911,841 research outputs found

    Query prediction in very large database systems, 1990

    Get PDF
    A major area of concern with very large databases is that of query and access time. This area has played a major role in the design and development of current large database systems. Due to the volume of data stored in these systems, retrieval of data can turn out to be very time consuming. While fast response times are not vital to all database systems, those systems involved in real-time applications require immediate results. This study will focus upon the development of a system for anticipating queries in large scientific databases. The methodology developed in this study offers a system that will not only respond to a given query, but also to potential queries. Based upon a given user query and the database schema, a pattern of likely queries will be predicted. Thus the method developed in this study offers a powerful tool for database environments requiring real-time applications since responses to anticipated queries will be readily available

    Systematic support for accountability in the cloud

    Get PDF
    PhD ThesisCloud computing offers computational resources such as processing, networking, and storage to customers. Infrastructure as a Service (IaaS) consists of a cloud-based infrastructure to offer consumers raw computation resources such as storage and networking. These resources are billed using a pay-per-use cost model. However, IaaS is far from being a secure cloud infrastructure as the seven main security threats defined by the Cloud Security Alliance (CSA) indicate. Use of logging systems can provide evidence to support accountability for an IaaS cloud. An accountability helps when mitigating known threats. However, previous accountability with logging systems solutions are provided without systematic approaches. These solutions are usually either for the cloud customer side or for the cloud provider side, not for both of them. Moreover, the solutions also lack descriptions of logging systems in the context of a design pattern of the systems' components. This design pattern facilitates analysis of logging systems in terms of their quality. Additionally, there is a number of benefits of this pattern. They could be: to promote the reusability of design and development of logging systems; that designers can access this pattern more easily; to assist a designer adopts design approaches which make a logging system reusable and not to choose approaches which do not concern reusability concepts; and to enhance the documentation and maintenance of existing logging systems. Thus, the aim of this thesis is to provide support for accountability in the cloud with systematic approaches to assist in mitigating the risks associated with real world CSA threats, to benefit both customers and providers. We research the extent to which such logging systems help us to mitigate risks associated with the threats identified by the CSA. The thesis also presents a way of identifying the reference components of logging systems and how they may be arranged to satisfy logging requirements. 'Generic logging components' for logging systems are proposed. These components encompass all possible instantiations of logging solutions for IaaS cloud. The generic logging components can be used to map existing logging systems for the purposes of analysis of the systems' security. Based on the generic components, the thesis identifies design patterns in the context of logging in IaaS cloud. We believe that these identified patterns facilitate analysis of logging systems in terms of their quality. We also argue that: these identified patterns could increase reusability of the design and development of logging systems; designers should access these patterns more easily; the patterns could assist a designer adopts design approaches which make a logging system reusable and not to choose approaches which do not concern reusability concepts; and they can enhance the documentation and maintenance of existing logging systems. We identify a logging solution which is based on the generic logging components to mitigate the risks associated with CSA threat number one. An example of the threat is malicious activities, for example spamming, which are performed in consumers' virtual machines or VMs. We argue that the generic logging components we suggest could be used to perform a systematic analysis of logging systems in terms of security before deploying them in production systems. To assist in mitigating the risks associated with this threat to benefit both customers and providers, we investigate how CSA threat number one can affect the security of both consumers and providers. Then we propose logging solutions based on the generic logging components and the identified patterns. We systematically design and implement a prototype system of the proposed logging solutions in an IaaS to record history of customer's files. This prototype system can be also modified in order to record VMs' process behaviour log files. This system can record the log files while having a smaller trusted computing base, compared to previous work. Additionally, the system can be seen as possible solutions that could tackle the dificult problem of logging file and process activities in the IaaS. Thus, the proposed logging solutions can assist in mitigating the risks associated with the CSA threats to benefit both consumers and providers. This could promote systematic support for accountability in the cloud

    Issues Affecting Security Design Pattern Engineering

    Get PDF
    Security Design Patterns present the tried and tested design decisions made by security engineers within a well documented format. Patterns allow for complex security concepts, and mechanisms, to be expressed such that non domain experts can make use of them. Our research is concerned with the development of pattern languages for advanced crypto-systems. From our experience developing pattern languages we have encountered several recurring issues within security design pattern engineering. These issues, if not addressed, will affect the adoption of security design patterns. This paper describes these issues and discusses how they could be addressed

    A Systematic Aspect-Oriented Refactoring and Testing Strategy, and its Application to JHotDraw

    Full text link
    Aspect oriented programming aims at achieving better modularization for a system's crosscutting concerns in order to improve its key quality attributes, such as evolvability and reusability. Consequently, the adoption of aspect-oriented techniques in existing (legacy) software systems is of interest to remediate software aging. The refactoring of existing systems to employ aspect-orientation will be considerably eased by a systematic approach that will ensure a safe and consistent migration. In this paper, we propose a refactoring and testing strategy that supports such an approach and consider issues of behavior conservation and (incremental) integration of the aspect-oriented solution with the original system. The strategy is applied to the JHotDraw open source project and illustrated on a group of selected concerns. Finally, we abstract from the case study and present a number of generic refactorings which contribute to an incremental aspect-oriented refactoring process and associate particular types of crosscutting concerns to the model and features of the employed aspect language. The contributions of this paper are both in the area of supporting migration towards aspect-oriented solutions and supporting the development of aspect languages that are better suited for such migrations.Comment: 25 page

    International experiences of human resource management in higher education

    Get PDF

    Crosscutting, what is and what is not? A Formal definition based on a Crosscutting Pattern

    Get PDF
    Crosscutting is usually described in terms of scattering and tangling. However, the distinction between these concepts is vague, which could lead to ambiguous statements. Sometimes, precise definitions are required, e.g. for the formal identification of crosscutting concerns. We propose a conceptual framework for formalizing these concepts based on a crosscutting pattern that shows the mapping between elements at two levels, e.g. concerns and representations of concerns. The definitions of the concepts are formalized in terms of linear algebra, and visualized with matrices and matrix operations. In this way, crosscutting can be clearly distinguished from scattering and tangling. Using linear algebra, we demonstrate that our definition generalizes other definitions of crosscutting as described by Masuhara & Kiczales [21] and Tonella and Ceccato [28]. The framework can be applied across several refinement levels assuring traceability of crosscutting concerns. Usability of the framework is illustrated by means of applying it to several areas such as change impact analysis, identification of crosscutting at early phases of software development and in the area of model driven software development

    The EMC of satellite power systems and DoD C-E systems

    Get PDF
    The solar power satellite (SPS) technical parameters that are needed to accurately assess the electromagnetic compatibility (EMC) between SPS systems and DoD communications-electronics (C-E) systems are identified and assessed. The type of electromagnetic interactions that could degrade the performance of C-E systems are described and the major military installations in the southwestern portions of CONUS where specially sensitive C-E systems are being used for combat training and evaluation are identified. Classes of C-E systems that are generally in the vicinity of these military installations are considered. The Technical parameters that govern the degree of compatibility of the SPS with these C-E systems, and some technical requirements that are necessary to ensure short-term and long-term EMC are identified
    • …
    corecore