11,721 research outputs found

    The Global Risks Report 2016, 11th Edition

    Get PDF
    Now in its 11th edition, The Global Risks Report 2016 draws attention to ways that global risks could evolve and interact in the next decade. The year 2016 marks a forceful departure from past findings, as the risks about which the Report has been warning over the past decade are starting to manifest themselves in new, sometimes unexpected ways and harm people, institutions and economies. Warming climate is likely to raise this year's temperature to 1° Celsius above the pre-industrial era, 60 million people, equivalent to the world's 24th largest country and largest number in recent history, are forcibly displaced, and crimes in cyberspace cost the global economy an estimated US$445 billion, higher than many economies' national incomes. In this context, the Reportcalls for action to build resilience – the "resilience imperative" – and identifies practical examples of how it could be done.The Report also steps back and explores how emerging global risks and major trends, such as climate change, the rise of cyber dependence and income and wealth disparity are impacting already-strained societies by highlighting three clusters of risks as Risks in Focus. As resilience building is helped by the ability to analyse global risks from the perspective of specific stakeholders, the Report also analyses the significance of global risks to the business community at a regional and country-level

    Methodology for Designing Decision Support Systems for Visualising and Mitigating Supply Chain Cyber Risk from IoT Technologies

    Full text link
    This paper proposes a methodology for designing decision support systems for visualising and mitigating the Internet of Things cyber risks. Digital technologies present new cyber risk in the supply chain which are often not visible to companies participating in the supply chains. This study investigates how the Internet of Things cyber risks can be visualised and mitigated in the process of designing business and supply chain strategies. The emerging DSS methodology present new findings on how digital technologies affect business and supply chain systems. Through epistemological analysis, the article derives with a decision support system for visualising supply chain cyber risk from Internet of Things digital technologies. Such methods do not exist at present and this represents the first attempt to devise a decision support system that would enable practitioners to develop a step by step process for visualising, assessing and mitigating the emerging cyber risk from IoT technologies on shared infrastructure in legacy supply chain systems

    Evaluation of Cognitive Architectures for Cyber-Physical Production Systems

    Full text link
    Cyber-physical production systems (CPPS) integrate physical and computational resources due to increasingly available sensors and processing power. This enables the usage of data, to create additional benefit, such as condition monitoring or optimization. These capabilities can lead to cognition, such that the system is able to adapt independently to changing circumstances by learning from additional sensors information. Developing a reference architecture for the design of CPPS and standardization of machines and software interfaces is crucial to enable compatibility of data usage between different machine models and vendors. This paper analysis existing reference architecture regarding their cognitive abilities, based on requirements that are derived from three different use cases. The results from the evaluation of the reference architectures, which include two instances that stem from the field of cognitive science, reveal a gap in the applicability of the architectures regarding the generalizability and the level of abstraction. While reference architectures from the field of automation are suitable to address use case specific requirements, and do not address the general requirements, especially w.r.t. adaptability, the examples from the field of cognitive science are well usable to reach a high level of adaption and cognition. It is desirable to merge advantages of both classes of architectures to address challenges in the field of CPPS in Industrie 4.0

    Reinforcing Digital Trust for Cloud Manufacturing Through Data Provenance Using Ethereum Smart Contracts

    Get PDF
    Cloud Manufacturing(CMfg) is an advanced manufacturing model that caters to fast-paced agile requirements (Putnik, 2012). For manufacturing complex products that require extensive resources, manufacturers explore advanced manufacturing techniques like CMfg as it becomes infeasible to achieve high standards through complete ownership of manufacturing artifacts (Kuan et al., 2011). CMfg, with other names such as Manufacturing as a Service (MaaS) and Cyber Manufacturing (NSF, 2020), addresses the shortcoming of traditional manufacturing by building a virtual cyber enterprise of geographically distributed entities that manufacture custom products through collaboration. With manufacturing venturing into cyberspace, Digital Trust issues concerning product quality, data, and intellectual property security, become significant concerns (R. Li et al., 2019). This study establishes a trust mechanism through data provenance for ensuring digital trust between various stakeholders involved in CMfg. A trust model with smart contracts built on the Ethereum blockchain implements data provenance in CMfg. The study covers three data provenance models using Ethereum smart contracts for establishing digital trust in CMfg. These are Product Provenance, Order Provenance, and Operational Provenance. The models of provenance together address the most important questions regarding CMfg: What goes into the product, who manufactures the product, who transports the products, under what conditions the products are manufactured, and whether regulatory constraints/requisites are met

    Phenolic profiling, biological activities and in silico studies of Acacia tortilis (Forssk.) Hayne ssp. raddiana extracts

    Get PDF
    The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES to CIMO (UIDB/00690/2020). L. Barros and R. C. Calhelha thank the national funding by the FCT, P.I., through the institutional scientific employment program-contract for their contracts. M. Carocho also thanks the project ValorNatural for his research contract. The authors are also grateful to the FEDER-Interreg España- Portugal programme for financial support through the project 0377_Iberphenol_6_E.info:eu-repo/semantics/publishedVersio

    Engineering of next generation cyber-physical automation system architectures

    Get PDF
    Cyber-Physical-Systems (CPS) enable flexible and reconfigurable realization of automation system architectures, utilizing distributed control architectures with non-hierarchical modules linked together through different communication systems. Several control system architectures have been developed and validated in the past years by research groups. However, there is still a lack of implementation in industry. The intention of this work is to provide a summary of current alternative control system architectures that could be applied in industrial automation domain as well as a review of their commonalities. The aim is to point out the differences between the traditional centralized and hierarchical architectures to discussed ones, which rely on decentralized decision-making and control. Challenges and impacts that industries and engineers face in the process of adopting decentralized control architectures are discussed, analysing the obstacles for industrial acceptance and the new necessary interdisciplinary engineering skills. Finally, an outlook of possible mitigation and migration actions required to implement the decentralized control architectures is addressed.The authors would like to thank the European Commission for the support, and the partners of the EU Horizon 2020 project PERFoRM (2016b) for the fruitful discussions. The PERFoRM project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 680435.info:eu-repo/semantics/publishedVersio

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks
    • …
    corecore