1,108 research outputs found

    Modularizing and Specifying Protocols among Threads

    Full text link
    We identify three problems with current techniques for implementing protocols among threads, which complicate and impair the scalability of multicore software development: implementing synchronization, implementing coordination, and modularizing protocols. To mend these deficiencies, we argue for the use of domain-specific languages (DSL) based on existing models of concurrency. To demonstrate the feasibility of this proposal, we explain how to use the model of concurrency Reo as a high-level protocol DSL, which offers appropriate abstractions and a natural separation of protocols and computations. We describe a Reo-to-Java compiler and illustrate its use through examples.Comment: In Proceedings PLACES 2012, arXiv:1302.579

    ContextErlang: A language for distributed context-aware self-adaptive applications

    Get PDF
    Self-adaptive software modifies its behavior at run time to satisfy changing requirements in a dynamic environment. Context-oriented programming (COP) has been recently proposed as a specialized programming paradigm for context-aware and adaptive systems. COP mostly focuses on run time adaptation of the application’s behavior by supporting modular descriptions of behavioral variations. However, self-adaptive applications must satisfy additional requirements, such as distribution and concurrency, support for unforeseen changes and enforcement of correct behavior in the presence of dynamic change. Addressing these issues at the language level requires a holistic design that covers all aspects and takes into account the possibly cumbersome interaction of those features, for example concurrency and dynamic change. We present ContextErlang, a COP programming language in which adaptive abstractions are seamlessly integrated with distribution and concurrency. We define ContextErlang’s formal semantics, validated through an executable prototype, and we show how it supports formal proofs that the language design ensures satisfaction of certain safety requirements. We provide empirical evidence that ContextErlang is an effective solution through case studies and a performance assessment. We also show how the same design principles that lead to the development of ContextErlang can be followed to systematically design contextual extensions of other languages. A concrete example is presented concerning ContextScala

    Implementing PRISMA/DB in an OOPL

    Get PDF
    PRISMA/DB is implemented in a parallel object-oriented language to gain insight in the usage of parallelism. This environment allows us to experiment with parallelism by simply changing the allocation of objects to the processors of the PRISMA machine. These objects are obtained by a strictly modular design of PRISMA/DB. Communication between the objects is required to cooperatively handle the various tasks, but it limits the potential for parallelism. From this approach, we hope to gain a better understanding of parallelism, which can be used to enhance the performance of PRISMA/DB.\ud The work reported in this document was conducted as part of the PRISMA project, a joint effort with Philips Research Eindhoven, partially supported by the Dutch "Stimuleringsprojectteam Informaticaonderzoek (SPIN)

    The role of concurrency in an evolutionary view of programming abstractions

    Full text link
    In this paper we examine how concurrency has been embodied in mainstream programming languages. In particular, we rely on the evolutionary talking borrowed from biology to discuss major historical landmarks and crucial concepts that shaped the development of programming languages. We examine the general development process, occasionally deepening into some language, trying to uncover evolutionary lineages related to specific programming traits. We mainly focus on concurrency, discussing the different abstraction levels involved in present-day concurrent programming and emphasizing the fact that they correspond to different levels of explanation. We then comment on the role of theoretical research on the quest for suitable programming abstractions, recalling the importance of changing the working framework and the way of looking every so often. This paper is not meant to be a survey of modern mainstream programming languages: it would be very incomplete in that sense. It aims instead at pointing out a number of remarks and connect them under an evolutionary perspective, in order to grasp a unifying, but not simplistic, view of the programming languages development process

    An Analysis of Composability and Composition Anomalies

    Get PDF
    The separation of concerns principle aims at decomposing a given design problem into concerns that are mapped to multiple independent software modules. The application of this principle eases the composition of the concerns and as such supports composability. Unfortunately, a clean separation (and composition of concerns) at the design level does not always imply the composability of the concerns at the implementation level. The composability might be reduced due to limitations of the implementation abstractions and composition mechanisms. The paper introduces the notion of composition anomaly to describe a general set of unexpected composition problems that arise when mapping design concerns to implementation concerns. To distinguish composition anomalies from other composition problems the requirements for composability at the design level is provided. The ideas are illustrated for a distributed newsgroup system

    Implicit Invocation Meets Safe, Implicit Concurrency

    Get PDF
    Writing correct and efficient concurrent programs still remains a challenge. Explicit concurrency is difficult, error prone, and creates code which is hard to maintain and debug. This type of concurrency also treats modular program design and concurrency as separate goals, where modularity often suffers. To solve these problems, we are designing a new language that we call Panini. In this work, we focus on Panini\u27s asynchronous, typed events which reconcile the modularity goal promoted by the implicit invocation design style with the concurrency goal of exposing potential concurrency between the execution of subjects and observers. Since modularity is improved and concurrency is implicit in Panini, programs are easier to reason about and maintain. The language incorporates a static analysis to determine potential conflicts between handlers and a dynamic analysis which uses the conflict information to determine a safe order for handler invocation. This mechanism avoids races and deadlocks entirely, yielding programs with a guaranteed deterministic semantics. To evaluate our language design and implementation we show several examples of its usage as well as an empirical study of program performance. We found that not only is developing and understanding programs significantly easier compared to standard concurrent object-oriented programs, but also performance of Panini programs is comparable to their equivalent hand-tuned versions written using Java\u27s fork-join framework

    Applying aspects to a real-time embedded operating system

    Get PDF
    The application of aspect-oriented programming (AOP) to the embedded operating system domain is still a very controversial topic, as this area demands high performance and small memory footprint. However, recent studies quantifying aspects overheads in AspectC++ show that the resource cost is very low. Therefore, operating system development may benefit with the modularization of crosscutting concerns and system specialization offered by AOP. This paper addresses our experience in applying aspects to synchronization (mutual exclusion) and logging in a real-time embedded operating system (BOSS). Furthermore, we present our ideas for future investigation in aspect-oriented implementations for fault tolerance, middleware customization and platform variability.(undefined

    Context-Based Synchronization of Concurrent Process Using Aspect-Oriented Programming

    Get PDF
    Resource access synchronization within concurrent processes or threads is implemented using various constructs such as semaphores, monitor locks, Mutex, etc. The algorithm supporting most of these structures works by keeping at bay all other concurrent processes or threads till the current process accessing the resource has successfully relinquished the resource. This works very well as race conditions are controlled and shared data state remains consistent. The problem with this approach is performance in terms of system response. When each thread has to wait for the other to finish accessing the resource before it can proceed, a long line waiting threads can easily build-up, which obviously translates to relatively slow system response. In this paper, we propose contextual synchronization model to avoid where applicable, the unnecessary build-up of threads waiting for access to the resource. This model describes different contexts within which a resource access can be executed. Each model is ascribed different priorities of which different policies were applied. The most important feature of this model is that the context representing plain resource access will not cause any race condition if all other threads are accessing from the same context. The result of our experiment shows that context-based synchronization performs better than Java given the same number of threads. Keywords: Aspect-oriented programming, synchronization, resource, and concurrent process

    Improving Reuse of Distributed Transaction Software with Transaction-Aware Aspects

    Get PDF
    Implementing crosscutting concerns for transactions is difficult, even using Aspect-Oriented Programming Languages (AOPLs) such as AspectJ. Many of these challenges arise because the context of a transaction-related crosscutting concern consists of loosely-coupled abstractions like dynamically-generated identifiers, timestamps, and tentative value sets of distributed resources. Current AOPLs do not provide joinpoints and pointcuts for weaving advice into high-level abstractions or contexts, like transaction contexts. Other challenges stem from the essential complexity in the nature of the data, operations on the data, or the volume of data, and accidental complexity comes from the way that the problem is being solved, even using common transaction frameworks. This dissertation describes an extension to AspectJ, called TransJ, with which developers can implement transaction-related crosscutting concerns in cohesive and loosely-coupled aspects. It also presents a preliminary experiment that provides evidence of improvement in reusability without sacrificing the performance of applications requiring essential transactions. This empirical study is conducted using the extended-quality model for transactional application to define measurements on the transaction software systems. This quality model defines three goals: the first relates to code quality (in terms of its reusability); the second to software performance; and the third concerns software development efficiency. Results from this study show that TransJ can improve the reusability while maintaining performance of TransJ applications requiring transaction for all eight areas addressed by the hypotheses: better encapsulation and separation of concern; loose Coupling, higher-cohesion and less tangling; improving obliviousness; preserving the software efficiency; improving extensibility; and hasten the development process
    • …
    corecore