9,953 research outputs found

    Semantically Resolving Type Mismatches in Scientific Workflows

    No full text
    Scientists are increasingly utilizing Grids to manage large data sets and execute scientific experiments on distributed resources. Scientific workflows are used as means for modeling and enacting scientific experiments. Windows Workflow Foundation (WF) is a major component of Microsoft’s .NET technology which offers lightweight support for long-running workflows. It provides a comfortable graphical and programmatic environment for the development of extended BPEL-style workflows. WF’s visual features ease the syntactic composition of Web services into scientific workflows but do nothing to assure that information passed between services has consistent semantic types or representations or that deviant flows, errors and compensations are handled meaningfully. In this paper we introduce SAWSDL-compliant annotations for WF and use them with a semantic reasoner to guarantee semantic type correctness in scientific workflows. Examples from bioinformatics are presented

    Approaches to Semantic Web Services: An Overview and Comparison

    Get PDF
    Abstract. The next Web generation promises to deliver Semantic Web Services (SWS); services that are self-described and amenable to automated discovery, composition and invocation. A prerequisite to this, however, is the emergence and evolution of the Semantic Web, which provides the infrastructure for the semantic interoperability of Web Services. Web Services will be augmented with rich formal descriptions of their capabilities, such that they can be utilized by applications or other services without human assistance or highly constrained agreements on interfaces or protocols. Thus, Semantic Web Services have the potential to change the way knowledge and business services are consumed and provided on the Web. In this paper, we survey the state of the art of current enabling technologies for Semantic Web Services. In addition, we characterize the infrastructure of Semantic Web Services along three orthogonal dimensions: activities, architecture and service ontology. Further, we examine and contrast three current approaches to SWS according to the proposed dimensions

    TumorML: Concept and requirements of an in silico cancer modelling markup language

    No full text
    This paper describes the initial groundwork carried out as part of the European Commission funded Transatlantic Tumor Model Repositories project, to develop a new markup language for computational cancer modelling, TumorML. In this paper we describe the motivations for such a language, arguing that current state-of-the-art biomodelling languages are not suited to the cancer modelling domain. We go on to describe the work that needs to be done to develop TumorML, the conceptual design, and a description of what existing markup languages will be used to compose the language specification

    E-BioFlow: Different Perspectives on Scientific Workflows

    Get PDF
    We introduce a new type of workflow design system called\ud e-BioFlow and illustrate it by means of a simple sequence alignment workflow. E-BioFlow, intended to model advanced scientific workflows, enables the user to model a workflow from three different but strongly coupled perspectives: the control flow perspective, the data flow perspective, and the resource perspective. All three perspectives are of\ud equal importance, but workflow designers from different domains prefer different perspectives as entry points for their design, and a single workflow designer may prefer different perspectives in different stages of workflow design. Each perspective provides its own type of information, visualisation and support for validation. Combining these three perspectives in a single application provides a new and flexible way of modelling workflows
    corecore