4,627 research outputs found

    funcX: A Federated Function Serving Fabric for Science

    Full text link
    Exploding data volumes and velocities, new computational methods and platforms, and ubiquitous connectivity demand new approaches to computation in the sciences. These new approaches must enable computation to be mobile, so that, for example, it can occur near data, be triggered by events (e.g., arrival of new data), be offloaded to specialized accelerators, or run remotely where resources are available. They also require new design approaches in which monolithic applications can be decomposed into smaller components, that may in turn be executed separately and on the most suitable resources. To address these needs we present funcX---a distributed function as a service (FaaS) platform that enables flexible, scalable, and high performance remote function execution. funcX's endpoint software can transform existing clouds, clusters, and supercomputers into function serving systems, while funcX's cloud-hosted service provides transparent, secure, and reliable function execution across a federated ecosystem of endpoints. We motivate the need for funcX with several scientific case studies, present our prototype design and implementation, show optimizations that deliver throughput in excess of 1 million functions per second, and demonstrate, via experiments on two supercomputers, that funcX can scale to more than more than 130000 concurrent workers.Comment: Accepted to ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC 2020). arXiv admin note: substantial text overlap with arXiv:1908.0490

    Do we all really know what a fog node is? Current trends towards an open definition

    Get PDF
    Fog computing has emerged as a promising technology that can bring cloud applications closer to the physical IoT devices at the network edge. While it is widely known what cloud computing is, how data centers can build the cloud infrastructure and how applications can make use of this infrastructure, there is no common picture on what fog computing and particularly a fog node, as its main building block, really is. One of the first attempts to define a fog node was made by Cisco, qualifying a fog computing system as a “mini-cloud” located at the edge of the network and implemented through a variety of edge devices, interconnected by a variety, mostly wireless, communication technologies. Thus, a fog node would be the infrastructure implementing the said mini-cloud. Other proposals have their own definition of what a fog node is, usually in relation to a specific edge device, a specific use case or an application. In this paper, we first survey the state of the art in technologies for fog computing nodes, paying special attention to the contributions that analyze the role edge devices play in the fog node definition. We summarize and compare the concepts, lessons learned from their implementation, and end up showing how a conceptual framework is emerging towards a unifying fog node definition. We focus on core functionalities of a fog node as well as in the accompanying opportunities and challenges towards their practical realization in the near future.Postprint (author's final draft

    Philosophy of Blockchain Technology - Ontologies

    Get PDF
    About the necessity and usefulness of developing a philosophy specific to the blockchain technology, emphasizing on the ontological aspects. After an Introduction that highlights the main philosophical directions for this emerging technology, in Blockchain Technology I explain the way the blockchain works, discussing ontological development directions of this technology in Designing and Modeling. The next section is dedicated to the main application of blockchain technology, Bitcoin, with the social implications of this cryptocurrency. There follows a section of Philosophy in which I identify the blockchain technology with the concept of heterotopia developed by Michel Foucault and I interpret it in the light of the notational technology developed by Nelson Goodman as a notational system. In the Ontology section, I present two developmental paths that I consider important: Narrative Ontology, based on the idea of order and structure of history transmitted through Paul Ricoeur's narrative history, and the Enterprise Ontology system based on concepts and models of an enterprise, specific to the semantic web, and which I consider to be the most well developed and which will probably become the formal ontological system, at least in terms of the economic and legal aspects of blockchain technology. In Conclusions I am talking about the future directions of developing the blockchain technology philosophy in general as an explanatory and robust theory from a phenomenologically consistent point of view, which allows testability and ontologies in particular, arguing for the need of a global adoption of an ontological system for develop cross-cutting solutions and to make this technology profitable. CONTENTS: Abstract Introducere Tehnologia blockchain - Proiectare - Modele Bitcoin Filosofia Ontologii - Ontologii narative - Ontologii de intreprindere Concluzii Note Bibliografie DOI: 10.13140/RG.2.2.24510.3360

    Conceptualizing a framework for cyber-physical systems of systems development and deployment

    Get PDF
    ABSTRACT Cyber-physical systems (CPS) refer to the next generation of embedded ICT systems that are interconnected, collaborative and that provide users and businesses with a wide range of smart applications and services. Software in CPS applications ranges from small systems to large systems, aka. Systems of Systems (SoS), such as smart grids and cities. CPSoS require managing massive amounts of data, being aware of their emerging behavior, and scaling out to progressively evolve and add new systems. Cloud computing supports processing and storing massive amounts of data, hosting and delivering services, and configuring selfprovisioned resources. Therefore, cloud computing is the natural candidate to solve CPSoS needs. However, the diversity of platforms and the low-level cloud programming models make difficult to find a common solution for the development and deployment of CPSoS. This paper presents the architectural foundations of a cloud-centric framework for automating the development and deployment of CPSoS service applications to converge towards a common open service platform for CPSoS applications. This framework relies on the well-known qualities of the microservices architecture style, the autonomic computing paradigm, and the model-driven software development approach. Its implementation and validation is on-going at two European and national projects

    Cloud Computing: A Qualitative Study and Conceptual Model

    Get PDF
    “Cloud computing” is the new buzz term in the IT industry. Many practitioners have already adopted the technology or are in the process of adopting it. Yet, there is no methodological research investigating the adoption process. This paper reviews articles and interviews published mostly in practitioner journals to develop a theoretical framework that help us to better understand the cloud computing phenomena. As such, the framework provides a stepping stone for future cloud computing studies
    • …
    corecore