15 research outputs found

    International Workshop on Description Logics : Bonn, May 28/29, 1994

    Get PDF
    This collection of papers forms the permanent record of the 1994 Description Logic Workshop, that was held at the Gustav Stresemann Institut in Bonn, Germany on 28 and 29 May 1994, immediately after the Fourth International Conference on Principles of Knowledge Representation and Reasoning. The workshop was set up to be as informal as possible, so this collection cannot hope to capture the discussions associated with the workshop. However, we hope that it will serve to remind participants of their discussion at the workshop, and provide non-participants with indications of the topics that were discussed at the workshop. The workshop consisted of seven regular sessions and one panel session. Each regular session had about four short presentations on a single theme, but also had considerable time reserved for discussion. The themes of the sessions were Foundations of Description Logics, Architecture of Description Logics and Description Logic Systems, Language Extensions, Expanding Description Logics, General Applications of Description Logics, Natural Language Applications of Description Logics, Connections between Description Logics and Databases, and the Future of Description Logics and Description Logic Systems. The session on Foundations of Description Logics concentrated on computational properties of description logics, correspondences between description logics and other formalisms, and on semantics of description logics, Similarly, there is discussion on how to develop tractable desription logics, for some notion of tractable, and whether it is useful to worry about achieving tractability at all. Several of the participants argued in favour of a very expressive description logic. This obviously precludes tractability or even decidability of complete reasoning. Klaus Schild proposed that for some purposes one could employ "model checking" (i .e., a closed world assumption) instead of "theorem proving," and has shown that this is still tractable for very large languages. Maurizio Lenzerini\u27s opinion was that it is important to have decidable languages. Tractability cannot be achieved in several application areas because there one needs very expressive constructs: e.g., axioms, complex role constructors, and cycles with fixed-point semantics. For Bob MacGregor, not even decidability is an issue since he claims that Loom\u27s incomplete reasoner is sufficient for his applications. The discussion addressed the question of whether there is still need for foundations, and whether the work on foundation done until now really solved the problems that the designers of early DL systems had. Both questions were mostly answered in the affirmative, with the caveat that new research on foundations should make sure that it is concerned with "real" problems, and not just generates new problems. In the session on Architecture of Description Logics and Description Logic Systems the participants considered different ways of putting together description logics and description logic systems. One way of doing this is to have a different kind of inference strategy for description logics, such as one based on intuitionistic logics or one based directly on rules of inference-thus allowing variant systems. Another way of modifying description logic systems is to divide them up in different ways, such as making a terminology consist of a schema portion and a view portion. Some discussion in this session concerned whether architectures should be influenced by application areas, or even by particular applications. There was considerable discussion at the workshop on how Description Logics should be extended or expanded to make them more useful. There are several methods to do this. The first is to extend the language of descriptions, e.g ., to represent n-ary relations, temporal information, or whole-part relationships, all of which were discussed at the workshop. The second is to add in another kind of reasoning, such as default reasoning, while still keeping the general framework of description logic reasoning. The third is to incorporate descriptions or description-like constructs in a larger reasoner, such as a first order reasoner. This was the approach taken in OMEGA and is the approach being taken in the Loom project. There have been many extensions of the first two kinds proposed for description logics, including several presented at the workshop. One quest ion discussed at the workshop was whether these extensions fit in well with the philosophy of description logic. Another question was whether the presence of many proposals for extensions means that description logics are easy to expand, or that description logics are inadequate representation formalisms? The general consensus was that description logics adequately capture a certain kind of core reasoning and that they lend themselves to incorporation with other kinds of reasoning. Care must be taken, however, to keep the extended versions true to the goals of description logics. The sessions on Applications of Description Logics had presentations on applications of description logics in various areas, including configuration, tutoring, natural language processing, and domain modeling. Most of these applications are research applications, funded by government research programs. There was discussion of what is needed to have more fielded applications of description logics. The session on Connections between Description Logics and Databases considered three kinds of connections between Description Logics and Databases: 1. using Description Logics for expressing database schemas, including local schemas, integrated schemas, and views, integrity constraints, and queries; 2. using Description Logic reasoning for various database-related reasoning, including schema integration and validation, and query optimization, and query validation and organization; and 3. making Description Logic reasoners more like Database Mangagement Systems via optimization. All three of these connections are being actively investigated by the description logic community. The panel session on the Future of Description Logics and Description Logic Systems discussed where the future of description logics will lie. There seems to be a consensus that description logics must forge tighter connections with other formalisms, such as databases or object-oriented systems. In this way, perhaps, description logics will find more real applications

    International Workshop on Description Logics : Bonn, May 28/29, 1994

    Get PDF
    This collection of papers forms the permanent record of the 1994 Description Logic Workshop, that was held at the Gustav Stresemann Institut in Bonn, Germany on 28 and 29 May 1994, immediately after the Fourth International Conference on Principles of Knowledge Representation and Reasoning. The workshop was set up to be as informal as possible, so this collection cannot hope to capture the discussions associated with the workshop. However, we hope that it will serve to remind participants of their discussion at the workshop, and provide non-participants with indications of the topics that were discussed at the workshop. The workshop consisted of seven regular sessions and one panel session. Each regular session had about four short presentations on a single theme, but also had considerable time reserved for discussion. The themes of the sessions were Foundations of Description Logics, Architecture of Description Logics and Description Logic Systems, Language Extensions, Expanding Description Logics, General Applications of Description Logics, Natural Language Applications of Description Logics, Connections between Description Logics and Databases, and the Future of Description Logics and Description Logic Systems. The session on Foundations of Description Logics concentrated on computational properties of description logics, correspondences between description logics and other formalisms, and on semantics of description logics, Similarly, there is discussion on how to develop tractable desription logics, for some notion of tractable, and whether it is useful to worry about achieving tractability at all. Several of the participants argued in favour of a very expressive description logic. This obviously precludes tractability or even decidability of complete reasoning. Klaus Schild proposed that for some purposes one could employ "model checking" (i .e., a closed world assumption) instead of "theorem proving," and has shown that this is still tractable for very large languages. Maurizio Lenzerini's opinion was that it is important to have decidable languages. Tractability cannot be achieved in several application areas because there one needs very expressive constructs: e.g., axioms, complex role constructors, and cycles with fixed-point semantics. For Bob MacGregor, not even decidability is an issue since he claims that Loom's incomplete reasoner is sufficient for his applications. The discussion addressed the question of whether there is still need for foundations, and whether the work on foundation done until now really solved the problems that the designers of early DL systems had. Both questions were mostly answered in the affirmative, with the caveat that new research on foundations should make sure that it is concerned with "real" problems, and not just generates new problems. In the session on Architecture of Description Logics and Description Logic Systems the participants considered different ways of putting together description logics and description logic systems. One way of doing this is to have a different kind of inference strategy for description logics, such as one based on intuitionistic logics or one based directly on rules of inference-thus allowing variant systems. Another way of modifying description logic systems is to divide them up in different ways, such as making a terminology consist of a schema portion and a view portion. Some discussion in this session concerned whether architectures should be influenced by application areas, or even by particular applications. There was considerable discussion at the workshop on how Description Logics should be extended or expanded to make them more useful. There are several methods to do this. The first is to extend the language of descriptions, e.g ., to represent n-ary relations, temporal information, or whole-part relationships, all of which were discussed at the workshop. The second is to add in another kind of reasoning, such as default reasoning, while still keeping the general framework of description logic reasoning. The third is to incorporate descriptions or description-like constructs in a larger reasoner, such as a first order reasoner. This was the approach taken in OMEGA and is the approach being taken in the Loom project. There have been many extensions of the first two kinds proposed for description logics, including several presented at the workshop. One quest ion discussed at the workshop was whether these extensions fit in well with the philosophy of description logic. Another question was whether the presence of many proposals for extensions means that description logics are easy to expand, or that description logics are inadequate representation formalisms? The general consensus was that description logics adequately capture a certain kind of core reasoning and that they lend themselves to incorporation with other kinds of reasoning. Care must be taken, however, to keep the extended versions true to the goals of description logics. The sessions on Applications of Description Logics had presentations on applications of description logics in various areas, including configuration, tutoring, natural language processing, and domain modeling. Most of these applications are research applications, funded by government research programs. There was discussion of what is needed to have more fielded applications of description logics. The session on Connections between Description Logics and Databases considered three kinds of connections between Description Logics and Databases: 1. using Description Logics for expressing database schemas, including local schemas, integrated schemas, and views, integrity constraints, and queries; 2. using Description Logic reasoning for various database-related reasoning, including schema integration and validation, and query optimization, and query validation and organization; and 3. making Description Logic reasoners more like Database Mangagement Systems via optimization. All three of these connections are being actively investigated by the description logic community. The panel session on the Future of Description Logics and Description Logic Systems discussed where the future of description logics will lie. There seems to be a consensus that description logics must forge tighter connections with other formalisms, such as databases or object-oriented systems. In this way, perhaps, description logics will find more real applications

    International Workshop on Description Logics : Bonn, May 28/29, 1994

    Get PDF
    This collection of papers forms the permanent record of the 1994 Description Logic Workshop, that was held at the Gustav Stresemann Institut in Bonn, Germany on 28 and 29 May 1994, immediately after the Fourth International Conference on Principles of Knowledge Representation and Reasoning. The workshop was set up to be as informal as possible, so this collection cannot hope to capture the discussions associated with the workshop. However, we hope that it will serve to remind participants of their discussion at the workshop, and provide non-participants with indications of the topics that were discussed at the workshop. The workshop consisted of seven regular sessions and one panel session. Each regular session had about four short presentations on a single theme, but also had considerable time reserved for discussion. The themes of the sessions were Foundations of Description Logics, Architecture of Description Logics and Description Logic Systems, Language Extensions, Expanding Description Logics, General Applications of Description Logics, Natural Language Applications of Description Logics, Connections between Description Logics and Databases, and the Future of Description Logics and Description Logic Systems. The session on Foundations of Description Logics concentrated on computational properties of description logics, correspondences between description logics and other formalisms, and on semantics of description logics, Similarly, there is discussion on how to develop tractable desription logics, for some notion of tractable, and whether it is useful to worry about achieving tractability at all. Several of the participants argued in favour of a very expressive description logic. This obviously precludes tractability or even decidability of complete reasoning. Klaus Schild proposed that for some purposes one could employ "model checking" (i .e., a closed world assumption) instead of "theorem proving," and has shown that this is still tractable for very large languages. Maurizio Lenzerini's opinion was that it is important to have decidable languages. Tractability cannot be achieved in several application areas because there one needs very expressive constructs: e.g., axioms, complex role constructors, and cycles with fixed-point semantics. For Bob MacGregor, not even decidability is an issue since he claims that Loom's incomplete reasoner is sufficient for his applications. The discussion addressed the question of whether there is still need for foundations, and whether the work on foundation done until now really solved the problems that the designers of early DL systems had. Both questions were mostly answered in the affirmative, with the caveat that new research on foundations should make sure that it is concerned with "real" problems, and not just generates new problems. In the session on Architecture of Description Logics and Description Logic Systems the participants considered different ways of putting together description logics and description logic systems. One way of doing this is to have a different kind of inference strategy for description logics, such as one based on intuitionistic logics or one based directly on rules of inference-thus allowing variant systems. Another way of modifying description logic systems is to divide them up in different ways, such as making a terminology consist of a schema portion and a view portion. Some discussion in this session concerned whether architectures should be influenced by application areas, or even by particular applications. There was considerable discussion at the workshop on how Description Logics should be extended or expanded to make them more useful. There are several methods to do this. The first is to extend the language of descriptions, e.g ., to represent n-ary relations, temporal information, or whole-part relationships, all of which were discussed at the workshop. The second is to add in another kind of reasoning, such as default reasoning, while still keeping the general framework of description logic reasoning. The third is to incorporate descriptions or description-like constructs in a larger reasoner, such as a first order reasoner. This was the approach taken in OMEGA and is the approach being taken in the Loom project. There have been many extensions of the first two kinds proposed for description logics, including several presented at the workshop. One quest ion discussed at the workshop was whether these extensions fit in well with the philosophy of description logic. Another question was whether the presence of many proposals for extensions means that description logics are easy to expand, or that description logics are inadequate representation formalisms? The general consensus was that description logics adequately capture a certain kind of core reasoning and that they lend themselves to incorporation with other kinds of reasoning. Care must be taken, however, to keep the extended versions true to the goals of description logics. The sessions on Applications of Description Logics had presentations on applications of description logics in various areas, including configuration, tutoring, natural language processing, and domain modeling. Most of these applications are research applications, funded by government research programs. There was discussion of what is needed to have more fielded applications of description logics. The session on Connections between Description Logics and Databases considered three kinds of connections between Description Logics and Databases: 1. using Description Logics for expressing database schemas, including local schemas, integrated schemas, and views, integrity constraints, and queries; 2. using Description Logic reasoning for various database-related reasoning, including schema integration and validation, and query optimization, and query validation and organization; and 3. making Description Logic reasoners more like Database Mangagement Systems via optimization. All three of these connections are being actively investigated by the description logic community. The panel session on the Future of Description Logics and Description Logic Systems discussed where the future of description logics will lie. There seems to be a consensus that description logics must forge tighter connections with other formalisms, such as databases or object-oriented systems. In this way, perhaps, description logics will find more real applications

    Integration of distributed terminology resources to facilitate subject cross-browsing for library portal systems

    Get PDF
    With the increase in the number of distributed library information resources, users may have to interact with different user interfaces, learn to switch their mental models between these interfaces, and familiarise themselves with controlled vocabularies used by different resources. For this reason, library professionals have developed library portals to integrate these distributed information resources, and assist end-users in cross-accessing distributed resources via a single access point in their own library. There are two important subject-based services that a library portal system might be able to provide. The first is a federated search service, which refers to a process where a user can input a query to cross-search a number of information resources. The second is a subject cross-browsing service, which can offer a knowledge navigation tree to link subject schemes used by distributed resources. However, the development of subject cross-searching and browsing services has been impeded by the heterogeneity of different KOS (Knowledge Organisation System) used by different information resources. Due to the lack of mappings between different KOS, it is impossible to offer a subject cross-browsing service for a library portal system. [Continues.

    Developing a model and a language to identify and specify the integrity constraints in spatial datacubes

    Get PDF
    La qualité des données dans les cubes de données spatiales est importante étant donné que ces données sont utilisées comme base pour la prise de décision dans les grandes organisations. En effet, une mauvaise qualité de données dans ces cubes pourrait nous conduire à une mauvaise prise de décision. Les contraintes d'intégrité jouent un rôle clé pour améliorer la cohérence logique de toute base de données, l'un des principaux éléments de la qualité des données. Différents modèles de cubes de données spatiales ont été proposés ces dernières années mais aucun n'inclut explicitement les contraintes d'intégrité. En conséquence, les contraintes d'intégrité de cubes de données spatiales sont traitées de façon non-systématique, pragmatique, ce qui rend inefficace le processus de vérification de la cohérence des données dans les cubes de données spatiales. Cette thèse fournit un cadre théorique pour identifier les contraintes d'intégrité dans les cubes de données spatiales ainsi qu'un langage formel pour les spécifier. Pour ce faire, nous avons d'abord proposé un modèle formel pour les cubes de données spatiales qui en décrit les différentes composantes. En nous basant sur ce modèle, nous avons ensuite identifié et catégorisé les différents types de contraintes d'intégrité dans les cubes de données spatiales. En outre, puisque les cubes de données spatiales contiennent typiquement à la fois des données spatiales et temporelles, nous avons proposé une classification des contraintes d'intégrité des bases de données traitant de l'espace et du temps. Ensuite, nous avons présenté un langage formel pour spécifier les contraintes d'intégrité des cubes de données spatiales. Ce langage est basé sur un langage naturel contrôlé et hybride avec des pictogrammes. Plusieurs exemples de contraintes d'intégrité des cubes de données spatiales sont définis en utilisant ce langage. Les designers de cubes de données spatiales (analystes) peuvent utiliser le cadre proposé pour identifier les contraintes d'intégrité et les spécifier au stade de la conception des cubes de données spatiales. D'autre part, le langage formel proposé pour spécifier des contraintes d'intégrité est proche de la façon dont les utilisateurs finaux expriment leurs contraintes d'intégrité. Par conséquent, en utilisant ce langage, les utilisateurs finaux peuvent vérifier et valider les contraintes d'intégrité définies par l'analyste au stade de la conception

    Text mining and natural language processing for the early stages of space mission design

    Get PDF
    Final thesis submitted December 2021 - degree awarded in 2022A considerable amount of data related to space mission design has been accumulated since artificial satellites started to venture into space in the 1950s. This data has today become an overwhelming volume of information, triggering a significant knowledge reuse bottleneck at the early stages of space mission design. Meanwhile, virtual assistants, text mining and Natural Language Processing techniques have become pervasive to our daily life. The work presented in this thesis is one of the first attempts to bridge the gap between the worlds of space systems engineering and text mining. Several novel models are thus developed and implemented here, targeting the structuring of accumulated data through an ontology, but also tasks commonly performed by systems engineers such as requirement management and heritage analysis. A first collection of documents related to space systems is gathered for the training of these methods. Eventually, this work aims to pave the way towards the development of a Design Engineering Assistant (DEA) for the early stages of space mission design. It is also hoped that this work will actively contribute to the integration of text mining and Natural Language Processing methods in the field of space mission design, enhancing current design processes.A considerable amount of data related to space mission design has been accumulated since artificial satellites started to venture into space in the 1950s. This data has today become an overwhelming volume of information, triggering a significant knowledge reuse bottleneck at the early stages of space mission design. Meanwhile, virtual assistants, text mining and Natural Language Processing techniques have become pervasive to our daily life. The work presented in this thesis is one of the first attempts to bridge the gap between the worlds of space systems engineering and text mining. Several novel models are thus developed and implemented here, targeting the structuring of accumulated data through an ontology, but also tasks commonly performed by systems engineers such as requirement management and heritage analysis. A first collection of documents related to space systems is gathered for the training of these methods. Eventually, this work aims to pave the way towards the development of a Design Engineering Assistant (DEA) for the early stages of space mission design. It is also hoped that this work will actively contribute to the integration of text mining and Natural Language Processing methods in the field of space mission design, enhancing current design processes

    Semantic Systems. The Power of AI and Knowledge Graphs

    Get PDF
    This open access book constitutes the refereed proceedings of the 15th International Conference on Semantic Systems, SEMANTiCS 2019, held in Karlsruhe, Germany, in September 2019. The 20 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 88 submissions. They cover topics such as: web semantics and linked (open) data; machine learning and deep learning techniques; semantic information management and knowledge integration; terminology, thesaurus and ontology management; data mining and knowledge discovery; semantics in blockchain and distributed ledger technologies

    Information exchange between medical databases through automated identification of concept equivalence

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2002."February 2002."Includes bibliographical references (p. 123-127).The difficulty of exchanging information between heterogeneous medical databases remains one of the chief obstacles in achieving a unified patient medical record. Although methods have been developed to address differences in data formats, system software, and communication protocols, automated data exchange between disparate systems still remains an elusive goal. The Medical Information Acquisition and Transmission Enabler (MEDIATE) system identifies semantically equivalent concepts between databases to facilitate information exchange. MEDIATE employs a semantic network representation to model underlying native databases and to serve as an interface for database queries. This representation generates a semantic context for data concepts that can subsequently be exploited to perform automated concept matching between disparate databases. To test the feasibility of this system, medical laboratory databases from two different institutions were represented within MEDIATE and automated concept matching was performed. The experimental results show that concepts that existed in both laboratory databases were always correctly recognized as candidate matches.(cont.) In addition, concepts which existed in only one database could often be matched with more "generalized" concepts in the other database that could still provide useful information. The architecture of MEDIATE offers advantages in system scalability and robustness. Since concept matching is performed automatically, the only work required to enable data exchange is construction of the semantic network representation. No pre-negotiation is required between institutions to identify data that is compatible for exchange, and there is no additional overhead to add more databases to the exchange network. Because the concept matching occurs dynamically at the time of information exchange, the system is robust to modifications in the underlying native databases as long as the semantic network representations are appropriately updated.by Yao Sun.Ph.D
    corecore