fu = f1. Thus the update must be applied to the fragment R1. This

4This idea can also be used to guarantee completeness and disjointness. See Section 2.3.
5For our proposal in this section, let us assume that the predicates can be equal or different, rather than using

implication to establish that a predicate implies another.

64 6. PDBSM and PostgreSQL

situation is similar to the execution of the select statement presented before and can be handled
using the same set of tools. Nevertheless, if not handled the damage can be worse, generating
updates against improper relations.

In order to provide the essential information for the rewriter to do its job correctly, we must de-
fine for each update operation (i.e., insert, delete and update) and for each fragment a rule based on
the common logical relation, using the commands in listing “Extensions to PostgreSQL’s Gram-
mar”. Unfortunately, we cannot simply rely on the default behavior of the rewriter in PostgreSQL,
since it acts as follows:

• For the insert operation:

– It applies the original insert into the “logical relation”, and after that evaluates the
“inserted” tuples according to the predicates (i.e., conditions of the rules) defined to
characterize the fragments. In fact, in our proposal, no operation is performed against
the logical relation.

• For the delete operation:

– It selects the tuple(s) from the “logical relation” according to the predicate specified
in the original statement, and after that evaluates the “selected” tuples according to the
predicates (i.e., conditions of the rules) defined to characterize the fragments. In fact,
in our proposal, no operation is performed against the logical relation.

• For the update operation:

– The same behavior specified for the delete operation.

For each update operation we must guarantee the following requirements:

• For the insert operation:

– Each tuple to be inserted into a relation must be evaluated against the predicates that
define the fragments. The outcome of the evaluation is used to decide in which frag-
ment the tuple must be inserted. In situations that none of the fragments is chosen, we
can report an error or proceed.

• For the delete operation:

– For each fragment of the relation referenced in the statement, combine the predicate of
the statement with the predicate of the fragment. If there is not a contradiction, process
the delete against the fragment. Otherwise, do nothing.

• For the update operation:

– For each fragment of the relation referenced in the statement, combine the predicate of
the statement with the predicate of the fragment. If not exist a contradiction, process
the update against the fragment. Otherwise, do nothing. The update must be processed
taking into account if the new value(s) are different from the value(s) that are used to
define the fragment. For example, suppose that a fragment Ri is defined as Ri =
σfi(R), where fi = {t | Ri (t) ∧ t .a1 = c}. The update statement is update R set
R.a1 = b where R.a1 = c, where b 6= c. In this case, the update must be treated
as a delete followed by a set of inserts. Finally, we must consider the situation that

6.2. Extending PostgreSQL 65

the update changes the values of the attributes and the new tuple satisfies none of the
available fragments. We can choose to delete the tuple or we can choose to abort
the operation and then the transaction. It seems quite reasonable to choose the later
approach because it avoids the deletion of tuples when the operation requested was an
update.

After all these steps, the logical and its physical relations are created. The augmented Post-
greSQL can transparently execute the commands. However, the definition process is laborious and
can lead to several inconsistencies, while conducted by the user. For that reason, we propose to
create a high level command to implement this definition, although internally, it resorts to the set
of commands and procedures presented here (See “Extensions to PostgreSQL’s Grammar” at the
end of this chapter and the Appendix B for a brief example of the set of commands).

Catalog, Optimization and Execution

Except for the information related to logical relations, the metadata is locally stored in the catalog
of the database site where it was created. Whenever the database receives a request to manipulate
a logical relation the process is synchronously applied at all the replicas, before returning the
outcome to the user.

We use a two-step optimization to process the queries and preserve the normal optimization
mechanisms available in PostgreSQL. Everything is done like in a centralized execution until
the queries arrive at the executor module. Before execution, the PostgreSQL’s executor module
decides in which site each node of the query tree will be executed. Initially, we propose to choose
the first possible and available site, avoiding problems to integrate with future releases.

However, to accomplish this goal, it is necessary to augment the PostgreSQL. In this case, we
must provide means by which the replicas are identified and the fragments are placed at specific
replicas. Basically, we add the name of the replica to the definition of the fragment (i.e., physical
relations) and provide the set of the replicas where a fragment is placed. See “Extensions to
PostgreSQL’s Grammar” at the end of this chapter for a definition of the commands.

Extensions to PostgreSQL’s Grammar

CREATE LOGICAL TABLE l t a b l e
(

columname c o l u m n d a t a t y p e [, . . .]
)

DROP LOGICAL TABLE l t a b l e [, . . .] [CASCADE | RESTRICT]

CREATE LOGICAL RULE ru lename AS
ON e v e n t
TO l t a b l e [WHERE q u a l i f i c a t i o n]
DO INSTEAD [a c t i o n | NOTHING]

DROP LOGICAL RULE ru lename [, . . .] ON l t a b l e

CREATE ESCADA TABLE l t a b l e
(

66 6. PDBSM and PostgreSQL

(
columnname d a t a t y p e [DEFAULT d e f a u l t _ e x p r] [c o l u m n c o n s t r a i n t [, . . .]]
|
t a b l e c o n s t r a i n t
|
LIKE p a r e n t t a b l e [(INCLUDING | EXCLUDING) DEFAULTS]

) [, . . .]
) [FRAGMENTS (c l a u s e , h o s t) [, . . .]]

DROP ESCADA TABLE l t a b l e

Chapter 7

Results and Performance Analysis

In this chapter, we evaluate the database replication based on group communication and its cost
using workloads widely adopted to measure performance of commercial database servers. Specifi-
cally, we propose to evaluate the Escada protocols using the TPC-W and TPC-C benchmarks [101,
100]. This effort is extremely important since a truly evaluation is highly dependent on the access
patterns provided by the workloads. Unrealistic workloads are in this case worthless, precisely,
because they may not be able to represent the appropriate concurrency and hot spots according to
the database size and number of clients. The evaluation of the DBSM, PDBSM and the semantic
caching directly depends on these characteristics.

In this section, we present our experimental results performing the evaluations as follows.
First, we analyze the semantic caching in a single database machine in order to figure out its be-
havior (i.e., hit ratio and overhead) while changing the number of entries in cache, the number of
clients and the workload. Second, we proceed to the evaluation of the PDBSM and the PDBSM
with RAC. Specifically, we evaluate the distributed execution mechanisms and the advantages of
the semantic caching, considering the results established with the previous experiments. In or-
der to set a baseline, we run some experiments with the assumption that a site is locally able to
complete the execution of a transaction, which avoids possible overheads introduced with the dis-
tributed execution mechanisms. Furthermore, as our proposal in this thesis is to assess the partial
replication in large-scale systems, we must also establish another baseline using the DBSM. Un-
fortunately, from the best of our knowledge, there are not comparisons between the DBSM and the
traditional replication protocols using real workloads. For that reason, we believe being invaluable
a comparison that shows the advantages of the DBSM against the traditional replication protocols,
and afterwards, we proceed to the PDBSM evaluation with the guarantee that if it leverages the
DBSM, it will certainly be better than the traditional replication protocols.

These experiments are conducted using a simulation tool that combines real and simulated
code. The certification, communication and semantic caching protocols are real implementations.
Using such a model allows us to evaluate the impact of the design and the implementation deci-
sions of these protocols on the overall performance. In contrast with real systems, this approach
allows to set up and run multiple tests with slight variation of configuration parameters, in scenar-
ios with large number of replicas and wide-area networks. When compared with a fully simulated
approach, it gives us the opportunity to estimate the resources required by the protocols, since
their are real code that interfaces with the simulated environment. Moreover, this model provides
us the opportunity to subject real components to fault scenarios which would be difficult to test
and replicate in real systems.

67

68 7. Results and Performance Analysis

Relations Cardinality Tuple Length
Customer = 2880 * c 760 bytes
Country = 92 70 bytes
Address = 5760 * c 154 bytes
Orders = 51840 * c 220 bytes
Order Line = 155520 * c 132 bytes
Author = 25 * i 630 bytes
CC XActs = 51840 * c 80 bytes
Item = 1K, 10K, 100K... 860 bytes

Table 7.1: TPC-W Relations (K is 1000)

The rest of this chapter is organized as follows. Section 7.1 presents the workloads used in the
evaluation process. Section 7.2 describes the simulation tool. Section 7.3 describes the integration
of the protocol prototypes and the simulation tool. Section 7.4 presents the instantiation and
validation of the model. Section 7.5 presents the results obtained.

7.1 Workload Pattern

A key issue in the evaluation of the performance of a database system is the traffic pattern used
in benchmarking. In fact, the performance of the Escada approach to replication is tightly related
with conflicts arising when transactions are concurrently executed in different sites. Therefore, we
resort to traffic generated according to industry standard benchmarks, namely, the TPC-C [100]
and TPC-W [101]. Both workloads are used to evaluate the semantic caching. For the other
experiments, we use the TPC-C because of its OLTP characteristics which have been adopted as
our basis for the evaluation of the Escada protocols [89, 57].

7.1.1 TPC-W Traffic Characterization

TPC-W mimics an Internet commerce application environment in which a retail store is defined.
The customers can visit a web site to look at products, find information, place an order or request
the status of an existing order. The traffic is related to a set of operations that simulate the search
for products based on author’s name, title, subject, date of publishing (i.e., new products) and sale
(i.e., best sellers). Or related to a set of operations which involve write activities such as customer
registration, order request and administrative tasks. The first set of activities are called browse and
the second set order. The benchmark proposes three distinct mixes of interactions changing the
degree of the browse and order sets as follows:

1. Browsing Mix The browse set represents 95% of the mix and the order set represents 5%;

2. Shopping Mix The browse set represents 80% of the mix and the order set represents 20%;

3. Ordering Mix The browse set represents 50% of the mix and the order set represents 50%;

The database relations and associated information are presented in Table 7.1. Notice that the
database must be populated according to the number of clients (c) and items available (i). The
following equation is used to calculate the time the user takes to enter and analyze information:

Tt = -ln(r) ∗ (m) (7.1)

7.1. Workload Pattern 69

Relations Cardinality Tuple Length
Warehouse = w 89 bytes
District = w * 10 95 bytes
Customer = w * 30 K 655 bytes
History > w * 30 K 46 bytes
Order > w * 30 K 24 bytes
New Order > w * 9 K 8 bytes
Order Line > w * 300 K 54 bytes
Stock = w * 100 K 306 bytes
Item = 100 K 82 bytes

Table 7.2: TPC-C Relations (K is 1000)

where r is a random number uniformly distributed between 0 and 1, m is the mean time specified
between 7 and 8, inclusive, and Tt is what is called think-time.

We use an augmented version of the TPC-W, as explained in Section 7.4, based on the im-
plementation from University of Wisconsin [99]. Notice also that TPC-W is being used only as
the basis for a realistic application scenario in order to evaluate Escada design decisions and not
as a benchmark. The constraints required for throughput, performance, wait time, response time
and screen load are not considered here and thus the results are not comparable with other system
results obtained with TPC-W.

7.1.2 TPC-C Traffic Characterization

The TPC-C is the industry standard on-line transaction processing (OLTP) benchmark, which
mimics a wholesale supplier with a number of geographically distributed sales districts and asso-
ciated warehouses. The traffic is a mixture of read-only and update intensive transactions. The
database relations and associated information are presented in Table 7.2. Notice that, according to
TPC-C, an additional warehouse should be configured for each additional 10 clients. The initial
sizes of tables are also dependent on the number of configured clients.

A simulated client can request five different transactions types as follows:

1. New Order, adding a new order into the system (with 44% probability of occurrence);

2. Payment, updating the customer’s balance, district and warehouse statistics (44%);

3. Order Status, returning a given customer latest order (4%);

4. Delivery, recording the delivery of products (4%);

5. Stock Level, determining the number of recently sold items that have a stock level below a
specified threshold (4%).

The equation 7.1 is used to calculate the time the user takes to enter and analyze information
according to the means provided by Table 7.3. In this case, unless otherwise stated, we consider
the term think-time as the sum of the keying time and the value provided by equation 7.1.

This application scenario can easily be extended to consider partial replication. Specifically,
we consider horizontal fragmentation of relations according to the warehouse. The rationale for
this is that these need to be replicated only locally within the warehouse itself and not globally.
Unfortunately, when the system is not prepared to support distributed execution in order to access

70 7. Results and Performance Analysis

Transaction Keying Time Mean Think Time
New Order 18 sec. 12 sec
Payment 3 sec. 12 sec.
Order Status 2 sec. 10 sec.
Delivery 2 sec. 5 sec.
Stock Level 2 sec. 5 sec.

Table 7.3: TPC-C keying time and mean of think time

Semantic
Cache

Distributed Database

Network

Certification

Lock

Storage

CPU Group
Com.

Figure 7.1: Architecture of the model.

the fragments which are not locally available at the initiator site, some relations must be globally
replicated. In this case, the Warehouse, Stock, Item and Customer relations must be globally
replicated to preserve original application semantics in which an order may be serviced by stock
from any warehouse or a customer can pay through any warehouse.

As with TPC-W, TPC-C is being used only as the basis for a realistic application scenario
in order to evaluate Escada design decisions and not as a benchmark. The constraints required
for throughput, performance, wait time, response time, screen load and background execution of
transactions are not considered here and thus the results are not comparable with other system
results obtained with TPC-C.

7.2 Simulation Database Model

In this section, we describe the simulated components of the model which provide a realistic
environment for the prototype components under study. These components are depicted as white
boxes in Figure 7.1. The simulation model is developed using the Java platform [96] and the
Scalable Simulation Framework (SSF) kernel [26].

7.2.1 Database Clients

The database client is attached to a database server and produces streams of transaction requests.
The client blocks after each request being issued and until the server answers, thus modeling a

7.2. Simulation Database Model 71

single threaded client process. Following the reception of the answer, the client is then paused for
some amount of time (think-time) before issuing the next transaction request.

Each transaction is modeled as a sequence of operations which are scheduled to consume CPU
or storage. Finishing the sequence of operations of a transaction is a commit marker. Besides
determining the end of a transaction, it also determines the start of the appropriate termination
protocol. The contents of each transaction request are read from a previously generated trace file.
This trace contains the details of each transaction’s operation as follows: (i) the set of accessed
items; (ii) indication whether it is a read or write operation; (iii) an offset associated to each
accessed item to simulate tables; (iv) the amount of CPU used; and (iv) think-times between each
request. In Section 7.4, we explain how these contents are obtained.

During the run of the simulation, the client logs the time at which a transaction is submitted,
the time at which it terminates, the outcome (either abort or commit) and the transaction identifier
obtained from the trace file. In this way, the latency, throughput and abort rate of the server can
then be computed for one or multiple clients, and for all or just a subclass of the transactions.

7.2.2 Distributed Database Server

The database server handles multiple clients and is modeled as a scheduler, with a collection of
resources (i.e., storage and CPUs), a locking policy, a semantic caching and a distributed execution
manager. Upon receiving a transaction request each operation is scheduled to execute on the
corresponding resource.

Processor operations are scaled according to the configured CPU speed and the operations are
executed in a round-robin fashion by any of the configured CPUs. A processor operation can be
preempted, namely, to assign the CPU to a higher priority task, like the network protocol handler.

The storage element is used for fetching and storing items in operations, and is defined ac-
cording to its latency and number of allowed concurrent requests. Furthermore, a cache hit ratio
determines the probability of a read request being handled instantaneously without consuming
storage resources.

Operations fetching and storing items are also submitted to the lock manager. Depending
on the locking policy being used, the execution of the transaction can be blocked between op-
erations (e.g., the multiversion locking policy [9], available on PostgreSQL, does not lock read
operations [43]). In addition, locks are atomically acquired before executing any of the operations,
and released, also atomically, when the transaction is committed or aborted.

When a requested item is not replicated on the server handling the transaction and is also not
available in the semantic caching, the distributed execution manager chooses other sites which can
service it. For simplification, there is no optimization is this mechanism and the first site in the
set of possibles sites (i.e., sites with a replica of the fragment which contains the requested item)
is chosen. It is important to notice that different sets of items can be serviced by different sites
according to the designed fragmentation and replication. Furthermore, it is also worth to notice
that the semantic caching is used in order to reduce communication among the servers. It does not
intend to improve performance of the storage.

When the commit marker is reached, the appropriate termination protocol is started. In case
of the database server operating as a DBSM, this involves the identification of read and written
items, as well as the values of the written items. Since certification is handled by real code, the
representation of item identifiers and values of updated items must accurately correspond to those
of real traffic. In Section 7.4, this is described in more detail. For a complete discussion about

72 7. Results and Performance Analysis

termination protocols in the Escada project see Chapter 3.

During the simulation run, the usage and length of queues for each resource is logged and can
be used to examine in detail the status of the server.

7.2.3 Network Model

The network model used is the SSFNet network simulation [26], which provides a set of compo-
nents for modeling the Internet protocols and networks at and above the IP packet level of detail.
Basic components for link layer and physical layer modeling are also provided. This includes
physical network components, such as nets, links, hosts and routers, as well as protocol layers,
such as IP, UDP and TCP. Complex network models can be configured using such components to
mimic existing networks or to explore particularly large or interesting networks. These compo-
nents are based on the SSF simulation kernel presented in the next section.

In addition to the configuration of the network, it is also possible to add application compo-
nents to generate realistic background traffic. Components can also be attached to routers and
hosts to log packets. The resulting format is the same used in real networks and thus the log files
can be examined using a variety of existing tools.

7.2.4 Simulation Kernel and Centralized Simulation

Generally speaking, the simulation kernel is based on the SSF, which provides a simple infra-struc-
ture for discrete-event simulation [26]. It comprises five base interfaces: Entity, Process, Event,
inChannel and outChannel. The entity is an object that owns processes and channels. The com-
munication among the entities in the simulation model occurs writing to the outChannel(s) and
reading events from the inChannel(s). When an event arrives in an inChannel, it calls the process
responsible to handle the incoming events. Basically, a process has a callback method which is
executed one or more times during the simulation.

Each component, depicted in Figure 7.1, is built using an entity that owns a process, and one
or more sets of incoming and output channels. The arrows outline the channels and their mapping
among the entities. These basic blocks, entities, processes, events and channels are also used by
the SSF Network in order to build its components and architecture (e.g., routers, networks and
hosts).

In case of the real components, there is an adapter for each one, which is responsible for the
integration and is modeled using the basic blocks. This adapter acts as a gateway in a sense that it
needs to convert the structure of information used in the real environment to the structure used in
the simulation and vice-versa. It must also manage the simulation clock, scheduling appropriate
CPU events in order to account for the time consumed processing the real operations.

The main point of this model is the ability to combine simulated environment components, us-
ing a discrete-event simulation model, with real code, for those components that are under study.
This is the centralized simulation model of [4]. In this model, when an event needs to be handled
by real code, such as the submission of a transaction for certification or the reception of a net-
work message by the group communication protocol, the execution of the real component is timed
employing a profiling timer and the result is used to mark the simulated CPU busy during the cor-
responding period, thus preventing other real code events or simulated processing to be attributed
concurrently to the same CPU. In other words, this is done computing the amount of time spent in
the real components, and scheduling a prioritary CPU event, which means that any CPU activity

7.3. Protocol Prototypes 73

that is not related to real code must be preempted and re-scheduled as soon as possible using a
round-robing scheduler, and in this manner giving place to the real event.

7.3 Protocol Prototypes

We now present the characteristics of our prototypes and the integration into the simulation model.
These prototypes are real code that can be run within the centralized simulation model as well as
stand-alone applications on top of a real network.

7.3.1 Distributed Certification

The distributed certification procedure runs in two stages. In the first stage, just after a transaction
has been executed and is ready to commit, its associated data is gathered and atomically multicast
to the group of replicas. Then, upon delivery, the second stage of the certification procedure is run
by all elements of the group and decides if the transaction can or cannot be committed.

In detail, when a transaction enters the committing stage, identifiers of read and written tuples
are obtained as well as the identification of the tables. Our prototype assumes that each of these
is a 64-bit integer. The values of the written tuples are also obtained. However, in the simulation
the size of the tuples (see Table 7.2) is used to calculate the amount of padding data that should be
putted in the messages so its size resembles the one obtained in a real system.

However, sometimes the size of the read set may render its multicast impractical. In this case,
a single identifier for each table is sent. For what follows, unless otherwise stated, we consider a
threshold of 150 items, resorting to a single identifier whenever the number of items is above this
value.

7.3.2 Atomic Multicast Protocol

The atomic multicast protocol is based on Groupz [75], a suite of group communication proto-
cols developed at the University of Minho. It is implemented in two layers: a view synchronous
multicast protocol and a total order protocol. The bottom layer, the view-synchronous multicast,
works in two phases. First, messages are disseminated, taking advantage of IP multicast in local
area networks and falling back to unicast in wide-area networks. Then, reliability is ensured by a
receiver initiated mechanism [76] and a scalable stability detection protocol [46]. Flow control is
performed by a combination of a rate-based mechanism during the first phase and window-based
mechanism during the second phase. View synchrony uses a consensus protocol [83] and imposes
a negligible overhead during stable operations.

Total order is obtained with a fixed sequencer protocol [11, 58]. In detail, one of the sites issues
sequence numbers for messages. Other sites buffer and deliver messages according to the sequence
numbers. View synchrony ensures that a single sequencer site is easily chosen and replaced when
it fails.

74 7. Results and Performance Analysis

7.4 Model Instantiation and Validation

We are concerned with the overhead imposed by the termination and the communication protocols
on transaction processing. It is thus very important that the load imposed by executing transactions
is comparable to the measured load of executing the protocols. For that reason, the preferred
solution is to use profiling to determine CPU usage by each transaction.

We do this in four steps:1

1. A modified version of the benchmark is run on an unmodified database server. Each transac-
tion is augmented with extra queries that return the read set and write set. It is important to
notice that despite this process being compatible with the definitions presented in Chapter 3,
it is not automatic. On the contrary, the extraction is done by manually changing the queries.
This process creates a trace with items to be read and written. In particular, the write val-
ues are obtained during execution of the simulation using the write set and the tuple length
according to Table 7.2. The CPU and think-time are missing.

2. The original version of the benchmark (without additional queries) is run on an instrumented
version of the database server, which records in detail the real time and CPU time consumed
by each query. The resulting log is annotated with the name of the transaction.

3. A distribution of CPU times is computed for each transaction type. This is used to generate
CPU times for each of the transactions of the trace obtained in step 1.

4. The think-time is injected according to the definitions of the benchmark.

The technique used to obtain the amount of CPU consumed by the execution of each transac-
tion is tightly related to the database engine. In PostgreSQL [43], each process handles a single
transaction from start to end. This reduces the problem of profiling a transaction to that of profiling
a process in the host operating system.

In detail, we used the CPU timestamp counter which provides accurate measure of elapsed
clock cycles. By using a virtualization of the counter for each process [69], we also obtain mea-
surements of process virtual time (i.e., the time elapsed when the process is not scheduled to run
is not accounted for). To minimize the influence in the results, the elapsed times are transmitted
over the network only after the end of each query (and thus out of the measured interval), along
with the text of the query itself.

The time consumed by the transaction’s execution is then computed from the logs. By exam-
ining the query itself, each transaction is classified. Interestingly, the processor time consumed
during commit is almost for all transactions (i.e., less than 2ms). In read-only transactions the real
time of the commit operation equals processing time, meaning that no I/O is performed. This does
not happen in transactions that update the database. The observation that the amount of I/O during
processing is negligible confirms that the database is correctly configured and has a small number
of cache misses.

After discarding aborted transactions and the initial 15 minutes, the resulting histogram allows
an empirical distribution to be obtained and used later for simulation. However, some transaction
classes perform some work conditionally and thus result in bimodal distributions. Therefore, we
split each of these in two different classes. The resulting transaction classes can therefore be
approximated by an uniform distribution.

1In fact, these steps are didactic and in practice some of them can be combined.

7.5. Experimental Results 75

For validation we configured our model according to the equipment used for testing. This
corresponds to a server with 2 Pentium III at 1GHz processors and with 1GB of RAM. As the
cache hit ratio observed is very high, we configure the simulation hit ratio to 1. This means
that read items do not directly consume physical resources (CPU or storage), as this is already
accounted for in the CPU times as profiled in PostgreSQL. It is important to notice that we are not
modeling resources such as buffers or caches.

For storage we used a fiber-channel attached box with 4×36GB SCSI disks in a RAID-5
configuration. The file system used to hold the database (executable and data) is ext3 (Linux
version 2.4.21-pre3). Throughput for the storage was determined by running the IOzone disk
benchmark [54] on the target system with synchronous writes of 4KB pages and a variable number
of concurrent process. This resulted in a maximum throughput of 9.486MBps.

Finally, we use these values and assumptions to instantiate the model and then we validate it
by comparing runs of a single site with runs of a real PostgreSQL database [43]. For a detailed
discussion about the validation processes and the results obtained, see [89].

7.5 Experimental Results

In this section, we present our experimental results. First, we analyze our semantic caching ap-
proach in a single database machine in order to asses its behavior (i.e., hit ratio and overhead) while
changing the number of entries in the cache, the number of clients and the workload. Second, we
proceed to the evaluation of the PDBSM and the PDBSM with RAC. Specifically, we evaluate
the distributed execution mechanisms and the advantages of our semantic caching approach, con-
sidering the results established with the previous experiments. In order to set a baseline, we run
some experiments with the assumption that a site is locally able to always complete the execution
of a transaction, which avoids possible overheads introduced with the distributed execution mech-
anisms. Furthermore, as our proposal in this thesis is to assess partial replication in large-scale
systems, we must also establish another baseline using the DBSM. Unfortunately, from the best of
our knowledge, there are no realistic comparisons between the DBSM and traditional replication
protocols. We present such a comparison which will afterwards use as the baseline to benchmark
the PDBSM.

The set of the experiments is, therefore, organized in three distinct phases. Initially, we eval-
uate our semantic caching approach in Section 7.5.1. In Section 7.5.2, we evaluate the DBSM
against the traditional replication protocols. In Section 7.5.3, we show the experiments conducted
with the PDBSM, namely, we initially use the the assumption that a database site can locally com-
plete the execution of the transaction, and after that, we release this assumption and conduct the
set of experiments based on the distributed execution mechanism proposed in Chapter 3.

7.5.1 Semantic Caching

The first set of experiments conducted was based on the TPC-W profile and a single database
machine. The hit ratio presented in Figures 7.2, 7.3 and 7.4 was measured varying the number of
entries in the cache and the number of clients. Observing the graphics, we see that increasing the
number of entries also increases the number of hits. The difference in hits among the graphics is
justified by the amount of update activities in the mixes. The Figures Figures 7.2.(b), 7.3.(b) and
7.4.(b) show the transaction "Bestsellers" which has a large number of hit ratio for the browsing
and shopping mixes and for that reason will be used in the examples of this section. The high

76 7. Results and Performance Analysis

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 2 3 4 5 6 7 8 9 10

H
it

ra
tio

 (
0-

1)

Cache Entries (x100)

5 Clients
10 Clients
15 Clients
20 Clients
25 Clients
30 Clients

(a) All activities

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 1 2 3 4 5 6 7 8 9 10

H
it

ra
tio

n
(0

-1
)

Cache Entries (x100)

5 Clients
10 Clients
15 Clients
20 Clients
25 Clients
30 Clients

(b) Transaction BestSellers

Figure 7.2: TPC-W Browsing Mix

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7 8 9 10

H
it

ra
tio

 (
0-

1)

Cache Entries (x100)

5 Clients
10 Clients
15 Clients
20 Clients
25 Clients
30 Clients

(a) All activities

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 1 2 3 4 5 6 7 8 9 10

H
it

ra
tio

n
(0

-1
)

Cache Entries (x100)

5 Clients
10 Clients
15 Clients
20 Clients
25 Clients
30 Clients

(b) Transaction BestSellers

Figure 7.3: TPC-W Shopping Mix

variance in Figure 7.4.(b), since the hit ratio is below 0.07%, is practically negligible.

The second set of experiments was based on the TPC-C profile. The hit ratio presented in
Figure 7.5 was also measured varying the number of entries in the cache and the number of clients.
The same behavior observed with the TPC-W can be noticed here. However, the hit ratio is lower
as a consequence of the higher number of update activities of the TPC-C. It is also chosen a single
particular transaction, in this case the “New Order”, with the purpose of showing that it follows
the same behavior.

Variations in the number of clients produces an interesting and important result. For the same
cache size the hit ratio is lower when the number of clients increases. This behavior is explained by
the characteristics of the TPC which increases the database size whenever the number of clients
increases and uses a non-uniform random distribution to populate the database and to generate
queries. For that reason, to achieve the same upper bound hit ratio, we need more entries in the
cache. Unfortunately, while increasing the number of entries in the cache we can have a negative
impact on processing time since more possible matches must be evaluated for select, insert, delete
and update operations. This performance problem is also amplified by our current implementation
that is not optimized and uses a coarse grain to control concurrency, which means that the locks
are held longer than it is necessary and, as a consequence, the performance is harmed.

7.5. Experimental Results 77

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10

H
it

ra
tio

 (
0-

1)

Cache Entries (x100)

5 Clients
10 Clients
15 Clients
20 Clients
25 Clients
30 Clients

(a) All activities

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 1 2 3 4 5 6 7 8 9 10

H
it

ra
tio

n
(0

-1
)

Cache Entries (x100)

5 Clients
10 Clients
15 Clients
20 Clients
25 Clients
30 Clients

(b) Transaction BestSellers

Figure 7.4: TPC-W Ordering Mix

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1 2 3 4 5 6 7 8 9 10

H
it

ra
tio

 (
0-

1)

Cache Entries (x100)

5 Clients
10 Clients
15 Clients
20 Clients
25 Clients
30 Clients

(a) All activities

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1 2 3 4 5 6 7 8 9 10

H
it

ra
tio

n
(0

-1
)

Cache Entries (x100)

5 Clients
10 Clients
15 Clients
20 Clients
25 Clients
30 Clients

(b) Transaction New Order

Figure 7.5: TPC-C

This problem is observable in Figure 7.6 where we present the elapsed time for the transaction2

“Bestsellers” in scenarios with different configurations of cache. The elapsed time to answer the
queries of this transaction is drastically reduced with the use of the cache when the number of
clients is below 20. In some cases, this reduction is higher than 100 ms, from around 200 ms to
100 ms (i.e., 50%), which is a great improvement. However, with 25 clients this difference is not
quite visible and with 30 clients the problems are noticeable.

In the case of the TPC-C, the situation becomes worse. Basically, the cache hits of the TPC-C
comes from the transaction “New Order” and are lower than the hits provided by the TPC-W, that
is, the values are below 7% regardless of the number of clients and entries in the cache. This
scenario combined with the characteristics of the transaction contributes to the unaceptable delays
presented in Figure 7.7. The transactions are composed of simple queries which do not manipulate
high amounts of data neither are CPU bound. For that reason, the use of the cache in this situation
is not recommended.

In spite of that, observing the experiments we see that the time spent to search a cache with
1000 entries using the hierarchical filter and test 19 entries is around 4 ms, which is a good value.
For instance, considering a WAN (see Table 7.4) with latency of 30 ms plus the time necessary

2Instead of adopting the term web interaction and thus being compatible with the nomenclature proposed by the
TPC, we prefer to use the term transaction since it is more suitable to our context.

78 7. Results and Performance Analysis

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
E

la
ps

ed
 (

m
s)

Cache Entries (x100)

5 Clients
10 Clients
15 Clients
20 Clients
25 Clients
30 Clients

(a) Problems and Profits

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
E

la
ps

ed
 (

m
s)

Cache Entries (x100)

5 Clients
10 Clients
15 Clients
20 Clients

(b) Profits

Figure 7.6: TPC-W Shopping Mix (Bestsellers)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
E

la
ps

ed
 (

m
s)

Cache Entries (x100)

5 Clients
10 Clients
15 Clients
20 Clients
25 Clients
30 Clients

Figure 7.7: TPC-C New Order

to process the queries and transfer the requests and results, it is clear that our semantic caching
is extremely useful. Unfortunately, when we allow all queries sent to the database to be stored in
the cache, this incurs the overhead of testing entries that will produce a match and entries that will
not. The number of tests increases and therefore the contention could turn its use impractical. It
is therefore important previous knowledge about the application semantics in order to cache only
the queries which have high probability of occurrence.

In what follows, we conduct some experiments storing in cache all queries without further
restrictions, in a scenario with low bandwidth, in order to figure out if the semantic caching it is
a profitable solution even when the overhead and the contention problems are not circumvented.
In other words, we want to evaluate if without restricting the entries in the cache, our semantic
caching approach can still compensate the low bandwidth. In particular, this is done with clients
communicating with the server through a network link of 512 Kpbs.

In Figure 7.8, we present the results of an evaluation of the TPC-C simulating a network with
512 Kbps. The performance does not increase and for that reason, we can conclude that just the
queries that have a high probability of generating cache hits or the queries that consume a high
amount of resources (e.g., storage, CPU or network bandwidth) are suitable to be cached and
tested against the semantic caching.

7.5. Experimental Results 79

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1 2 3 4 5 6 7 8 9

H
it

ra
tio

 (
0-

1)

Cache Entries (x100)

5 Clients
10 Clients
15 Clients
20 Clients
25 Clients
30 Clients

(a) All activities

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 1 2 3 4 5 6 7 8 9

T
im

e
E

la
ps

ed
 (

m
s)

Cache Entries (x100)

5 Clients
10 Clients
15 Clients
20 Clients
25 Clients
30 Clients

(b) Transaction New Order Time

Figure 7.8: TPC-C with 512Kbps

Parameters Configuration Values

CPU

Number 2
Time Slice 0.5 ms
Policy Round Robin
Speed Pentium III 1 GHz

Storage
Parallel Requests 1
Throughput 9.486 MBps
Blocks 4 KB

WAN
Bandwidth according to the traffic
Latency 30 ms

LAN
Bandwidth 1 Gbps
Latency 1 ms

Database
Lock Manager multi-version (PostgreSQL)
Table Threshold 150
Cache Hit Ratio w100%

Table 7.4: Configuration Parameters - Resources

7.5.2 DBSM

We now proceed with the experiments of the DBSM. Our goal here it is twofold. First, we show
that instead of doing an upgrade of a central database to scale up a system, it can be worth us-
ing commodity machines and the DBSM. Second, we run some experiments with a distributed
database using an ideal implementation of the distributed locking in order to establish a baseline.
In Tables 7.4, 7.5 and 7.6, we summarize important assumptions and values used to configure
the simulations. Unless otherwise stated, the information presented in these tables are implicit
assumed for what follows.

In Figure 7.9, notice that the 1 CPU system handles less than 3000 tpm. Latency, as shown in
Figure 7.9(b), grows due to queuing. In contrast, the 3 CPU system scales linearly and thus there
is no increase in latency. The replicated system also allows for a linear increase in throughput.
Unfortunately, the number of aborts increases with the replicated system which is a problem of
the optimistic execution and serialization.

Figure 7.10(a) shows the average usage of the involved CPUs. This justifies the throughput
and latency results, showing that a single CPU is a bottleneck, due to interaction of variability and
locking mechanisms. Furthermore, the similarity between the results obtained with the 3 CPUs

80 7. Results and Performance Analysis

Transactions Distribution Mean (ns) Stdv

Delivery Normal 93518611 7354168
New Order Normal 24520044 7266947
Order Status 01 Normal 1608646 582965
Order Status 02 Uniform 1668984 254385
Payment 01 Uniform 7384053 1703256
Payment 02 Uniform 7109045 1595916
Stock Level Normal 19230043 1407436

Table 7.5: Configuration Parameters - CPU’s consumption per transaction

Transactions Distribution Mean (ns) Stdv

Delivery Uniform 5655792 13730916
New Order Uniform 5907053 5506115
Order Status 01 Uniform 4820850 1320468
Order Status 02 Uniform 4537986 861376
Payment 01 Uniform 6538242 10390480
Payment 02 Uniform 6227296 2111338
Stock Level Uniform 4437135 875610

Table 7.6: Configuration Parameters - Idle time per transaction

system and the replicated system have shown that there is a low overhead of the termination and
atomic multicast protocols.

To establish a comparison between the DBSM and the distributed locking protocols, we use
a set of experiments based on the TPC-C workload in a WAN with 9 sites, where the fragments
are replicated according to Figure 7.11. The clients access the first site in each sub-network. The
letters A, B , C , G represent distinct fragments which are replicated following a ring configuration.
To avoid repeating the same graphics here, and since the DBSM results will be used as a baseline
for the next section, these values are presented there.

In Figure 7.12, we show that the DBSM can circumvent the scalability problems of the tradi-
tional replication protocols, preserving the strong consistency and the ability to update the database
from any replica. Although the DBSM does not outperform the Ideal Locking System, it is close
enough. Furthermore, it is also important to notice that this traditional replication protocol uses
an ideal implementation and whatever the real implementation is, it will present a worse behavior:
(i) all locks are acquired atomically, avoiding the complexity of deadlock detection; (i) a delay,
that equals the latency to propagate a message between two points and that represents the time
required to the lock acquisition, is applied to the transaction after the locks being granted; (iii)
upon the commit being issued and before the locks being released, another delay is applied, in this
case, representing the time necessary to propagate the write values to all replicas. For example,
we do not consider deadlock detection and resolution, that according to [42] is the major responsi-
ble for the problems of traditional replication. Furthermore, we adopt a centralized lock manager
disregarding thus any fault tolerance requirements and associated overhead.

7.5.3 PDBSM

In this section, we analyze the PDBSM. First, we run some experiments with the DBSM to es-
tablish a baseline. Second, we run some experiments with PDBSM in which we assume that the
queries are fully serviced by the database sites that accept the requests. Basically, this also done

7.5. Experimental Results 81

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000
T

P
M

Clients

DBSM - LAN
1 CPU

3 CPUs

(a) Throughput

0
40
80

120
160
200
240
280
320
360
400

0 200 400 600 800 1000

La
te

nc
y

(m
s)

Clients

DBSM - LAN
1 CPU

3 CPUs

(b) Latency

0

4

8

12

0 200 400 600 800 1000

A
bo

rt
s

(%
)

Clients

DBSM - LAN
1 CPU

3 CPUs

(c) Abort rate

Figure 7.9: DBSM - Performance results

in order to establish a baseline. Finally, we release this assumption to understand the impact of
the distributed query processing on the overall performance. Before conducting the experiments,
we present an analytical analysis of the Escada protocols (i.e., PDBSM and PDBSM with RAC),
which allows us to comprehend their benefits and outcomes.

Resource Analysis

We outline in this section an analysis of resource consumption, namely, bandwidth and storage, for
the termination protocols presented. To compare the protocols we consider a network setting that
privileges access locality. The network is composed of a wide area network (WAN) with moderate
bandwidth and high latency, aggregating several local area networks (LANs) with much higher
bandwidth and much lower latency. We assume that all the replicas of a fragment, which is not
fully replicated in order to preserve the application semantic are in a LAN. Thus we admit that the
bandwidth requirements for data propagation between copies of the same fragment are irrelevant
when compared with the effect of traffic crossing long distance links. It is worth noticing that
this assumption is considered to facilitate our analytical process and it is released in the following
sections. Even though, the analysis presented is rather important since such a setting is close
enough to a well planned and desired replication setting. Unfortunately, it is not always possible
to achieve such a scenario, and for that reason, we run a set of simulations to understand resource
consumption and evaluate the overall performance.

The transactions read set, write set, and write values have been divided in two subsets: (i) a
subset of fully replicated data items called RSG , WSG and WVG , and (ii) a subset containing

82 7. Results and Performance Analysis

0

25

50

75

100

0 200 400 600 800 1000

U
sa

ge
 (

%
)

Clients

DBSM - LAN
1 CPU

3 CPUs

(a) CPU

Figure 7.10: DBSM - Resource usage

partially replicated items called RSL, WSL and WVL. We represent by RAC the bandwidth
required by the RAC protocol.

The following formulas present the required WAN bandwidth for the termination protocols
proposed:

DBSM ≡ RSG + WSG + WVG + RSL + WSL + WVL (7.2)

PDBSM ≡ RSG + WSG + WVG + RSL + WSL (7.3)

PDBSMRAC ≡ RSG + WSG + WVG + RAC (7.4)

Comparing formulas 7.2 and 7.3, it can be seen that in the proposed network setting the
PDBSM protocol using independent certification has a lower bandwidth consumption as some
write values, .i.e. WVL, never leave LANs and thus never cross long distance links. Basically, this
reduction is an inherent characteristic of partial replication protocols, which attempt to reduce the
ratio between global and local information.

In contrast, from formulas 7.2 and 7.4, the PDBSM protocol using coordinated certification
is expected to outperform the DBSM protocol as long as the RAC’s required bandwidth does not
exceed the requirements for propagating the read and write sets, and the write values of partially
replicated fragments:

PDBSMRAC < DBSM ⇒ RAC < RSL + WSL + WVL

Finally, the comparison of formulas 7.3 and 7.4, reveal that the coordinated certification is
preferable when the bandwidth required for the RAC does not exceed that for transmitting the
read and write sets. Specifically, we consider a simulation model in which for every database site

7.5. Experimental Results 83

A

B,A,GC,B,G

C

C B

B

AA,C,G

A

B

C

Figure 7.11: Partial replication and its fragments

there are some sites collocated in the same LAN and other sites (say, m) at the other end of the
long distance link. In this case, using multisend to broadcast messages, every atomic broadcast
implies that m times the estimated atomic broadcast message size crosses the long distance link
(we ignore the message from the coordinator establishing the message order as it will be the same
in all protocols).

The information presented leads to conclude that DBSM consumes more network resources
than PDBSM and that PDBSM should perform better when there is contention in the network.

Having analyzed the required bandwidths, we now consider the expected latencies of the pro-
tocols we are evaluating. Every protocol starts broadcasting the transaction using the fast atomic
broadcast protocol, and as this protocol propagates the messages concurrently with the ordering
mechanism, we expect that it will mask the differences in latency that should happen due to mes-
sage size and in some cases to the designed termination protocol. For example, the PDBSM with
RAC protocol regardless of being the implementation of RAC offering the lowest cost in terms
of latency [82], incurs in the additional overhead of the RAC and could present higher latencies.
Using the fast atomic broadcast protocol, in a network without network congestion, we intend to
reduce or even eliminate possible latency differences.

Furthermore, while observing the storage, it is possible to conclude that partial replication,
both PDBSM and PDBSM with RAC, outperforms the original DBSM approach, since each site
does not need to be concerned with all the write values and thus reducing storage activities and
possible bottlenecks. To the growth of the system, this is an important consideration. The reason-
ing is that expansions are usually realized with the addition of more database sites, what would
increase the number of simultaneous transactions and therefore the activities of each individual
storage. However, the storages may not have the capacity to handle the additional activities and
may become bottlenecks. The same formulas used to analyze the bandwidth consumption can also
be used to determine the storage activities.

Results

The set of experiments are based on the TPC-C workload in a WAN with 9 sites, where the
fragments are replicated according to Figure 7.11. Initially, we suppose that each site has all the
fragments to answer the requests and afterwards we release this assumption.

Until 750 clients, notice, according to Figure 7.12, that the PDBSM, PDBSM with RAC and
DBSM perform similarly. The explanation for this behavior is that the amount of information

84 7. Results and Performance Analysis

which needs to be globally replicated is high and there is no contention in the network. However,
it would be expected that the additional step of the RAC would increase the latency and reduce the
throughput as the network does not represent a bottleneck. In this case, the use of the FastAtomic
Broadcast contributes to compensate this overhead.

In Figure 7.13, regarding CPU usage, the RAC protocol does not present a problem. The
amount of CPU required is similar to the DBSM and the PDBSM. Regarding the bandwidth con-
sumption, we see that the amount of bandwidth required by the PDBSM with RAC is similar to the
DBSM and higher than the PDBSM, which is easily explained by the fact of the RAC introducing
additional messages. However, it is important to notice that the amount of bandwidth required by
the PDBSM is lower than the amount of bandwidth required by the DBSM and this result could be
improved if the application semantics allowed. The difference is around 115 Kbps when the band-
width required by the DBSM is around 1.6 Mbps (i.e., for 750 clients). In Figure 7.14, we present
a simulation that increases the size of the tuples, i.e. doubles the size, simulating for example
changes in the character encoding to assert our assumption about the application semantics. The
difference with the new tuples is around 530 Kbps when the bandwidth required by the DBSM is
around 2.9 Mbps (i.e., for 750 clients).

Unfortunately, the PDBSM with RAC degenerates when the number of clients increases above
750. It has contention problems with 1000 clients, since the certification queue and the lock queue
present high values, with an average of 90 transactions waiting to be serviced. This is a problem
of the additional step introduced with the RAC and of the certification ’s overhead which increase
the time to process a transaction and generate this behavior.

Finally, we expect to indeed reduce the bandwidth consumption, releasing the assumption that
each site can locally complete the execution of a transaction. For that reason, we conduct a set
of experiments using the PDBSM, i.e. DDE (Distributed Execution), in order to exploit possible
benefits of the partial replication. The PDBSM behaves similar to the other experiments until 500
clients and after that, it presents the same contention problems, since the additional steps of the
distributed execution (i.e., contact remote sites, gather the results and stabilize) increases the time
to process the transactions. It has been observed certification and lock queues. It is important
to notice that the amount of bandwidth required by the PDBSM with the distributed execution is
lower, which can be observed in Figure 7.13. The difference when compared to the DBSM is
around 837 Kbps when the bandwidth required by the DBSM is around 1.2 Mbps (i.e., for 500
clients). This is simple explained by the nonexistence of global relations and the locality allowed
by the TPC-C.

These set of experiments allow us to conclude that the PDBSM augmented with the distributed
execution, in what fallows just PDBSM unless otherwise stated, represents an excellent improve-
ment when compared to the DBSM. The bandwidth required by PDBSM is reduced around 69%.
Unfortunatelly, it presents contention problems while increasing the number of clients, which
could be avoided using a flow control mechanism. Roughly speaking, the idea of the flow con-
trol mechanism is to restrict the number of concurrent requests inside the system which avoids
its collapse and therefore sustains the maximum throughput. However, as a side effect probably
the client’s response time would increase. In order to sustain the throughput and also avoid this
undesirable latency, we could use our semantic caching approach. In this case, it would reduce the
needs of the distributed execution. Unfortunatelly, our current implementation has performance
problems as explained before and a better implementation is required. Regarding the others alter-
natives of the PDBSM, we can conclude that the RAC is not a good approach since its additionals
steps introduce latency which implies in the collapse of the system while increasing the number of
clients. Furthermore, it does not reduce the required bandwidth. The PDBSM with the no-voting
protocol is the approach recommend since it does not show the problems that affect the PDBSM

7.5. Experimental Results 85

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

250 500 750 1000
T

P
M

 (
C

om
m

itt
ed

)

Clients

DBSM - WAN
PDBSM - WAN

PDBSMRAC - WAN
DDE - WAN

Ideal Locking

(a) Throughput

0

50

100

150

200

250

300

350

400

250 500 750 1000

La
te

nc
y

(m
s)

Clients

DBSM - WAN
PDBSM - WAN

PDBSMRAC - WAN
DDE - WAN

Ideal Locking

(b) Latency

0
2
4
6
8

10
12
14
16
18
20
22

250 500 750 1000

A
bo

rt
 R

at
e

(%
)

Clients

DBSM - WAN
PDBSM - WAN

PDBSMRAC - WAN
DDE - WAN

Ideal Locking

(c) Abort rate

Figure 7.12: PDBSM - Performance results

with RAC.

86 7. Results and Performance Analysis

0

10

20

30

40

50

60

250 500 750 1000

U
sa

ge
 (

%
)

Clients

DBSM - WAN
PDBSM - WAN

PDBSMRAC - WAN
DDE - WAN

Ideal Locking

(a) CPU

0

50

100

150

200

250

300

250 500 750 1000

K
by

te
s/

s

Clients

DBSM - WAN
PDBSM - WAN

PDBSMRAC - WAN
DDE - WAN

(b) Network

Figure 7.13: PDBSM - Resource usage

100

150

200

250

300

350

400

450

250 500 750 1000

K
by

te
s/

s

Clients

DBSM - WAN
PDBSM - WAN

(a) Network

Figure 7.14: PDBSM - Network Bandwidth

Chapter 8

Conclusion

Industries, hospitals, public organizations and commerce, for instance, conduct their activities
based on information which is gathered from different sources and ultimately is stored into a
database. From a technological point of view, the databases are usually considered a core compo-
nent, which means that a failure may generate a tremendous negative impact on the system as a
whole. For those reasons, it is important to have techniques and mechanisms to deal with failures.
Database replication is an invaluable technique to implement fault-tolerant databases, being also
frequently used to improve performance. Unfortunately, when strong consistency and the ability
to update the database at any of the replicas are considered the traditional replication protocols do
not scale up.

Database replication based on group communication, appears as a promise to circumvent these
problems. Briefly, the DBSM allows an optimistic local execution, postponing the interaction
with remote concurrent transactions. That is, each transaction request is optimistically executed
by a single site and interaction with other sites is only initiated after the commit request. Upon
receiving the commit, the outcome of the transaction (i.e., “write” values, “read” and “write” sets)
is propagated to all replicas using atomic multicast. A certification procedure is run upon delivery
by all sites to determine conflicts with other concurrently executed transactions, and thus whether
the transaction should be committed or aborted. Atomic multicast guarantees that all sites deliver
the outcome of the transaction in the same order. In the case of a conflict, the certification uses
this order to decide which transaction commits or aborts. The determinism of the certification
ensures a strong consistency and as the deterministic execution is confined to the certification, no
restrictions impairing performance are imposed on scheduling during the execution stage.

This is the context of the Escada project, which aims to design and implement transaction
replication mechanisms suited for large scale distributed systems. In particular, the project intends
to exploit partial replication techniques to provide strong consistency criteria without introducing
significant synchronization and performance overheads. In this thesis, we have augmented the
Escada project with a distributed query processing protocol, releasing the assumption that all the
fragments accessed by a transaction are located at a single site.

In order to do that, we have developed a distributed query processing mechanism which uses
a two step-optimization. Roughly, the two step-optimization facilitates the integration of the dis-
tributed query processing into a centralized database management system, allowing the query to
be locally optimized without further modifications to the local optimization engine. After the local
optimization, which corresponds to the first step, the second step must decide where the pre-pro-
cessed query must have its operations executed. In this case, for each operation we have used a

87

88 8. Conclusion

simple approach which chooses the first correct site that is able to handle the request. The in-
formation about the fragments and replicas is fully replicated among the catalogs. The following
approach has been proposed in order to update the catalogs: (i) each site is responsible to compute
the statistics for the local fragments and periodically these information is propagated; (ii) some op-
erations such as the creation, deletion or modification of object’ structures (e.g., creation of a table
or modification of its attributes) are applied synchronously which avoids inconsistency among the
replicas. This process takes advantage of the atomic multicast used to serialize the transactions,
avoiding the overhead of another communication step.

Combined with the two-step optimization, we also have developed a mechanism to the dis-
tributed execution that mimics a nested transaction: (i) the initiator (i.e., the site used by the client
to send transaction’s request) can spawn one subtransaction per site; (ii) only the initiator can
spawn subtransactions, which avoids the possibilities of deadlocks inside the same transaction;
(iii) subtransactions execute optimistically at remote sites and the concurrency control mechanism
of the initiator site controls its own transactions; (iv) upon the initiator abort, all the subtransactions
are also aborted; (v) upon a child abort, all the subtransactions are also aborted.

In order to minimize the impact of the distributed execution on the overall performance, which
may increase resource usage and mainly bandwidth consumption, we have built a distributed cache
mechanism. It is based on semantic entries, which means that instead of using tuples or pages to
identify the entries in cache, the predicates of the queries are used as identifiers and the cache is
populated using the results of the queries. Doing this, we have avoided the management overhead
of the tuples, which usually involves retrieval, update and replacement per tuple. In contrast to
page caching, we also have reduced the management overhead and further overcome the problem
of space consumption, which is a consequence of the page fixed size, while disregarding the size of
the result set and always allocating pages. The cache is populated using the results of SPJ queries,
which is a combination of a set of (s)elect, (p)rojection and (j)oin operations. This class of queries
allows autonomous recomputation, which means that we can update the entries in cache using
just the results of the queries and the information available in cache. This is an important point
since it avoids to contact remote sites to answer features requests. However, our approach could
be easily extended in order to populate the cache with other classes of queries. In fact, it is not
required further modifications since our algorithm is generic enough to detect that some queries
could not be autonomously recomputed and hence for each these queries the algorithm identifies
if the updates affect it and in a positive case invalidates it, otherwise nothing is done.

We also have provided the correct integration of the distributed cache with the PDBSM, pre-
serving its consistency criteria. In other words, we have considered a shared cache per database site
that is autonomously updated or invalidated upon transaction certification and during transaction
execution, the possible changes are visible per transaction. Basically, to manage the distributed
caches among the sites, we have relied on the propagation of the outcome of the transaction.

We have proposed the use of a smart certification, which means sending the queries that ma-
nipulates the relations that are referenced instead of their tuples in consequence of the amount of
information that needs to be transfered and using the queries in an attempt to reduce the number of
aborts due to the use of entire relations. Roughly, the certification procedure attempts to see if the
conflicting updates are relevant to the queries, in which case the transaction is aborted, otherwise
it is committed.

It is important to notice that the distributed execution and the semantic cache have been devel-
oped as prototypes and in order to integrate them into a real database system, we have analyzed
and suggested the steps to do that using the PostgreSQL as the target database. First of all, we
have proposed an algorithm to extract the “write” values, “read” and “write” sets. Although it

89

may seem a simple process, the extraction of the read set involves complex procedures. The main
reason is that some features (e.g., nested subquery blocks, grouping, control over duplicates and
quantifiers) cannot be mapped to the select, project, join subset of the relational algebra, which is
easily manipulated. We have suggested to extended the PostgreSQL’s grammar to be possible to
create fragments and to extend its rule system, which allows to specify actions that must be done
instead or with the original request, according to the operation and when a pre-defined condition
evaluates to true. In our case, the extended rule is used to allow references to relations prior to
the fragmentation, called logical relations, and in a transparent manner establishes the map among
them and their fragments. Finally, regardless of the details involved in the extension of the Post-
greSQL, we also have identified that the consistency criteria, one-copy serializability, claimed by
the DBSM is not achievable, unless the indices and the relations being considered as read and writ-
ten information. We also have suggested different alternatives to deal with possible high amounts
of read set: (i) use the snapshot isolation level, (ii) send the read set by comprehension (e.g., using
SQL predicates or a reference to the relation), (iii) propagate just the write values and rely on the
initiator site to decide about its fate, that is, abort or commit.

Furthermore, we have presented and analyzed two different termination protocols and their
impact on the overall system. The first one, a direct contribution of this thesis, called simply
PDBSM, works similar to the DBSM which means that each machine can independently decide
on the outcome of the transaction without requiring a voting phase. In order to do that the “read”
and “write” sets are multicast, but the “write” values are just propagated to the sites replicating the
involved fragments. The second one, originally proposed in the Escada project, called PDBSM
with RAC, propagates the “write” values, ‘read” and “write” sets to the sites replicating the in-
volved fragments, which means that a single site may not unilaterally decide about the outcome of
a transaction and therefore a voting phase is required.

The set of experiments conducted with the semantic caching without combine it with the repli-
cation have shown that the time spent to search a cache with 1000 entries using the hierarchical
filter and test 19 entries is around 4 ms, which is a good value. For instance, considering a WAN
(see Table 7.4) with latency of 30 ms plus the time necessary to process the queries and transfer
the requests and results, it is clear that our semantic caching is extremely useful. Unfortunately,
when we allow all queries sent to the database to be stored in the cache, this incurs the over-
head of testing entries that will produce a match and entries that will not. The number of tests
increases and therefore the contention could turn its use impractical. It is therefore important pre-
vious knowledge about the application semantics in order to cache only the queries which have
high probability of occurrence. The hit ratios observed with the TPC were low, around 3% – 7%,
which makes the cache mechanism infeasible in order to improve performance. The elapsed time
to answer the queries of the transaction "Bestsellers" (hit ratio 10% - 16%) in the TPC-W is
drastically reduced with the use of the cache. In some cases, this reduction is higher than 100 ms
seconds which is a great improvement.

In order to establish a baseline, we have shown with a set of experiments using realistic work-
loads (i.e., TPC-C) that DBSM can indeed circumvent the scalability problems of the traditional
replication protocols, preserving the strong consistency and the ability to update the database from
any replica. In LAN environments, this new approach of replication has presented throughput and
latency equivalent to a single host with the advantage that we might easily combine commodity
machines to scale up the system instead of upgrading the host.

In large scale distributed systems with several replicas distributed in a wide area network, fully
replicated databases have not seemed to be suitable and we have evaluated partially replicated
databases. Our evaluation has shown that the PDBSM reduces the bandwidth and storage usage.
For instance, the reduction of bandwidth is around 115 Kbps when the bandwidth required by

90 8. Conclusion

the DBSM is around 1.6 Mbps (i.e., for 750 clients). Unfortunately, the PDBSM with RAC has
contention problems. This is a consequence of the additional step introduced with the RAC and of
the certification’s overhead which increase the time to process the transactions and generate this
behavior.

The PDBSM augmented with a distributed execution mechanism indeed reduced the band-
width, the reduction is around 837 Kbps when the bandwidth required by the DBSM is around
1.2 Mbps (i.e., for 500 clients). Unfortunately, it also has contention problems, since the addi-
tional steps of the distributed execution (i.e., contact remote sites, gather the results and stabilize)
increases the time to process the transactions. It has been observed certification and lock queues.

From these experiments we have concluded that the PDBSM augmented with the distributed
execution, in what fallows just PDBSM unless otherwise stated, represents an excellent improve-
ment when compared to the DBSM. It is an interesting technique in order to provide database
replication in large scale distributed systems with several replicas distributed in a wide area net-
work. In contrast to fully replicated databases, it reduces the required network bandwidth and
storage usage. The bandwidth required by PDBSM is reduced around 69%. Unfortunatelly, it
presents contention problems while increasing the number of clients, which could be avoided us-
ing a flow control mechanism. Roughly speaking, the idea of the flow control mechanism is to
restrict the number of concurrent requests inside the system which avoids its collapse and there-
fore sustains the maximum throughput. However, as a side effect probably the client’s response
time would increase. In order to sustain the throughput and also avoid this undesirable latency, we
could use our semantic caching approach. In this case, it would reduce the needs of the distributed
execution. Unfortunatelly, our current implementation has performance problems as explained be-
fore and a better implementation is required. Regarding the others alternatives of the PDBSM, we
have concluded that the RAC is not a good approach since its additionals steps introduce latency
which implies in the collapse of the system while increasing the number of clients. Furthermore,
it does not reduce the required bandwidth. The PDBSM with the no-voting protocol is the ap-
proach recommend since it does not show the problems that affect the PDBSM with RAC. The
simplicity of the protocol allows it to scale up without further overhead when compared to the
PDBSM with RAC. However, it is important to notice that its advantages are highly dependent of
the application’s semantic, which means that the application must allow to exploit the benefits of
partial replication.

From the previous conclusions, it simple to see that this work presents excellent results which
show the benefits of using the PDBSM in large scale distributed systems. From the knowledge
gained through this work, we realize that there are some important points that could be analyzed
and developed in order to further improve the benefits of the PDBSM:

• Regarding the termination protocols, it would be interesting to evaluate other group commu-
nication facilities such as the semantic broadcast in order to take advantage of the semantic
of the application and hence avoiding additional communication steps; or the generic broad-
cast avoiding to totally order transactions that are not concurrent, which usually increases
transaction’s latency.

• Integrate the current prototype into the PostgreSQL according to the ideas presented and
improve the performance of the semantic cache avoiding to hold locks longer than it is
necessary.

• Analyze and develop possible distributed deadlock algorithms that exploit the characteristics
of the database replication based on group communication.

91

• Implement and evaluate the smart certification proposed in a attempt to reduce the number
of aborts.

92 8. Conclusion

Appendix A

The completed set of algorithms discussed in Chapter 3 is presented as follows:
module DistributedExecutionInPDBSM

exports all

definitions
types

33.0 nodeOperation : : classOperation : enumOperations

.1 relationId : relation

.2 inv opr 4

.3 (opr .classOperation ∈ {SELECT, INSERT, UPDATE, DELETE}∧opr .relationId 6=
[]) ∨

.4 (opr .classOperation ∈ {COMMIT, ABORT} ∧ opr .relationId = []);

34.0 enumOperations = SELECT | INSERT | UPDATE | DELETE |
.1 BEGIN | COMMIT | ABORT;

35.0 enumCertification = NOVOTE | VOTE;

36.0 transControl = transId
m
-→ controlInformation;

37.0 controlInformation : : access : relation
m
-→ site

.1 dataSet : storedSets

.2 siteOrig : site

.3 inv ctr 4 (∀ r ∈ dom ctr .access · r 6= []) ∧

.4 (∀ s ∈ rng ctr .access · s 6= []);

38.0 transOrig : : idOrig : transId

.1 siteOrig : site

.2 siteExecution : site

.3 inv tx 4 (tx .siteOrig 6= []) ∧ (tx .idOrig ≥ 0);

39.0 storedSets : : rs : relation
m
-→ pk -set

.1 ws : relation
m
-→ pk -set

.2 wv : relation
m
-→ tuple-set

93

94 A.

.3 inv sset 4

.4 (∀ idrs ∈ rng sset .rs · idrs 6= {}) ∧

.5 (∀ idws ∈ rng sset .ws · idws 6= {}) ∧

.6 (∀ idwv ∈ rng sset .wv · idwv 6= {});

40.0 collectedSets : : rs : relation
m
-→ pk -set

.1 ws : relation
m
-→ pk -set

.2 wv : relation
m
-→ tuple-set

.3 inv cset 4

.4 (∀ idrs ∈ rng cset .rs · idrs 6= {}) ∧

.5 (∀ idws ∈ rng cset .ws · idws 6= {}) ∧

.6 (∀ idwv ∈ rng cset .wv · idwv 6= {});

41.0 replicas = relation
m
-→ site-set

.1 inv rep 4

.2 (∀ s ∈ rng rep · s 6= {}) ∧

.3 (∀ sl ∈
⋃

rng rep · sl 6= []) ∧
.4 (∀ r ∈ dom rep · r 6= []);

42.0 tuple : : attpk : pk
.1 data : token

43.0 transId = id ;

44.0 pk = id ;

45.0 site = char∗;

46.0 relation = char∗;

47.0 id = N

48.0 state DDb of
.1 transDb : transControl

.2 repDb : replicas

.3 certMode : enumCertification

.4 localDb : site

.5 transMapDb : transId
m
-→ transId

95

.6 inv ddb 4

.7 (∀ tid ∈ dom ddb.transDb · tid ∈ dom ddb.transMapDb) ∧

.8 (let tid ∈ dom ddb.transDb in

.9 (∀ rra ∈ dom ddb.transDb (tid).access · rra ∈ dom ddb.repDb) ∧

.10 (∀ rrb ∈ dom ddb.transDb (tid).dataSet .rs · rrb ∈ dom ddb.repDb) ∧

.11 (∀ rrc ∈ dom ddb.transDb (tid).dataSet .ws · rrc ∈ dom ddb.repDb) ∧

.12 (∀ rrd ∈ dom ddb.transDb (tid).dataSet .wv · rrd ∈ dom ddb.repDb) ∧

.13 (∀ ssa ∈ rng ddb.transDb (tid).access · ssa ∈
⋃

rng ddb.repDb) ∧
.14 (ddb.transDb (tid).siteOrig ∈

⋃
rng ddb.repDb))

.15 end

functions

49.0 regSite : transOrig × site → transOrig

.1 regSite (tx , s) 4

.2 mk-transOrig (tx .idOrig , tx .siteOrig , s);

50.0 regControl : transOrig × transControl → transControl

.1 regControl (tx , txControl) 4

.2 txControl†{tx .idOrig 7→ mk-controlInformation ({7→}, mk-storedSets ({7→}, {7→
}, {7→}), tx .siteOrig)}

.3 pre tx .idOrig 6∈ dom txControl ;

51.0 disregControl : transOrig × transControl → transControl

.1 disregControl (tx , txControl) 4

.2 {tx .idOrig} −C txControl ;

52.0 regContact : relation × site × relation
m
-→ site → relation

m
-→ site

.1 regContact (rel , s, access) 4

.2 access † {rel 7→ s};

53.0 disregContact : transOrig × transId
m
-→ transId → transId

m
-→ transId

.1 disregContact (tx ,mapLocal) 4

.2 {tx .idOrig} −C mapLocal

operations

54.0 processOperation : transOrig × nodeOperation
o
→ B

.1 processOperation (tx , opr) 4

.2 (cases opr .classOperation:

.3 BEGIN → return (initProtocol (tx)),

.4 COMMIT, ABORT → return (terminateProtocol (tx , opr .classOperation)),

.5 others → return (executeCommand (tx , opr))

.6 end)

.7 pre tx .siteOrig ∈
⋃

rng DDb.repDb ;

96 A.

55.0 initProtocol : transOrig
o
→ B

.1 initProtocol (tx) 4

.2 (dcl r : B := false;

.3 r := initProtocolDb (tx ,DDb.transMapDb);

.4 if (r = true)

.5 then DDb.transDb := regControl (tx ,DDb.transDb);

.6 return (r))

.7 pre tx .idOrig 6∈ dom DDb.transDb ∧ tx .idOrig 6∈ dom DDb.transMapDb

.8 post tx .idOrig ∈ dom DDb.transDb ∧ tx .idOrig ∈ dom DDb.transMapDb ;

56.0 initProtocolDb (tx : transOrig ,mapLocal : (transId
m
-→ transId)) r : B

.1 pre tx .idOrig 6∈ dom mapLocal

.2 post tx .idOrig ∈ dom mapLocal ;

57.0 executeCommand : transOrig × nodeOperation
o
→ B

.1 executeCommand (tx , opr) 4

.2 (dcl c : site ,

.3 r : B := false,

.4 s : site-set := {};

.5 s := possibleSites (tx , opr .relationId);

.6 c := chooseSite (tx , opr ,DDb.repDb, s);

.7 if (tx .siteExecution = c)

.8 then (dcl rmaps : relation
m
-→ site := DDb.transDb (tx .idOrig).access;

.9 r := executeCommandDb (tx , opr ,DDb.transMapDb);

.10 if (r = true)

.11 then (rmaps := regContact (opr .relationId , c, rmaps);

.12 DDb.transDb(tx .idOrig).access := rmaps))

.13 else (dcl settx : transOrig := regSite (tx , c),

.14 rmaps : relation
m
-→ site := DDb.transDb (settx .idOrig).access;

.15 if ({c} \ rng DDb.transDb (settx .idOrig).access 6= {})

.16 then (r := processOperationRemoteSite (settx , mk-nodeOperation (BEGIN, []), c);

.17 if (r = true)

.18 then (rmaps := regContact (opr .relationId , c, rmaps);

.19 DDb.transDb(settx .idOrig).access := rmaps;

.20 r := processOperationRemoteSite (settx , opr , c)))

.21 else (r := processOperationRemoteSite (settx , opr , c);

.22 if (r = true)

.23 then (rmaps := regContact (opr .relationId , c, rmaps);

.24 DDb.transDb(settx .idOrig).access := rmaps)));

.25 return (r))

.26 pre opr .relationId ∈ dom DDb.repDb ∧ tx .idOrig ∈ dom DDb.transDb

.27 post opr .relationId ∈ dom DDb.transDb (tx .idOrig).access ;

97

58.0 possibleSites : transOrig × relation
o
→ site-set

.1 possibleSites (tx , rel) 4

.2 (if (rel ∈ dom DDb.transDb (tx .idOrig).access)

.3 then return ({DDb.transDb (tx .idOrig).access (rel)})

.4 else if (tx .siteExecution ∈ DDb.repDb (rel))

.5 then return ({tx .siteExecution})

.6 else return ({r | r ∈ DDb.repDb (rel)}))

.7 pre let access = rng DDb.transDb (tx .idOrig).access in

.8 (tx .idOrig ∈ dom DDb.transDb) ∧ (rel ∈ dom DDb.repDb) ∧ (access ⊆⋃
rng DDb.repDb) ;

59.0 chooseSite (tx : transOrig , opr : nodeOperation, rep : replicas, s : site-set) r : site

.1 pre opr .relationId ∈ dom rep ∧ s 6= {}∧ s ⊆
⋃

rng rep ∧ tx .siteOrig ∈
⋃

rng rep

.2 post r ∈ s ;

60.0 processOperationRemoteSite (tx : transOrig , opr : nodeOperation, s : site) r : B

.1 post true ;

61.0 executeCommandDb (tx : transOrig , opr :nodeOperation,mapLocal : (transId
m
-→

transId)) r : B

.1 pre tx .idOrig ∈ dom mapLocal

.2 post true ;

62.0 terminateProtocol : transOrig × enumOperations
o
→ B

.1 terminateProtocol (tx , opr) 4

.2 (dcl r : B := false;

.3 cases opr :

.4 ABORT → return (executeRollBack (tx , rng DDb.transDb (tx .idOrig).access)),

.5 COMMIT →

.6 (r := executeStabilization (tx);

.7 if (r = true)

.8 then r := processCertificationRemoteSite (tx)

.9 else executeRollBack(tx , rng DDb.transDb (tx .idOrig).access))

.10 end ;

.11 return (r))

.12 pre tx .idOrig ∈ dom DDb.transDb

.13 post tx .idOrig 6∈ dom DDb.transDb ;

63.0 executeRollBack : transOrig × site-set
o
→ B

.1 executeRollBack (tx , setSites) 4

.2 (if (setSites 6= {})

.3 then (let s ∈ setSites in

.4 if (s 6= DDb.localDb)

.5 then processOperationRemoteSite(tx , mk-nodeOperation (ABORT, []), s)

.6 executeRollBack(tx , setSites \ {s}))

98 A.

.7 else (DDb.transDb := disregControl (tx ,DDb.transDb);

.8 executeRollBackDb(tx ,DDb.transMapDb));

.9 return (true))

.10 pre tx .idOrig ∈ dom DDb.transDb ∧ tx .idOrig ∈ dom DDb.transMapDb

.11 post tx .idOrig 6∈ dom DDb.transDb ∧ tx .idOrig 6∈ dom DDb.transMapDb ;

64.0 executeRollBackDb (tx : transOrig ,mapLocal : transId
m
-→ transId) r : B

.1 post tx .idOrig 6∈ dom mapLocal ;

65.0 executeStabilization : transOrig
o
→ B

.1 executeStabilization (tx) 4

.2 (dcl stabilizeSites : site-set := rng DDb.transDb (tx .idOrig).access ,

.3 r : B := false;

.4 if (DDb.certMode = NOVOTE)

.5 then r := computeStabilizationNoVote (tx , stabilizeSites)

.6 else r := computeStabilizationVote (tx , stabilizeSites);

.7 return (r))

.8 pre tx .idOrig ∈ dom DDb.transDb

.9 post let setrs = dom DDb.transDb (tx .idOrig).dataSet .rs,

.10 setws = dom DDb.transDb (tx .idOrig).dataSet .ws in

.11 ∀ rrs ∈ setrs, rws ∈ setws ·

.12 rrs ∈ setws ∧ rws ∈ setrs ;

66.0 computeStabilizationNoVote : transOrig × site-set
o
→ B

.1 computeStabilizationNoVote (tx , sites) 4

.2 (if (sites = {})

.3 then return (true)

.4 else let site ∈ sites in

.5 let collectedSet = processStabilizationRemoteSite (tx , site) in

.6 if (collectedSet 6= nil)

.7 then (rebuildTransaction(tx , collectedSet) ;

.8 computeStabilizationNoVote(tx , sites \ {site}))

.9 else return (false));

67.0 computeStabilizationVote : transOrig × site-set
o
→ B

.1 computeStabilizationVote (tx , sites) 4

.2 if (sites = {})

.3 then return (true)

.4 else let site ∈ sites in

.5 let collectedSet = processStabilizationRemoteSite (tx , site) in

.6 if (collectedSet 6= nil)

.7 then computeStabilizationVote(tx , sites \ {site})

.8 else return (false) ;

99

68.0 rebuildTransaction : transOrig × collectedSets
o
→ B

.1 rebuildTransaction (tx , collectedSet) 4

.2 (dcl r : B := true,

.3 setrs : relation
m
-→ pk -set := DDb.transDb (tx .idOrig).dataSet .rs ,

.4 setws : relation
m
-→ pk -set := DDb.transDb (tx .idOrig).dataSet .ws;

.5 DDb.transDb(tx .idOrig).dataSet .rs := setrs m
⋃

collectedSet .rs;
.6 DDb.transDb(tx .idOrig).dataSet .ws := setws m

⋃
collectedSet .ws;

.7 return (r))

.8 pre let setrs = dom DDb.transDb (tx .idOrig).dataSet .rs,

.9 setws = dom DDb.transDb (tx .idOrig).dataSet .ws in

.10 (tx .idOrig ∈ dom DDb.transDb) ∧

.11 (¬ (dom collectedSet .rs ⊆ setrs)) ∧

.12 (¬ (dom collectedSet .ws ⊆ setws)) ;

69.0 processStabilizationRemoteSite (tx : transOrig , cst : site) r : [collectedSets]

.1 post true ;

70.0 processCertificationRemoteSite (tx : transOrig) r : B

.1 post true

end DistributedExecutionInPDBSM

100 A.

Appendix B

CREATE LOGICAL TABLE " l o g i c a l d e m o "
(

c o l 0 1 i n t ,
c o l 0 2 i n t ,
c o l 0 3 c h a r [3 0]

)
- - C r e a t e s t h e l o g i c a l r e l a t i o n

CREATE TABLE " h o t s 0 1 . r ea ldemo "
(

c o l 0 1 i n t ,
c o l 0 2 i n t ,
c o l 0 3 c h a r [3 0]

)
CREATE TABLE " h o t s 0 2 . r ea ldemo "
(

c o l 0 1 i n t ,
c o l 0 2 i n t ,
c o l 0 3 c h a r [3 0]

)
- - C r e a t e s t h e f r a g m e n t s i n each s i t e .

CREATE LOGICAL RULE " r u l e - demo - s e l e c t " AS
ON s e l e c t
TO " rea ldemo "
DO INSTEAD

s e l e c t col01 , col02 , c o l 0 3 from " h o s t 0 1 . r ea ldemo " where c o l 0 1 = 10
un ion

s e l e c t col01 , col02 , c o l 0 3 from " h o s t 0 1 . r ea ldemo " where c o l 0 1 = 20
- - There a r e 2 h o s t s and t h e r e l a t i o n " l o g i c a l d e m o "
- - i s f r a g m e n t e d between t h e s e h o s t s .
- - The where c l a u s e i n t h e s e e x p r e s s i o n s d e f i n e t h e f r a g m e n t s .

CREATE LOGICAL RULE " r u l e - demo - i n s e r t -0 1 " AS
ON i n s e r t
TO " rea ldemo " where c o l 0 1 = 10
DO INSTEAD
i n s e r t i n t o " h o s t 0 1 . r ea ldemo " (col01 , col02 , c o l 0 3)
v a l u e s (new . col1 , new . col02 , new . c o l 0 3)

- - The i n f o r m a t i o n " new . " i d e n t i f i e s t h e v a l u e s s e n t t o be i n s e r t e d .

CREATE LOGICAL RULE " r u l e - demo - i n s e r t -0 2 " AS

101

102 B.

ON i n s e r t
TO " rea ldemo " where c o l 0 1 = 20
DO INSTEAD
i n s e r t i n t o " h o s t 0 2 . r ea ldemo " (col01 , col02 , c o l 0 3)
v a l u e s (new . col1 , new . col02 , new . c o l 0 3)

- - The i n f o r m a t i o n " new . " i d e n t i f i e s t h e v a l u e s s e n t t o be i n s e r t e d .

CREATE LOGICAL RULE " r u l e - demo - i n s e r t -0 3 " AS
ON i n s e r t
TO " rea ldemo "
DO INSTEAD NOTHING
- - The m o d i f i e r " n o t h i n g " g u a r a n t e e s c o m p l e t e n e s s .
- - I t a v o i d s i n s e r t i o n of t u p l e s t h a t does n o t have
- - t h e column c o l 0 1 = 10 or c o l 0 1 = 2 0 .

CREATE LOGICAL RULE " r u l e - demo - d e l e t e -0 1 " AS
ON d e l e t e
TO " rea ldemo " where c o l 1 = 10
DO INSTEAD
d e l e t e " h o s t 0 1 . r ea ldemo " where c o l 1 = 10

- - I t i s i m p o r t a n t t o remember t h a t f i n a l s t a t e m e n t w i l l combine
- - t h i s c l a u s e wi th t h e one from t h e o r i g i n a l s t a t e m e n t .

CREATE LOGICAL RULE " r u l e - demo - d e l e t e -0 2 " AS
ON d e l e t e
TO " rea ldemo " where c o l 0 1 = 20
DO INSTEAD
d e l e t e " h o s t 0 2 . r ea ldemo " where c o l 0 1 = 20

- - I t i s i m p o r t a n t t o remember t h a t f i n a l s t a t e m e n t w i l l combine
- - t h i s c l a u s e wi th t h e one from t h e o r i g i n a l s t a t e m e n t .

CREATE LOGICAL RULE " r u l e - demo - upda te -0 1 " AS
ON u p d a t e
TO " rea ldemo " where c o l 0 1 = 10
DO INSTEAD
u p d a t e " h o s t 0 1 . r ea ldemo " s e t c o l 0 1 = new . col01 , c o l 0 2 = new . c o l 0 2
c o l 0 3 = new . c o l 0 3 where c o l 0 1 = 10

- - I t i s i m p o r t a n t t o remember t h a t f i n a l s t a t e m e n t w i l l combine
- - t h i s c l a u s e wi th t h e one from t h e o r i g i n a l s t a t e m e n t .

CREATE LOGICAL RULE " r u l e - demo - upda te -0 2 " AS
ON u p d a t e
TO " rea ldemo " where c o l 0 1 = 20
DO INSTEAD
u p d a t e " h o s t 0 1 . r ea ldemo " s e t c o l 0 1 = new . col01 , c o l 0 2 = new . c o l 0 2
c o l 0 3 = new . c o l 0 3 where c o l 0 1 = 20

- - I t i s i m p o r t a n t t o remember t h a t f i n a l s t a t e m e n t w i l l combine
- - t h i s c l a u s e wi th t h e one from t h e o r i g i n a l s t a t e m e n t .

- - To a v o i d t h i s l a b o r i o u s work we p r o p o s e t o use t h i s .
CREATE ESCADA TABLE demo
(

(
c o l 0 1 i n t ,
c o l 0 2 i n t ,
c o l 0 3 c h a r [3 0]

103

)
)
FRAGMENTS (" c o l 0 1 = 1 0 " , " h o s t 0 1 ") , (" c o l 0 1 = 2 0 " , " h o s t 0 2 ")
- - D i s j o i n t n e s s can be e a s i l y implemented , t e s t i n g p a i r s
- - of c l a u s e s b r o u g h t t o g e t h e r wi th a c o n j u n c t i o n and
- - g u a r a n t e e i n g t h a t a l l t h e t e s t s e v a l u a t e s t o f a l s e .

104 B.

Bibliography

[1] B. A. Davey ad H. A. Priestley. Introduction to Lattices and Order. Cambridge University,
2002.

[2] Michel E. Adiba and Bruce G. Lindsay. Database Snapshots. In Very Large Database
Conference, 1980.

[3] Sanjay Agrawal, Surajit Chaudhuri, and Vivek Narasayya. Materialized View and Index
Selection Tool for Microsoft SQL Server 2000. In ACM SIGMOD International Conference
on Management of Data, 2001.

[4] G. Alvarez and F. Cristian. Applying Simulation to the Design and Performance Evalua-
tion of Fault-tolerant Systems. In IEEE International Symposium on Reliable Distributed
Systems, 1997.

[5] Shivnath Babu and Jennifer Widom. Continuous Queries Over Data Streams. ACM SIG-
MOD International Conference on Management of Data, 2001.

[6] Catriel Beeri, Philip A. Bernstein, and Nathan Goodman. A Model for Concurrency in
Nested Transactions Systems. Journal of the ACM, 1989.

[7] Randall G. Bello, Karl Dias, Alan Downing, James J. Feenan Jr., William D. Norcott, Harry
Sun, Andrew Witkowski, and Mohamed Ziauddin. Materialized Views in Oracle. In Very
Large Database Conference, 1998.

[8] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil.
A Critique of ANSI SQL Isolation Levels. In ACM SIGMOD International Conference on
Management of Data, 1995.

[9] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[10] Philip A. Bernstein, Nathan Goodman, Eugene Wong, Christopher L. Reeve, and Jr. James
B. Rothnie. Query Processing in a System for Distributed Databases (SDD-1). ACM Trans-
actions on Database Systems (TODS), 1981.

[11] K. Birman and R. van Renesse. Reliable Distributed Computing with the Isis Toolkit. IEEE
Computer Society Press, 1994.

[12] J. A. Blakeley, Neil Coburn, and P. Larson. Updating Derived Relations: Detecting Irrel-
evant and Autonomously Computable Updates. ACM Transactions on Database Systems
(TODS), 1989.

105

106 Bibliography

[13] Phillip Bogle and Barbara Liskov. Reducing Cross Domain Call Overhead using Batched
Futures. In Proceedings of the ninth annual conference on Object-oriented programming
systems, language, and applications, 1994.

[14] Michael J. Carey and Hongjun Lu. Load Balancing in a Locally Distributed DB System. In
ACM SIGMOD International Conference on Management of Data, 1986.

[15] D. D. Chamberlin, M. M. Astrahan, W. F. King, R. A. Lorie, J. W. Mehl, T. G. Price,
M. Schkolnick, P. Griffiths Selinger, D. R. Slutz, B. W. Wade, and R. A. Yost. Support for
Repetitive Transactions and Ad Hoc Queries in System R. ACM Transactions on Database
Systems (TODS), 1981.

[16] Tushar Deepak Chandra and Sam Toueg. Unreliable Failure Detectors for Reliable Dis-
tributed Systems. Journal of the ACM, 1996.

[17] Chung-Min Chen and Nick Roussopoulos. The Implementation and Performance Evalua-
tion of the ADMS Query Optimizer: Integrating Query Result Caching and Matching. In
Extending Database Technology, 1994.

[18] Rada Chirkova, Alon Y. Halevy, and Dan Suciu. A Formal Perspective on the View Selec-
tion Problem. Very Large Database Journal, 2002.

[19] Choera. http://www.choera.com, 2003.

[20] Richard L. Cole and Goetz Graefe. Optimization of Dynamic Query Evaluation Plans. In
ACM SIGMOD International Conference on Management of Data, 1994.

[21] George Copeland, William Alexander, Ellen Boughter, and Tom Keller. Data Placement in
Bubba. In ACM SIGMOD International Conference on Management of Data, 1988.

[22] Thomas H. Cormen, Charles E. Leierson, and Ronald L. Rivest. Introduction to Algorithms.
Mc Graw Hill, 1990.

[23] IBM Corporation. International Business Machines Corporation. http://www.ibm.com,
2003.

[24] Micrsoft Corporation. SQL Server 2000 - Books Online.

[25] Oracle Corporation. Query Optimization in Oracle9i.
http://otn.oracle.com/products/bi/pdf/o9i_optimization_twp.pdf, 2004.

[26] J. Cowie, H. Liu, J. Liu, D. Nicol, and Andy Ogielski. Towards Realistic Million-Node
Internet Simulation. In Proc. of the 1999 International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA’99), 1999.

[27] Shaul Dar, Michael J. Franklin, Björn Thór Jónsson, Divesh Srivastava, and Michael Tan.
Semantic Data Caching and Replacement. In Very Large Database Conference, 1996.

[28] Andre Eickler, Alfons Kemper, and Donald Kossmann. Finding Data in the Neighborhood.
In Very Large Database Journal, 1997.

[29] K. Eswaran, J. Gray, R. Lorie, and I. Traiger. The Notions of Consistency and Predicate
Locks in a Database System. Communications of the ACM, 1976.

[30] K. P. Eswaran. Placement of Records in a File and File Allocation in a Computer Network.
In Information Processing, 1974.

Bibliography 107

[31] D. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini. Economic Models for Allocating
Resources in Computer Systems, 1996.

[32] John Fitzgerald and Peter Gorm Larsen. Modelling Systems: Pratical Tools and Techniques
in Software Development. Cambridge University, 1998.

[33] Michael J. Franklin, Michael J. Carey, and Miron Livny. Local Disk Caching for Clien-
t-Server Database Systems. In Very Large Database Conference, 1993.

[34] Michael J. Franklin, Björn Thór Jónsson, and Donald Kossmann. Performance Tradeoffs
for Client-Server Query Processing. In ACM SIGMOD International Conference on Man-
agement of Data, 1996.

[35] Sumit Ganguly, Waqar Hasan, and Ravi Krishnamurthy. Query Optimization for Parallel
Execution. In ACM SIGMOD International Conference on Management of Data, 1992.

[36] The GENITOR Research Group in Genetic Algorithms and Evolutionary Computation.
http://www.cs.colostate.edu/˜whitley/Pubs.html, 2003.

[37] Phillip B. Gibbons, Yossi Matias, and Viswanath Poosala. Fast Incremental Maintenance
of Approximate Histograms. In Very Large Database Conference, 1997.

[38] Garth A. Gibson and Rodney Van Meter. Network Attached Storage Architecture. Commu-
nications of the ACM, 2000.

[39] Jonathan Goldstein and Per-Åke Larson. Optimizing Queries using Materialized Views: A
Practical, Scalable Solution. In ACM SIGMOD International Conference on Management
of Data, 2001.

[40] G. Graefe and K. Ward. Dynamic Query Evaluation Plans. In ACM SIGMOD International
Conference on Management of Data, 1989.

[41] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM Computing Sur-
veys, 1993.

[42] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The Dangers of Replication and a Solution.
In ACM SIGMOD International Conference on Management of Data, 1996.

[43] PostgreSQL Global Development Group. PostgreSQL. http://www.postgresql.org, 2003.

[44] PostgreSQL Global Development Group. PostgreSQL Developer.
http://developer.postgresql.org/docs/pgsql/src/backend, 2003.

[45] Rachid Guerraoui. Revisiting the Relationship Between Non-Blocking Atomic Commit-
ment and Consensus. In Proceedings of the 9th International Workshop on Distributed
Algorithms (WDAG95), 1995.

[46] K. Guo. Scalable Message Stability Detection Protocols. PhD thesis, Cornell University,
Computer Science Department, 1998.

[47] Sha Guo, Wei Sun, and Mark A. Weiss. Solving Satisfiability and Implication Problems in
Database Systems. ACM Transactions on Database Systems (TODS), 1996.

[48] Ashish Gupta and Inderpal Singh Mumick, editors. Materialized Views Techniques, Imple-
mentations, and Applications. MIT Press, 1999.

108 Bibliography

[49] Vassos Hadzilacos and Sam Toueg. A Modular Approach to Fault-Tolerant Broadcasts and
Related Problems. Technical report, Cornell University, 1994.

[50] Alon Y. Halevy. Answering Queries using Views: A Survey. Very Large Database Journal,
2001.

[51] Alan R. Hevner, O. Q. Wu, and S. B. Yao. Query Optimization on Local Area Networks.
ACM Transactions on Information Systems, 1985.

[52] Toshihide Ibaraki and Tiko Kameda. On the Optimal Nesting Order for Computing N-Re-
lational Joins. ACM Transactions on Database Systems (TODS), 1984.

[53] Yannis E. Ioannidis and Eugene Wong. Query Optimization by Simulated Annealing. In
ACM SIGMOD International Conference on Management of Data, 1987.

[54] IOzone Filesystem Benchmark. http://www.iozone.org, 2003.

[55] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Levy, and Daniel S. Weld. An
Adaptive Query Execution System for Data integration. In ACM SIGMOD International
Conference on Management of Data, 1999.

[56] M. Jarke and J. Koch. Query Optimization in Database Systems. ACM Computing Surveys,
1984.

[57] A. Correia Jr, A. Sousa, J. Pereira, R. Oliveira, and F. Moura. Evaluating Certification
Protocols in the Partial Database State Machine. Technical report, Departamento de Infor-
mática, Universidade do Minho, 2003.

[58] M. Kaashoek and A. Tanenbaum. Group Communication in the Amoeba Distributed Oper-
ating System. In IEEE International Conference on Distributed Computing Systems, 1991.

[59] Arthur M. Keller and Julie Basu. A Predicate-based Caching Scheme for Client-Server
Database Architectures. Very Large Database Journal, 1996.

[60] B. Kemme and G. Alonso. Don’t Be Lazy, Be Consistent: Postgres-R, A New Way to
Implement Database Replication. In Very Large Database Conference, 2000.

[61] B. Kemme, A. Bartoli, and O. Babaoglu. Online Reconfiguration in Replicated Databases
Based on Group Communication. In IEEE International Conference on Dependable Sys-
tems and Networks, 2001.

[62] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing Transactions over Optimistic
Atomic Broadcast Protocols. In IEEE International Conference on Distributed Computing
Systems, 1999.

[63] Bettina Kemme and Gustavo Alonso. A Suite of Database Replication Protocols Based
on Group Communication Primitives. In IEEE International Conference on Distributed
Computing Systems, 1998.

[64] Larry Kerschberg, Peter D. Ting, and S. Bing Yao. Query Optimization in Star Computer
Networks. ACM Transactions on Database Systems (TODS), 1982.

[65] Anthony Klug. Equivalence of Relational Algebra and Relational Calculus Query Lan-
guages Having Aggregate Functions. Journal of the ACM, 1982.

Bibliography 109

[66] Donald Kossmann. The State of the Art in Distributed Query Processing. ACM Computing
Surveys, 2000.

[67] Natalija Krivokapić;, Alfons Kemper, and Ehud Gudes. Deadlock Detection in Distributed
Database Dystems: A New Algorithm and A Comparative Performance Analysis. Very
Large Database Journal, 1999.

[68] Rosana S. G. Lanzelotte, Patrick Valduriez, and Mohamed Zaït. On the Effectiveness of
Optimization Search Strategies for Parallel Execution Spaces. In Very Large Database
Conference, 1993.

[69] High-resolution timers for the Linux kernel. http://www.cs.wisc.edu/˜paradyn/libhrtime,
2003.

[70] Hongjun Lu and Michael J. Carey. Some Experimental Results on Distributed Join Algo-
rithms in a Local Network. In Very Large Database Conference, 1985.

[71] Patrick Valduriez M. Tamer Özsu. Principles of Distributed Database Systems. Prentice
Hall International, 1999.

[72] Lothar F. Mackert and Guy M. Lohman. R* Optimizer Validation and Performance Evalu-
ation for Distributed Queries. In Very Large Database Conference, 1986.

[73] Rui Oliveira. Solving Consensus: From Fair-Lossy Channels to Crash-Recovery of Pro-
cess. PhD thesis, Département d‘Informatique, l’École Polytechnique Fédérale de Lau-
sanne, 2000.

[74] F. Pedone. The Database State Machine and Group Communication Issues. PhD thesis,
Département d‘Informatique, l’École Polytechnique Fédérale de Lausanne, 1999.

[75] J. Pereira and R. Oliveira. A Mutable Protocol for Consenus in Large Groups. Technical
report, Departamento de Informática, Universidade do Minho, 2003.

[76] S. Pingali, D. Towsley, and J. Kurose. A Comparison of Sender-Initiated and Receiver-Ini-
tiated Reliable Multicast Protocols. In ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, May 1994.

[77] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. Extensible/Rule based Query
Rewrite Optimization in Starburst. In ACM SIGMOD International Conference on Man-
agement of Data, 1992.

[78] Microsoft Press. Microsoft SQL Server 7.0 Resource Guide. Microsoft Corporation, 1999.

[79] Microsoft Press. Microsoft SQL Server 2000 Resource Kit. Microsoft Corporation, 2001.

[80] Margaret H. Eich Priti Mishra. Join Processing in Relational Databases. ACM Computing
Surveys, 1992.

[81] Nicholas Roussopoulos. An Incremental Access Method for ViewCache: Concept, Algo-
rithms, and Cost Analysis. ACM Transactions on Database Systems (TODS), 1991.

[82] A. Schiper. Early Consensus in an Asynchronous System with a Weak Failure Detector.
Distributed Computing, 1997.

[83] A. Schiper and A. Sandoz. Uniform Reliable Multicast in a Virtually Synchronous Envi-
ronment. In IEEE International Conference on Distributed Computing Systems, 1993.

110 Bibliography

[84] Heidi Scott, Patrick Martin, and Berni Schiefer. A Study of the Impact of Direct Access
I/O on Relational Database Management Systems. In Proceedings of the 2002 conference
of the Centre for Advanced Studies on Collaborative research, 2002.

[85] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access Path Selection in a Relational Database Management System. In ACM SIGMOD
International Conference on Management of Data, 1979.

[86] Amit P. Sheth and James A. Larson. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys, 1990.

[87] A. Sousa, F. Pedone, R. Oliveira, and F. Moura. Partial Replication in the Database State
Machine. In IEEE International Symposium on Network Computing and Applications,
2001.

[88] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic Total Order in Wide Area
Networks. In IEEE International Symposium on Reliable Distributed Systems, 2002.

[89] A. Sousa, J. Pereira, L. Soares, A. Correia Jr, L. Rocha, R. Oliveira, and F. Moura. Evalu-
ating the Performance of the Database State Machine (DBSM). Technical report, Departa-
mento de Informática, Universidade do Minho, 2003.

[90] Ioana Stanoi, Divyakant Agrawal, and Amr El Abbadi. Using Broadcast Primitives in
Replicated Databases. In IEEE International Conference on Distributed Computing Sys-
tems, 1998.

[91] Konrad Stocker, Donald Kossmann, Reinhard Braumandl, and Alfons Kemper. Integrating
Semi-Join-Reducers into State of the Art Query Processors. In IEEE International Confer-
ence on Data Engineering, 2001.

[92] M. Stonebraker, E.N. Hanson, and S. Potamianos. The POSTGRES Rule Manager. IEEE
Transactions on Software Engineering, 1988.

[93] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah, Jeff Sidell, Carl
Staelin, and Andrew Yu. Mariposa: A Wide-Area Distributed Database System. Very Large
Database Journal, 1996.

[94] Michael Stonebraker, Gerald Held, Eugene Wong, and Peter Kreps. The Design and Imple-
mentation of INGRES. ACM Transactions on Database Systems (TODS), 1976.

[95] StrongRep. http://gsd.di.uminho.pt/StrongRep/index.htm, 2004.

[96] Inc Sun Microsystems. The Source for Java Technology. http://www.java.sun.com, 2003.

[97] A. Swami. Optimization of Large Join Queries: Combining Heuristics and Combinatorial
Techniques. In ACM SIGMOD International Conference on Management of Data, 1989.

[98] Anne Strachan Thomas Connolly, Corolyn Begg. Database Systems: A Pratical Approach
to Design, Implementation and Management. Addison-Wesley, 1998.

[99] TPC-W Code - University of Wisconsin. http://tpcw.deadpixel.de/, 2003.

[100] Transaction Processing Performance Council (TPC). TPC benchmark C Standard Specifi-
cation Revision 5.0, 2001.

Bibliography 111

[101] Transaction Processing Performance Council (TPC). TPC benchmark W (Web Commerce)
Specification Version 1.7, 2001.

[102] Jeffrey Ullman. Principles of Database and Knowledge-Base Systems. Computer Science
Press, 1988.

[103] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. Cost-Based Query Scrambling for
Initial Delays. In ACM SIGMOD International Conference on Management of Data, 1998.

[104] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Database Replication
Techniques: A Three Parameter Classification. In IEEE International Symposium on Reli-
able Distributed Systems, 2000.

