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Group), Kartik Kumar (satsearch) and Norbert Brauer (Airbus).

Additionally, I thank the Space Generation Advisory Council and the Women In

Aerospace Europe networks for supporting my participation in conferences. Through

these networks, I made trailblazing friends who have been a constant source of inspira-

tion, including among others, my co-National Point of Contact Dr. Florian Marmuse.
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Finally, I am forever grateful to my fiancé, Ciarán Toner, for supporting me during

a few PhD mental breakdowns, for exploring Scotland together by foot and by bike, for

being a perfect home-office co-worker during the COVID-19 pandemic, and for fuelling

me with delicious curries, cheesecakes and happiness.

iii



“The Answer to the Great Question...

Of Life, the Universe and Everything...

Is... Forty-two,’

said Deep Thought, with infinite majesty and calm.”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

iv



Abstract

A considerable amount of data related to space mission design has been accumulated

since artificial satellites started to venture into space in the 1950s. This data has to-

day become an overwhelming volume of information, triggering a significant knowledge

reuse bottleneck at the early stages of space mission design. Meanwhile, virtual assis-

tants, text mining and Natural Language Processing techniques have become pervasive

to our daily life.

The work presented in this thesis is one of the first attempts to bridge the gap

between the worlds of space systems engineering and text mining. Several novel models

are thus developed and implemented here, targeting the structuring of accumulated

data through an ontology, but also tasks commonly performed by systems engineers

such as requirement management and heritage analysis. A first collection of documents

related to space systems is gathered for the training of these methods. Eventually, this

work aims to pave the way towards the development of a Design Engineering Assistant

(DEA) for the early stages of space mission design. It is also hoped that this work will

actively contribute to the integration of text mining and Natural Language Processing

methods in the field of space mission design, enhancing current design processes.
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Chapter 1

Introduction

International Space Station, November 2018:

Alexander: “Help me with the EPO1 Crystallisation procedure”

Cimon: “The requirement equipment is shown on the screen, are you ready

to start?”

Alexander: “Yes.”

Cimon: “The EPO Flying Classroom Crystallisation of charged particles

demonstrates the charging of nylon and teflon particles after shaking. Now

we can start the main experiment.”

Alexander: “What equipment do I need?”

Cimon: “Sorry I’m just a robot, I don’t know everything you mentioned.”

The above is extracted from a conversation between astronaut Alexander Gerst

and CIMON, the Crew Interactive MObile companioN2. CIMON is a technology

demonstrator for an astronaut assistant developed by the German Aerospace Center

(DLR), Airbus, IBM and the Ludwig Maximilians University of Munich as introduced

by Schröder et al. in [1]. Designed as a spherical free flying unit of around 32cm diam-

eter, CIMON is meant to support crew activities, displaying experiments procedures,

and answering technical queries. As humanity ventures beyond Low Earth Orbit, com-

munication delays will soon prevent live monitoring and support of crews by ground

1Education Payload Operations
2https://www.youtube.com/watch?v=HE0LQ2y_-Pk
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control. This is precisely when virtual assistants, or expert systems, such as CIMON

will become crucial team members. Expert systems, as defined by Lucas and van der

Gaag [2], store large amounts of technical knowledge and can mimic experts’ reasoning.

These types of systems were popular in the 90s but failed to meet expectations due

to limited computational power and the limitation of rule-based inferring [3]. “Big

Data”, defined as the Information asset characterized by such a High Volume, Velocity

and Variety to require specific Technology and Analytical Methods for its transforma-

tion into Value by De Mauro et al. in [4], as well as a significant increase in available

computational power gave them a second chance. Virtual assistants, such as Apple’s

Siri, Amazon’s Alexa, or Google Assistant, have become pervasive to our daily life.

Although these assistants can perfectly handle simple daily tasks, they would be of

lesser help to design a complex system. Domain-specific assistants are on the rise in

several technical fields, notably for medical and legal applications. For instance, the

expert system HIPPOCRAT-EES, presented by Marakakis et al. in [5], simulates the

reasoning of neuroscientists to diagnose epilepsy. There are more than 50 epilepsy

types and their classification is highly complex as each type is a combination of 28 di-

agnosis criteria. HIPPOCRAT-EES achieves 83.3% of successful diagnosis. In the legal

field, ROSS Intelligence supports research tasks. Lawyers have to conduct lengthy legal

searches through jurisprudence and law books for each case they accept. As underlined

by ROSS’s creators in [6], with high hourly rate, this research often represents a cost

some clients simply cannot afford. ROSS was found to decrease by 30% the research

time, thus lowering the access barrier to legal representation.

This thesis stems from the vision of a virtual assistant for space mission design, a

Design Engineering Assistant (DEA). Although computer vision and attitude control

enhanced with Artificial Intelligence (AI) are now common in the space field, other

AI branches are yet to infiltrate the full spacecraft life cycle. Meanwhile, searching

through accumulated design data resulting from decades of spacecraft development

slows knowledge management and reuse. This thesis lays the first building blocks for

the DEA, exploring the latest NLP and text mining methods, to adapt them to space

systems and contribute to improving current design processes.

3



Chapter 1. Introduction

1.1 Towards a Design Engineering Assistant

This section presents a potential architecture for a future Design Engineering Assistant

(DEA). As defined by Lucas and van der Gaag [2], a virtual assistant usually combines

three core elements: (i) a Knowledge Base containing all the data, (ii) a reasoner or

inference engine, and (iii) and interface. As seen on Figure 1.1, the suggested archi-

tecture of the DEA is based on similar elements: (i) a Knowledge Base and additional

libraries containing domain-specific models and rules, (ii) a query manager matching

the user query with its relevant application, and (iii) an interface.

A Knowledge Graph (KG) is suggested to store the collected data. As will be

discussed in Chapter 6, graph databases are more adapted than relational solutions for

relationship-heavy use cases, when seeking hidden connection and new insights from

data. A prerequisite for the KG is an ontology, defining the allowed nodes and edges

of the graph. With an ontology, the heterogeneous data collected can be restructured

according to a single conceptual model, which furthermore allows rule-based reasoning.

The reasoner is the “brain” of the system, querying the data stored in the KG and

inferring knowledge. The library of domain-specific models would include text mining

methods tailored to space systems such as the ones that will be presented in Chapters 4

and 5. The library of rules could either contain formulas, or if-then rules.

The assistant should be able to handle various types of queries, a sample is dis-

played on Figure 1.1, in the Query Manager block. These queries are divided between

continuous and dotted boxes, illustrating two distinct development stages of the DEA.

The continuous line elements correspond to queries to be handled by a passive assistant,

a DEA which would only manipulate information stored in the Knowledge Base. On

the other hand, the dotted line elements are associated with an active assistant able

to assess a new design, run in the background of a study, flagging design conflicts or

design decisions that would not match the initial requirements. These last three ele-

ments named Design Calculation, Design Verification, and Design Suggestions require

further developments. Calculations could be handled by building a thorough database

of formulas used in the field. The design verification would require a NLP layer to

4
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understand the mission requirements and compare them to the current design options.

The generation of design solution is a complex problem, generative ML methods such

as Generative Adversarial Networks (GANs) could be explored.

Finally the interface block is the theater of the Human-Machine Interaction (HMI).

It could either be integrated, as a plug-in, into an existing design environment such as

the CDP4, or it could be a stand-alone interface. Off-the-shelf tools such as open-source

RASA3, Google’s Dialogflow or VisionSpace’s Karel.ai 4, provide today the building

blocks for creating conversational agents.

The suggested consecutive development steps for the DEA are the following:

1. Start with a passive assistant: A tool to retrieve information from the Knowl-

edge Graph, and perform text mining tasks (classification, heritage analysis, bud-

get inference) on the knowledge previously gathered.

2. Evolve to an active assistant: A tool capable of assessing a new design, flag

its flaws with respect to initial requirements, and suggest design improvements.

3. Evolve to a conversational agent: A tool capable of interacting with its user

in natural language, and continuously learn from their feedback.

3https://rasa.com/
4https://www.karel.ai/

5

https://rasa.com/
https://www.karel.ai/


Chapter 1. Introduction

Figure 1.1: Suggested architecture for a Design Engineering Assistant
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1.2 Research Aims & Objectives

The aim of this thesis is to lay the foundations for a DEA, a virtual assistant supporting

decision-making at the early stages of space mission design. To do so, building blocks for

the DEA are developed based on novel Natural Language Processing (NLP), text mining

and Machine Learning (ML) methods. Each domain-specific methods developed in this

thesis can be used as a stand-alone tool to support knowledge management and reuse.

The work presented here also aspires to alleviate the knowledge reuse bottleneck often

encountered by experts in the early design phases, and contribute to improving design

processes in the space field. This thesis focuses on the unstructured data and semi-

structured data used or generated during feasibility studies applying the concurrent

engineering approach. To achieve the main project goal, the following core objectives

will be addressed:

1. Review the latest design methodologies in Concurrent Engineering, both in the-

ory and in practice by surveying experts involved in concurrent engineering design

sessions. Understand the obstacles met by experts regarding knowledge manage-

ment and reuse.

2. Build a first collection of unstructured and semi-structured data dedicated to

space systems engineering that will serve as a base to train and evaluate the

developed methods.

3. Develop statistical, embedding and contextualised methods adapted to space sys-

tems to semi-automatically generate the initials layers of a space systems ontology.

4. Develop probabilistic and embedding methods adapted to space systems, and

understand their scope of applicability within the Concurrent Engineering design

process. Train these models with the unstructured data collected.

5. Propose a method to structure the knowledge within semi-structured data gener-

ated during Concurrent Engineering studies to improve accessibility and extract

new insights.

7
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1.3 Research Outputs

A first library of documents related to space systems is collected and curated. The com-

plete text collection, except for the feasibility reports, property of the European Space

Agency (ESA), is openly available from the University of Strathclyde KnowledgeBase at

https://doi.org/10.15129/8e1c3353-ccbe-4835-b4f9-bffd6b5e058b. The text col-

lection is processed with a NLP pipeline tailored to space systems, developed in the

frame of this thesis.

The majority of the research presented here has been published either in conference

proceedings or in journal articles:

1. “Artificial Intelligence for Early Design of Space Missions in Support of Concur-

rent Engineering Sessions” presented at the 8th International Systems & Con-

current Engineering for Space Applications Conference (SECESA 2018) [7].

2. “Towards an Artificial Intelligence based Design Engineering Assistant for the

Early Design of Space Missions” presented at the 69th International Astronauti-

cal Congress (IAC 2018) [8].

3. “Artificial Intelligence for the Early Design Phases of Space Missions” presented

at the peer-reviewed 2019 IEEE Aerospace conference [9].

4. “The automatic categorisation of space mission requirements for the Design En-

gineering Assistant” presented at the 70th International Astronautical Congress

(IAC 2019) [10].

5. “Space mission design ontology: extraction of domain-specific entities and con-

cepts similarity analysis” presented at the AIAA SciTech 2020 Forum, invited

session on Cognitive Assistants [11].

6. “From Engineering Models to Knowledge Graph: Delivering New Insights Into

Models” presented at the 9th International Systems & Concurrent Engineering

for Space Applications Conference (SECESA 2020) [12].

8
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7. “SpaceLDA: Topic distributions aggregation from a heterogeneous corpus for space

systems” published in the journal of Engineering Applications for Artificial Intel-

ligence [13].

8. “SpaceTransformers: language modeling for space systems” published in the jour-

nal of IEEE Access [14].

The source code repository for [10–14] is publicly available at https://github.

com/strath-ace/smart-nlp.

1.4 Suggested Background

A background in space mission design and concurrent engineering is not required to

understand the work presented here. Chapter 2 provides the necessary background

on relevant design processes. Extensive background on Artificial Intelligence, word

embedding methods, language models and Topic Modelling is provided in Appendix 8.2.

It is however assumed that the reader has a basic knowledge of ML and notably of

Neural Networks architecture.

1.5 Research Funding

This research was partly funded by the European Space Agency in the frame of a Net-

working Partnership Initiative (NPI) under the ESA Contract No. 4000123680/18/NL/MH.

This research was also supported by industrial partners: RHEA Group who provided

an industrial placement opportunity, satsearch and AIRBUS.
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1.6 Thesis Structure

Chapter 2 provides background information on the two key fields, space mission design

and AI, explored in this thesis. A brief overview of space mission design, the Concurrent

Engineering (CE) design process, and the overlap between knowledge management and

design is first addressed. The theoretical approach of CE is then compared to the design

process applied in practice through a survey of experts involved in feasibility studies

of space missions. The last sections of the chapter introduce NLP and text mining, as

well as previous attempts to integrate AI into the design process of space missions.

Text mining, NLP, and ML methods feed on data. Yet there is currently no large

open source collection of documents related to space systems. Chapter 3 presents

a first curated collection of texts related to space mission design, including journal

publications, feasibility reports, books and Wikipedia pages. The raw unstructured

data is parsed and then processed through a novel NLP pipeline tailored to space

systems. Chapter 3 also introduces a collection of Engineering Models (EMs), blueprint

of spacecraft designs. The EMs are here considered as semi-structured data as they

include content in natural language. Both corpora are used to train and test the various

methods developed in this thesis, and could constitute the basis for the DEA knowledge

base.

Chapter 4 explores a wide range of text mining and NLP methods, from statisti-

cal to global and contextualised embedding to address the challenge of generating a

space systems ontology from unstructured data. As previously mentioned, an ontology

is required to build the knowledge base of the DEA and merge heterogeneous data

sources. First, a domain-specific lexicon is semi-automatically inferred with statistical

methods. Then, similar concepts are clustered with a word2vec model. The chapter

ends by tackling contextualised embedding, a revolutionary approach which appeared

at the same time as the work on this thesis started. A new family of domain-specific

transformer-based models is developed and fine-tuned to identify space systems con-

cepts.
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Chapter 5 develops domain-specific methods to address different types of queries a

virtual assistant would have to handle. The chapter focuses on two common tasks han-

dled by system engineers: requirement management and heritage analysis. A spaceLDA

model is trained to identify the word distributions of topics related to spacecraft sub-

systems, and thus classify mission requirements per subsystems. Past feasibility reports

are embedded with a doc2vec model to identify similar missions. The case studies and

applications enabled by these models demonstrate the potential for text mining and

NLP methods to enhance knowledge management and reuse at the early stages of space

mission design.

Chapter 6 addresses the knowledge management and reuse of stand-alone Engineer-

ing Models based on the ECSS-E-TM-10-25A Technical Memorandum. The chapter

first provides a detailed comparison of various database types, with an emphasis on

graph databases, and a trade-off of Knowledge Graph (KG) tools. The chapter then

presents the building blocks to migrate models to a KG. Through two case studies,

an automatic mass budget generation and a heritage analysis, the potential for such

data structure to support the early design phases and the DEA Knowledge Base is

demonstrated.

Chapter 7 evaluates the findings and contributions from this thesis, as well as ad-

dresses the current limitation of the methods applied. This final chapter ends with

future work recommendations and notes on the suggested DEA architecture.
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Chapter 2

Background

2.1 Early Stages of Space Mission Design

This first section introduces the concepts of space mission design and Concurrent En-

gineering (CE). The latter is a design approach applied at the early stages of space

mission design to accelerate feasibility studies. Understanding the dynamics of CE is

essential as it is at the heart of the work presented in this thesis. The section ends with

a short reflection on the impact of knowledge management and reuse for design.

2.1.1 Space Mission Design

Space mission design includes all the steps necessary for the development of a space-

craft, from initial mission requirements and scientific objectives to a working system.

The architecture of a space mission is typically divided between the space, ground and

launch segments [15], as shown in Figure 2.1. The space segment corresponds to the

spacecraft itself, and is usually broken down into two major functional blocks, the pay-

load and the platform (also called bus). The space segment may be a unique spacecraft

or a constellation of spacecraft. The payload includes all on-board instrument(s) gener-

ating the space-based measurements. The platform sustains the payload, providing it,

for instance, with power, operational temperatures ranges and shielding from the harsh

space environment. The platform is further divided between subsystems correspond-

ing to various engineering disciplines. Additional disciplines such as mission analysis,
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programmatics, cost and risk may not be represented as hardware or software blocks

but they also play a critical role in mission design. The ground segment includes all

on-ground facilities enabling the communication with the spacecraft, such as ground

stations, and intermediaries transferring the data to the various stakeholders and users.

Finally the launch segment carries the space segment to its orbit.

Figure 2.1: Unformalised Element tree of a space mission

The design of space missions is organised in consecutive phases separated by mile-

stones reviews. It can take up to 10 years from the initial conception of a mission to

its launch and operation [16]. Although for smaller platform such as CubeSats, the de-

velopment process has been significantly reduced to 18-24 months [17]. The European

Space Agency (ESA) divides its projects into seven phases detailed in the European

Cooperation for Space Standardization (ECSS) ECSS-E-ST-10C standard on system

engineering general requirements [18]. The ECSS is an initiative launched by ESA in

1993 to define a coherent and single set of standards for all European space activi-

ties [19]. The National Aeronautics and Space Administration (NASA) uses a slightly
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different project planning and milestones introduced in its Space Flight Program and

Project Management Handbook [20]. Both project life cycles are highly similar as

shown in Figure 2.2.

Figure 2.2: Project Life Cycles implemented by ESA [21] and NASA [20]

The work presented in this thesis adopts European standards. During Phase 0, the

mission’s scientific goals, expected performance and preliminary technical requirements

are identified. Mission concepts are drafted but not yet detailed. The Mission Definition

Review (MDR) is held at the end of Phase 0 and assesses whether or not the mission

should move to phase A. There, the technical, programmatic and financial feasibility of
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the mission is assessed. Critical technologies that will require further development, and

mission design drivers are identified. Initial possible system and operations concepts

are elaborated. At the end of Phase A, the Preliminary Requirements Review (PRR)

releases the technical requirements specification. A final assessment of the mission con-

cept(s) is given. To avoid wasting resources, it is essential to quickly discard unrealistic

missions. The space and ground elements of the mission are designed in phases B and

C. In Phase D, the spacecraft is built and tested. Finally it is launched and becomes

operational in Phase E. At the end of the mission lifetime, the spacecraft must be dis-

posed off. With the recent efforts to mitigate space debris in densely populated orbits,

spacecraft in Low Earth Orbit (LEO) must reenter the Earth’s atmosphere within 25

years of mission completion [22].

Phases 0/A are the cradle of space missions. Engineers can let their imagination

run free and test innovative solutions provided that they comply with the design re-

quirements, as well as with the cost and programmatics envelope. The decisions taken

during these conceptual phases have a considerable impact on the later development

phases. About 80% of the system’s quality performance is determined during these

early phases [23]. Design changes become more and more costly and difficult to im-

plement as a mission progresses through the design phases [24]. The work presented

in this thesis focuses on the early stages of space mission design, phase 0 and A, and

especially on missions designed with the Concurrent Engineering (CE) approach. The

latter method was introduced in the 90s, first at NASA then at ESA, to accelerate the

early stages of space mission design.

2.1.2 Concurrent Engineering

The concept

The authors of [25] coined the concept of Concurrent Engineering, following a Defense

Advanced Research Projects Agency (DARPA) study, titled The role of concurrent

engineering in weapons system acquisition, on the improvement of product development

process. The authors defined it as: “A systematic approach to the integrated, concurrent

design of products and their related processes, including, manufacture and support.
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This approach is intended to cause the developers, from the outset, to consider all

elements of the product life cycle from conception through disposal, including quality,

cost, schedule, and user requirements”. As the authors of [25] themselves admitted,

the term of “Concurrent Engineering” was not new but collected well known practices

already applied in product development. Smith, in [26], agrees that CE only formalised

design best-practices that were around since the 60s in the manufacturing world.

The keys elements of this design approach are (i) the concurrency of the design pro-

cess, (ii) the cross-functionality of the team, (iii) a facility with adequate hardware and

software infrastructure, and (iv) an Integrated Design Model (IDM) [27]. The designs

are iterated on based on inputs and discussions from all the team encouraging commu-

nication, team work and information sharing. The CE process fosters communication

between the different design actors, involving all stakeholders including the customers.

During design sessions, experts from various engineering disciplines work simultane-

ously on the same system, preferably in the same facility. The facility is at the heart of

the CE process. It provides a design environment adapted to the CE process, enabling

the experts to access software tools, documentation and easily exchange information

stored in the design model. The IDM corresponds to Engineering Models (EMs) which

will be introduced in Chapter 3, Section 3.3.

Design methodologies

Classic past design processes include sequential and centralised approaches. Sequential

design, as illustrated in [28] corresponds to a linear product development. The concept

is transferred from one expert to another, as in a manufacturing line, each expert

adding their contribution without interacting with other team members. This process

is simple but is slow and often leads to a divergence from the initial requirements. The

“design walls” between the different design steps lead to poor communication and can

be a source of frustration as explained in [26]. With centralised design, also illustrated

in [28], the system engineer is at the center of the design process. The engineer has the

heavy task of channeling information to each team member. The CE approach relieves

the system engineer’s workload by enabling direct interactions between team members,
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although the system engineer still guides the design process. The differences between

these three design approaches are summarised in Figure 2.3.

Figure 2.3: Difference between the sequential, centralised and concurrent design ap-
proaches derived from [28]

Concurrent Engineering for space systems

Concurrent Engineering made its way to North American and European industries

after Japanese competitors successfully implemented it [29]. CE methods are nowa-

days commonly applied in various industries including the aerospace, automotive and

naval fields as covered in [30]. Concurrent Engineering methods were introduced at

NASA in the 90s, and were applied by Team X based in the Project Design Center

(PDC) of the Jet Propulsion Laboratory (JPL). Team X has since then been using CE

methods to accelerate the process of mission definition and preliminary conceptions

for new mission proposals with a growing complexity [31]. Inspired by Team X, ESA

set up its own Concurrent Design Facility (CDF) at its European Space Research and

Technology Centre (ESTEC) in 1998. The goal of the ESA CDF was to establish the

initial technical, programmatic and economic feasibility of mission concepts ahead of

industrial development. The facility soon proved it could perform studies faster and

with better output quality [27]. First an experimental design facility, the CDF evolved
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into a full operational design facility within 1.5 years of its creation. In the last 20

years, the CDF has performed over 250 studies and has become essential to internal

mission assessment. The success of the CDF team has inspired the creation of several

concurrent engineering facilities accross Europe. Based on Figure 2.4 provided by ESA,

there were 17 concurrent design facilities in Europe in 2017, hosted within space agen-

cies, industries and universities. Figure 2.5 displays two examples of CE facilities, the

ESA CDF and the University of Strathclyde’s Concurrent and Collaborative Design

Studio (CCDS). This latter facility is located on the University of Strathclyde campus

in Glasgow (Scotland). The CCDS was opened in October 2015 and is available to

both academic and industrial projects [32].

Figure 2.4: European concurrent engineering facilities in 2016 as seen in [28]

(a) ESA CDF (source:esa.int) (b) CCDS facility

Figure 2.5: Examples of Concurrent Engineering facilities
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Structure of a Concurrent Engineering Study

A concurrent engineering study is usually broken down in three consecutive phases:

the preparation, the study and the post-study. As described by [33], the preparation

phase usually occurs weeks before the study, with a restricted team including the study

lead, the system engineers and the clients. During this phase, the mission heritage,

the scientific objectives, and the payload and mission requirements are discussed [16].

The mission requirements are the top level specifications of a spacecraft and serve as

a starting point for the design. These could include the mission lifetime, launch op-

portunities or the expected frequency and resolution of scientific measurements. These

initial requirements may however be modified in light of new findings resulting from the

study phase. Design drivers, key systems concepts, emerge at that stage, the payload

usually being the main design driver [16]. Preliminary results may be presented to

the customer. This phase also aims to size the required number of experts and design

sessions that will be necessary to meet the expected results within the limited time

frame.

The study phase is run with the full design team. At the ESA CDF, the study

may require from 6 to 10 sessions, each session lasting half a day [28]. Studies at the

CCDS have been run over one week in the form of student-led design challenges [34,

35]. The process is iterative and follows a so-called Spiral Model shown in Figure 2.6.

The spiral is divided into sectors corresponding to technical disciplines. Each line

corresponds to the value of a key parameter. A target value may be indicated by a

T . The system overall mass is, for instance, a common key parameter. To kick-off

the design, initial parameters are estimated based on heritage information and the

experts’ experience. During the sessions, each expert will present their subsystem’s

suggested architecture, discussing the implications for other subsystems with the team.

The parameters’ estimations are refined at each iteration, converging towards a sound

baseline solution. If the spiral fails to converge, then the design option is discarded. The

quality of the initial parameters plays a crucial role in the rate of convergence. Several

configurations or design options, each with its own spiral, can be studied simultaneously.
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Figure 2.6: Spiral Model illustrating the iterative design process as seen in [16]

A feasibility study has several outputs. One is a study report including a preliminary

set of requirements, a first conceptual design, information on the operation concepts, the

mass and power system budgets, programmatics, and cost [36]. Information contained

in these reports is called unstructured data as it is not stored according to a structured

data model. All textual content such as books or scientific publications is in fact

considered as unstructured data. If the CE facility has an IDM, then the systems design

iterations are saved in an Engineering Model (EM). This type of information is based on

a data model and is thus structured. Since the EMs can contain textual (unstructured)

information, they will however be considered as semi-structured data. These types of

outputs will be furthermore detailed in Chapter 3, Section 3.3. Finally, [37] underlines

ESA’s past and current efforts to loop-back Lessons Learned (LLs) to the conceptual

modeling phase. The authors however mention that there is, currently, no well defined

pipeline for the integration of these LLs in the design process, thus the lessons learned

will not be considered as a classic output of the design study in this thesis. The various

phases and outputs of a concurrent engineering study are summarised in Figure 2.7.
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Figure 2.7: Overview of the Concurrent Engineering process

During the COVID-19 pandemic, several facilities had to adapt their process to

further rely on virtual communication means and continue their activities. As presented

in [34], virtual exchanges, although not preventing to successfully converge towards

system solutions, failed to lift all the additional communication barriers induced by

remote work.

Impact of Concurrent Engineering on the Design Process

In [31], team X from NASA JPL reflected on the impact CE had on their design process.

They reckoned that it dramatically decreased the costs related to the study as well as

the preparation time by 70%. This gain in time allowed them to study around 6 more

missions per year. More recent work, [27,38], underlined how CE methods contributed

to an increase in study output quality and a decrease in study duration and cost. CE

also contributes to a mutual education of inter-disciplinary team members [38]. Tatnall

et al., [16], estimate that the introduction of CE at the ESA CDF reduced the study

duration from 6-9 months to 3-6 weeks, and the corresponding cost by a factor of two.

While the benefits of the CE method are clear, there still remains some integra-

tion challenges [39]. CE is a complex socio-technical process and the success of this

approach not only depends on technical aspects but is in great part based on the social

component. As mentioned in [27], adopting new processes always takes time and a

change of mentality from experts. In lessons learned at the German Aerospace Center
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(DLR) concurrent facility, [38] stress several social factors including the need to clearly

explain the CE design process to the team members and establish rules and ethics.

2.1.3 Knowledge Management & Design

Knowledge Definition

Dalkir, [40], Kendal and Creen [41], and Misulis and Frisse [42] agree that defining

knowledge is a complex task, and that various descriptions exist in the Literature. A

traditional definition is that knowledge is a subset of all true beliefs [43]. According to

the Oxford dictionary, knowledge is defined as (i) the information, understanding and

skills that you gain through education or experience, and (ii) the state of knowing about

a particular fact or situation. The assimilation between knowledge and information

done by the Oxford dictionary might be acceptable for a layperson definition, but

is not in the field of information systems or knowledge management. Based on the

common data–information–knowledge–wisdom (DIKW) hierarchy [44], often visualised

as a pyramid, knowledge can be understood as the extension of information, itself built

on data, the pyramid basis. Wisdom is at the tip of the pyramid. The following

definitions are thus inferred from the works of Ackoff in [44], Misulis and Frisse [42],

Kendal and Creen [41], and Rowley [45]:

1. Data is the product of observations and is fragmented pieces of symbols.

2. Information is inferred, contextualised data.

3. Knowledge is the result of the understanding of information, a structured compi-

lation of information.

4. Wisdom requires judgment.

For instance, a mass value would be data. When associated to a spacecraft’s sub-

system, it gains context and becomes information. Inferring that the satellite mass

budget has been exceeded is knowledge. Suggesting means to reduce the subsystem’s

mass is wisdom. Knowledge is also often divided between explicit and tacit knowl-

edge [40]. Explicit knowledge includes all content from concrete media such as reports
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or videos. Tacit knowledge is more complex to articulate as it refers to knowledge

acquired by experts through their work experience, including know-hows. Here only

explicit knowledge management will be addressed.

Finally, semantics is known as the branch of linguistics focused on the meaning of

words. Semantics therefore contributes to the building of understanding, thus knowl-

edge.

Knowledge Management

Knowledge Management (KM) is a multidisciplinary concept, with as many as a hun-

dred different definitions depending on the field of application [40]. In this work, the

definition proposed in [46] by the 2018 International Astronautical Federation (IAF)

International Programme/Project Management Committee workshop is adopted. The

workshop participants surveyed the current KM practice in the space field and defined

it as:

A group of practices ensuring the identification, capture, preservation and

sharing of knowledge in order to continuously improve the effectivity and

efficiency of a given organization in pursuing its mission.

This definition fits the research interest of this thesis as it stresses how knowledge can

actively contribute to improving current processes. The DEA project supports KM as

it intends to identify and capture data from heterogeneous sources, restructure it into

a Knowledge Graph to facilitate its reuse and therefore contribute to its preservation

and sharing.

Knowledge Management & Design

An efficient KM strategy will allow knowledge reuse and avoid wasting energy and time

on “reinventing the wheel”. Dalkir, [40], warns against “corporate amnesia” by which

an entity risks losing knowledge and eventually efficiency and money due to poor KM.

In the field of engineering design, Verhagen et al, [39], underline that smart appli-

cation and re-use of accumulated knowledge from previous designs can speed up the
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study process and improve the output quality. As underlined by [39], the trend in

space mission design is towards growing systems complexity. The design of complex

systems naturally builds upon prior knowledge as designing from scratch is more de-

manding [47]. However, Min et al., [47], warns against the automatic and direct reuse of

design as it might not always be the most optimal design solution and even compromise

innovative new solutions.

There are expectations expressed by [46,48] that Artificial Intelligence will enhance

current KM practices. As underlined in [47], algorithms that will automatically ex-

tract and facilitate the knowledge transfer from former related design exercises can

profoundly impact future design processes.
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2.2 Space Mission Design in Practice: Expert Survey

The previous section introduced the theory of space mission design and the Concur-

rent Engineering approach. To understand how spacecraft are designed in practice,

it was essential to interact with experts involved in feasibility studies. A two-months

placement was thus organised with the ESA CDF team. The internship took place

during the first year of the PhD at ESTEC, the technical center of ESA, based in The

Netherlands. The goals of the internship were:

1. to acquire a deeper and practical understanding of the concurrent engineering

process by attending design sessions,

2. to identify the data sources deemed most useful and reliable by the experts,

3. to identify queries of interest for experts,

4. to define the requirements for a future Design Engineering Assistant,

5. to raise awareness on the potential of AI-based virtual assistants to support space

mission design.

Eventually, 47 ESA experts were surveyed, either through a round-table (40% of

the experts) or during face-to-face interviews during the summer 2018. The following

sections summarise the preparation and results of these interactions.

2.2.1 Expert Selection

Concurrent Engineering sessions involve experts with various backgrounds, depending

on the system or subsystem they provide expertise on. Each subsystem expert has a

different perspective on the CE process. For instance, the configuration team steps in at

a later phase of the design sessions. The diversity of background was thus encouraged

in the selection of the surveyed experts. The intuitive approach in the expert selection

process is to involve as many experts as possible. Reference [49] argues that increasing

the experts pool can help reduce errors and bias associated to subjective judgements.

An effort was thus made to identify at least two experts from each subsystem. The

CDF team contributed to the identification of 90 experts, including systems, subsystems
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engineers but also CDF users. Due to the limited time frame, indicators such as the

years of experience or the number and variety of studies involved in, were used to assign

priority weights.

From the initial list, 47 experts were surveyed. 18 experts were surveyed through a

round-table while 29 experts were interviewed face-to-face. From the 47 experts inter-

viewed, 36% were systems engineers, 36% were subsystems engineers, 15% represented

the Knowledge Management team of ESA, 7% were regular CDF internal clients and

6% of the participants came from the inspector general services and the harmonisation

activities. The system and subsystems engineers, the primary target users of the DEA,

were equally represented. The system engineers belonged to the CDF team, acting

as study team leader, system engineer or assistant system engineer. All subsystems

were represented as experts from mission analysis, Attitude and Orbit Control System

(AOCS), On-Board Data Handling (OBDH), propulsion, thermal, telemetry and com-

mand, structure and mechanism, power, operations, risk, cost and programmatics were

surveyed.

2.2.2 Knowledge Elicitation Strategy

Shadbolt and Smart, in [50], define knowledge elicitation as the “set of techniques and

methods that attempt to elicit the knowledge of a domain expert”. There are two main

types of elicitation protocol, natural and contrived techniques. Natural techniques

includes interviews and observation of experts during a problem solving exercise. With

the contrived approach, experts are submitted a task, for instance concept sorting, and

are observed while performing the task. In a similar study, presented in [51], astronauts

were interviewed to define the requirements for a cognitive assistant to be used on-board

a space station or manned spacecraft. As underlined in [50], interviews are the most

commonly used elicitation techniques. Natural techniques were also preferred for this

survey as they are less formal and easier to organise than the contrived approach.

A few round-tables were first planned to elicit knowledge from experts in groups.

However, after the first round-table, it became obvious that the group dynamics could

prevent some experts from expressing their opinions. The elicitation process was then
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reviewed to focus on face-to-face interviews. Eventually, 18 experts attended the expert

round-table and 29 were interviewed in face-to-face meetings. The results of the survey

are presented in the next section.

The round-table started with a short introduction on the project and design as-

sistants. Then, questions were submitted to the experts via a Mentimeter1 presen-

tation, an interactive software which collects and stores answers from the audience.

The questions aimed to understand the experts’ current work habits and assess their

open-mindedness towards AI and virtual design assistants. The round-table questions

can be found in Appendix 1, Table 8.1. The round-table lasted a couple of hours.

The face-to-face interviews were usually around 1h, and followed a similar process as

the round-table. Although, the interviews were more time-consuming than a group

discussion, they allowed more in-depth conversations with the experts. The interview

template can be found in Appendix 1, Figure 8.1.

2.2.3 Survey Results

The figures in this section were generated from the data collected through the Men-

timeter presentation and are thus based solely on the round-table answers. However

the comments include observations collected from all experts.

Current work habits

The first set of questions aimed to better understand the work habits of the experts, and

identify the information sources they relied on. Figure 2.8 is a key image demonstrating

the need for improved knowledge management for spacecraft design. As shown in the

figure, a majority of experts spend from 25% and 50% of their time searching for

information in accumulated knowledge. Further discussions with experts confirmed

their needs for a quicker access to reliable and synthesized information. According to

the experts, heritage knowledge is essential to the preparation and early study phase.

By screening previous similar missions, experts are able to provide better parameters

estimations, accelerating the study kick-start. Heritage information also helps a new

1https://www.mentimeter.com/
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team member get up to pace quickly. As was underlined in [46], young professionals

have more difficulty accessing data than experimented colleagues.

Figure 2.8: Estimated percentage of work time spent by experts searching for informa-
tion (based on round-table answers)

Figure 2.9 ranks the experts’ preferred sources of information. Colleagues ranked the

highest as sources of information. Not only do human experts provide a quick answer,

they also offer tacit knowledge which is more precise than raw information found in

documents. However, human experts can forget or have a biased opinion. The second

preferred source of information is past missions reports, textual documents containing

valuable heritage information. Internal databases ranked lower than online material.

From the discussion with experts, it became clear that the lack of maintainability was

often a major impediment to their usage. The level of population and maintainability

of these internal databases seemed to vary in function of the teams.
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Figure 2.9: Ranking of the experts’ preferred sources of information

The integration of a design assistant into the current design process

The second subset of questions anticipates the development of a Design Engineering

Assistant that would be actively integrated into the design process.

When asked if they would rely on an AI-based virtual assistants to mine information

for them, experts clearly showed their scepticism. 70% of experts were unsure that they

would rely on a design assistant while only 20% answered positively and 7% negatively.

Although the concept raised some interest among the experts, it was made clear that

the tool reliability first needed a thorough investigation before adoption.

The expectations of the experts for a design assistant were assessed. In Figure 2.10,

the types of information experts would be interested in are ranked. Experts ranked the

understanding of previous design decisions (trade-off outputs and heritage) the highest.

The similarity of requirements with previous missions was also a type of information

highly requested. Analysing requirement similarity allows to link a study to a relevant

design heritage.
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Figure 2.10: Preferred type of information that could be provided by a design assistant,
as ranked by the participants of the round-table.

Finally, the experts provided examples of queries they would be interested to submit

to a design assistant. The queries sample presented in Table 2.1 are organised per

engineering disciplines. They have a broad spectrum of complexity, ranging from a

simple extraction of a component value to a complex performances comparison.
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Table 2.1: Sample of queries collected during the experts interviews. (AOCS stands
for Attitude and Orbit Control System)

Type of
Query

Subsystem Query

Heritage:
Past

Design
Decisions

AOCS
Get the AOCS architecture for mission X.

What is the class of performance for
the equipment used in mission X?

Mission
Analysis

Find previous missions with similar orbits.

System
Display the heritage of the platform.

Which launchers could accommodate the spacecraft?

Thermal
Which thermal control hardware was used in mission X?

How much mass per surface area is assigned
to the radiator of mission X?

Trade-
Offs

AOCS
Does this mission require a gyroscope?

Are thrusters needed or reaction wheels are sufficient?

Propulsion

Which engine would fit the required range of max.
power [min1,max1] or min. thrust [min2,max2]?

Can the selected thrusters withstand
the mission lifetime?

Systems Provide platform for payload mass X and/or power Y.

Information
Retrieval

AOCS What is the TRL level of equipment Y?

Propulsion
How much fuels corresponds to a ∆V of x kms?
What is the probability of failure of equipment X?

Operations
What are the specification of the ground stations:

antenna sizes, frequencies.
Provide a list of antenna and their specifications.

Systems Get a platform for payload mass X and/or power Y.

Telecom
Find the frequency type best fitted to the mission type X.

Find the bandwidth limitation for the mission Y.

These queries provide indications of the Design Queries that could be submitted to

the DEA as seen in Figure 1.1.

2.2.4 Discussions

A key finding is that experts spend from 25% to 50% of their work time searching

for information. The survey reveals a major knowledge bottleneck at the early stages

of space mission design. Knowledge reuse is particularly essential to the preparation

phase. When kick-starting a study, experts seek heritage information from previous
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similar missions, to get a better idea of parameter values and architectures validated

by previous studies. The more accumulated data there is on past missions the more

time consuming it is to carry this heritage analysis. Observing the CDF team process

confirmed that a primary source of information is colleagues. During the placement at

the CDF team, it could be observed that one experienced engineer was the prime source

for heritage knowledge. This highly knowledgeable colleague has however retired since

then.

Experts expressed their interest in accessing various sources of information sources

through a knowledge portal, including for instance, design presentations of each itera-

tion, reports from later design phases, technology development updates, LLs or anomaly

investigation reports. It would indeed be highly relevant to loop back information from

more developed or even flown missions to the early design phases, as was partly at-

tempted by [37]. This could highly contribute to the generation of more feasible and

reliable design solutions or avoid repeating similar design errors. Data exchange is

however often prevented by confidentiality provisions, isolation of information known

as data silos and knowledge hoarding (unwillingness to share information with others).

Projects such as the DEA may eventually encourage data sharing by demonstrating

the value of reusing knowledge rather than hoarding it.

Although the experts expressed their interest in text mining and AI-based tool, they

remain skeptical about their actual integration into the design process. These observa-

tions only involved ESA experts, a future survey could attempt to collect observations

from different CE facilities, who might follow different design processes or have another

approach to the integration of AI in their work environment.
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2.3 Introduction to Natural Language Processing and Text

Mining

This section provides a broad overview of the Natural Language Processing (NLP) and

text mining fields. Detailed background on the methodologies applied in this thesis,

Ontology Learning, Topic Modeling, Word Embedding and Contextual Embedding will

be provided at the start of each section in Chapters 4 and 5. For readers who are not

familiar with Artificial Intelligence (AI), a general introduction can be found in the

Appendix 8.2, Section 8.2.1. Past and current projects attempting to integrate AI to

the early stages of space mission design are also introduced.

2.3.1 Natural Language Processing

Definition

NLP is a branch of AI studying how machines understand spoken and written natural

(human) language. NLP transforms natural language into machine-readable language.

It is already pervasive to our everyday life. Spam filters, smart assistant, search engines

and machine translation applications all rely on NLP.

Figure 2.11: Classification of Natural Language Processing methods

The two major subtopics of NLP are Natural Language Understanding (NLU) and

Natural Language Generation (NLG). NLU focuses on computer reading comprehension

while NLG enables computers to generate new data in natural language. The work

presented in this thesis is limited to NLU. The latter enables computers to understand
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natural language based on grammar (syntactic) and context (semantic) [52]. Both

approaches are covered in this thesis.

The syntactic approach focuses on the structure of natural languages, basing the

analysis on grammatical rules. Part-Of-Speech (POS) tagging identifies, for instance,

the grammatical labels of words. A word may be tagged as a noun, a verb, an adjective

or an adverb [53]. Rules based on patterns can then be applied to extract relationships

between the various grammatical elements following regular expressions pattern such

as subject-verb-object [53, 54]. On the other hand, the semantic approach focuses on

meaning and context. As underlined by [55], the understanding of languages is not just

based on a sentence structure, but requires the understanding of context as well. For

instance, reading the sentence “Alice wrote two thesis chapters and ran a marathon this

morning, she is on fire today!”, a human would instinctively understand that Alice is

being very productive and “on fire” is a figurative image. Without appreciation of the

context, a machine would not be able to tell the difference with literally being on fire.

Natural language is highly ambiguous, words can have different meaning depending

on the context. One of the most difficult NLP task is perhaps sarcasm detection,

which is hard to detect even by humans, let alone by machines [56,57]. Thankfully, in

the context of this work based on engineering data, sarcasm should hopefully not be

encountered.

NLP Evolution

The evolution of NLP is comparable to the evolution of Artificial Intelligence. The

early methods were based on rules (rationalist), assuming that the human language

was structured on patterns and strict grammatical rules, notably expressed through

the Chomskyan theories of language developed by American linguistic Noam Chom-

sky [58, 59]. Then, the introduction of data-driven approaches, Machine Learning,

led to the adoption of statistical (empirical) approaches, notably introduced by Prof.

Christopher Manning, currently professor of Computer Science and Linguistics at Stan-

ford University [60]. The field of NLP has seen a rapid evolution in the last decade,

evolving from statistical approaches to probabilistic methods, to word and document
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embedding, and recently, to contextualised embedding. The background of these meth-

ods will be detailed in Appendix 8.2.

2.3.2 Text Mining

Definition

Text mining leverages NLP and ML to extract valuable insights from unstructured text

data, uncovering implicit information that would have remained hidden otherwise [61].

While NLP enables the understanding of natural language, text mining enables its

analysis.

Main text mining tasks

Text mining tasks are usually divided between:

• Information Extraction (IE): The latter is a technique extracting precised infor-

mation from text such as keywords, named entities or metadata [62].

• Information Retrieval (IR): The IR task consists in returning documents of inter-

est from a collection of textual content [63]. Web search engines will for instance

retrieve and rank the most relevant web pages answering a user query.

• Categorisation: Text categorisation is the process of assigning categories to un-

structured content [61]. Topic analysis and sentiment analysis where subjects and

feelings are extrapolated from texts, are applications of text categorisation.

• Clustering: Text clustering consists in re-arranging a text group into subgroups

with similar features or content [61].

• Summarisation: Text summarisation refers to the creation a compressed version

or summary of a document [62].
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2.4 Past & Current Work on the Integration of AI in

Space Mission Design

In 2019 ESA surveyed its internal completed, on-going and future activities involving

AI [64]. Around 100 activities were divided between four application areas:

1. Development : Targeting activities performed during the phase 0 to D of the

spacecraft life cycle, and thus including system engineering methodologies, de-

sign activities, operational concepts, reliability, quality assurance and Assembly,

Integration and Testing / Verification (AIT/AIV).

2. Operations: Targeting activities performed during the utilisation phase of the

spacecraft life cycle (phase E) including mission planning support and optimi-

sation, automated operations, intelligent personalised assistant, ground stations

management and operations for telerobotics, autonomous, and crewed systems.

3. Exploitation: This subcategory also targets activities performed during phase

E but focuses on downstream data analysis involving the exploitation of Earth

Observation (EO), Science, Navigation, Telecommunication measurements, and

data contained in models and simulations.

4. Others: The Others category includes research activities, education and training,

knowledge management, administration and media.

The ESA survey found that a majority of its internal activities focused on the

Development (44%), then Operations (23%), Exploitation (18%) and Others (15%).

The work presented in this thesis would certainly fall in the Development category,

and was likely taken into account in this survey as this thesis is co-funded by ESA.

The authors stressed how AI technologies are becoming key enablers in the design,

operations and utilisation of space missions. The authors also highlighted how an

increased awareness of AI potential, considering AI since the early stages of mission

design, and overcoming data silos are among the key factors for a successful integration.

A recent example of a spin-off of an activity initiated at the European Space Operations

Centre’s (ESOC) is the Technical Requirements Ambiguity Checked (TRAC) developed
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by Solenix. Their tool relies on a ML classification algorithm to assess the validity of

technical requirements with respect to ECSS standards. The automation of requirement

management could save a considerable amount of time for engineers.

2.4.1 Past Studies

The ESA CDF has been actively involved in at least two previous attempts to include

AI to the CE process. A first study, “The Manager” [65], saw the development of an

expert system based on Analytic Hierarchical Process (AHP) and Fuzzy Logic Theory.

As introduced in [66], AHP is a field of decision taking in which a complex problem

is broken down into pairwise comparisons. By solving the simpler problems first, the

complexity is increased step by step (hierarchically) until the initial complex question

can be answered. As defined in [55], Fuzzy Logic is a method of reasoning similar to

human reasoning, with a degree of truth between 0 and 1. Fuzzy Logic allows the

integration of vagueness in reasoning. The goal of “The Manager” was to accelerate

the convergence towards a valid system solution. The tool independently ran several

design iterations, increasing or decreasing step by step parameters values looking for

a convergence point as in the Spiral Model shown in Figure 2.6. The tool could for

instance run simulations during the pre-study to support the parameters initialisation,

and explore several design options during the study. The tool reasoning was based on

Excel workbooks, thus structured data, with a MATLAB interface.

In a second study supported by the CDF, [23], the author developed a decision-

support tool based on neural networks to guide the selection of design parameters.

The initial parameters of a design study are estimated from the mission’s scientific

objectives and known technical requirements. The quality of these initial parameters

directly impacts the performance of the design process and the quality of the final out-

come system solution. The predictive decision support tool presented in [23] targets

design decisions prone to be extrapolated from previous data, and based on inductive

reasoning. For instance, estimating the most suitable launcher for the mission from a

database of existing space launchers. The study showed a significant reduction in the

error of design decision, with a potential to accelerate the turnaround and quality of
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design iterations. As in [65], the tool’s inputs were structured data, stored as Excel

workbooks. Discussions with ESA experts, during the 2018 survey, revealed that nei-

ther tools were currently integrated into the CDF CE process. The reasons suggested

were the prohibitive learning curves required to master the tools, as either a basic

understanding of neural networks or of MATLAB were required. These two previous

attempts to integrate AI to space mission design at the CDF did not rely on text min-

ing nor Natural Language Processing methods. The previous methods also handled

structured data whereas unstructured text data is a prime data source for the work

presented in this thesis.

2.4.2 On-going Studies

Daphne [67] and the Systems Engineer’s Virtual Assistant (SEVA) [54] are more recent

work done in this field. The Daphne project is led by a team of researchers from the

Texas A&M University, with the participation of experts from NASA JPL. Daphne

is a virtual assistant for designing Earth Observation (EO) distributed missions. Dis-

tributed Space Missions (DSM) involve multiple satellites working jointly to achieve a

common goal. A satellite constellation is a common example of DSM. Daphne relies

on three structured data sources: a database of rules to support rule-based reasoning,

a design solutions database, and an historical database containing structured data on

past EO missions. Daphne is a complex system whose first building block, the expert

rules, dates from 2014 [68]. This assistant can explore new design options, assess their

validity, identify design weaknesses and mine data from previous missions. Daphne

accepts inputs in natural language, its query builder integrates components of NLP to

map the queries from natural language to SQL (Structured Query Language). However

the integration of NLP remains limited as the tool is based on data mining rather than

text mining. On the other hand, the SEVA project started at the George Masson Uni-

versity in collaboration with the NASA Goddard Space Flight Center (Maryland, USA)

does focus on natural language inputs. The authors of [54] introduce the requirements

for a virtual assistant to support system engineering activities of information retrieval

and question answering. The authors presented a first stage of their project, based on
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NLP, consisting in extracting concepts and simple relationships from domain-specific

unstructured data. The relationships extracted are based on patterns: {subject is-a ob-

ject, subject has-property object, subject has-value object}. The authors however relied

on a general model and did not perform domain adaptation. Results from the SEVA

project will be further discussed in Section 4.5.

In conclusion, there is a growing interest for integrating AI into the development

of space missions and for the domain-adaptation of text mining and NLP methods.

Past projects, [65] and [23], focused on structured data while on-going projects, [54]

and [67], are integrating natural language either as a data source or as a facilitator for

user interactions. The work presented in this thesis focuses on unstructured and semi-

structured data while tailoring several text mining and NLP methods, and therefore

goes beyond previous works.
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Corpus

3.1 Chapter Overview

A corpus of unstructured data is required for the training of Machine Learning (ML)

methods and to establish the content of the DEA’s Knowledge Base. However, there

is currently no accessible large textual data set related to space systems. Thus a first

task for this thesis was to collect and curate a collection of domain-specific documents.

Section 3.2 presents the main and additional heterogeneous text sources used to build

this collection. The raw unstructured data is parsed and then processed through a NLP

pipeline tailored to space systems.

Unstructured data is not the only type of input encountered at the early stages of

space mission design. Integration of Model-Based System Engineering (MBSE) into the

design process is on-going in the space field [69–71]. In Europe and at ESA, concurrent

design facilities rely on Engineering Models (EMs) based on the ECSS-E-TM-10-25A

technical memorandum [72]. The models act as a blueprint of the spacecraft’s archi-

tecture. They store design parameters and iterations, support interactive design, and

facilitate design reviews. They are here considered as semi-structured data as, in spite

of being structured, they still contain information, for instance, requirements, in natu-

ral language. Section 3.3 details furthermore the structure of these EMs and introduces

two models resulting from internal feasibility studies.
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3.2 Unstructured Data Collection

Textual data is the raw material of text mining and NLP methods. This section presents

the four main text corpus used to train the models and generate the results of Chapters 4

and 5. Two additional text corpus used for case studies are also introduced.

The complete text collection, except for the feasibility reports, property of ESA, is

openly available from the University of Strathclyde KnowledgeBase at https://doi.

org/10.15129/8e1c3353-ccbe-4835-b4f9-bffd6b5e058b.

3.2.1 Main Text Sources

The text collection is built on four heterogeneous data sources: (i) ESA feasibility

reports generated during CDF studies, (ii) academic publications, (iii) books and (iv)

Wikipedia pages. The CDF reports were cited as a primary source of information by

experts during the 2018 survey as Figure 2.9. The academic publications and books

are peer-reviewed and contain content verified by humans. Wikipedia is a common

open-source knowledge base. Each text source is described in details in sections below.

ESA CDF reports

The reports are, with the Engineering Models introduced in 3.3, a main output of a

CE study. Each study report summarises the mission objectives, requirements, design

trade-offs, as well as the baseline spacecraft architecture at system and subsystem level.

These reports are usually written at the end of the study and are reviewed by a member

of the CDF team.

The ESA CDF team granted access to 55 of their feasibility studies reports through

a Non-Disclosure Agreement (NDA). The reports were published internally between

2000 and 2018 included. The 55 reports represent 25% of all CDF reports as access to

all studies could not be granted for confidentiality and proprietary reasons. The CDF

team has studied 219 mission concepts over its 20 years of activities. The studies are

classified by the CDF team per field of activity, also called target system. A mission

labelled as “Earth” would, for instance, encompass Earth Observation (EO) activities,
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or astronomical payloads placed in Low Earth Orbit. Some studies focus on specific

technological developments and are classified as “Space Infrastructure and Technology”

(SIT), other studies labelled as “Launchers and Return Vehicles” (LRV) study the

development of launcher capabilities and return mission. As shown in Figure 3.1, the

reports subset that was provided covers in similar proportions the different fields of

activities addressed by the CDF.

Figure 3.1: Comparison of the topics covered by all CDF reports and the available
reports (SIT stands for “Space Infrastructure and Technology”, LRV for “Launchers
and Return Vehicles”).

Academic Publications

The publications corpus includes 4, 991 articles published in the Acta Astronautica

(32.4%), the Advance in Space Research (ASR) (30.3%), and the Aerospace Science

and Technology (AST) (37.4%) journals. These journals were chosen on the following

criteria: (i) being peer-reviewed with high citation scores, (ii) having a broad range

of topics, and (iii) being accessible either freely or through a University subscription.

Only articles published between 2017 and 2019 included were selected to only con-

sider the most recent research findings. The articles were accessed through Science
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Direct in partnership with the University of Strathclyde, and downloaded in a Portable

Document Format (PDF) format.

The Acta Astronautica journal is sponsored by the International Academy of Astro-

nautics (IAA) and addresses topics related to space exploration, and the conception,

design, development and operations of both space-borne and Earth-based systems.

Special issues of the Acta Astronautica cover selected content presented at the Inter-

national Astronautical Congress (IAC), including latest developments on satellite and

space station technology, space economics, and astrodynamics. The ASR is the official

journal of the Committee on Space Research (COSPAR) publishing work related to all

aspects of space research. Finally, the AST journal publishes work related to all fields

of the aerospace research, either fundamental or applied.

Books

The books corpus contains 39 books related to space mission design, manually selected,

and whose content is publicly available. The selected books cover several fields and sub-

fields of space mission design, including classic textbooks such as the Space Mission

Analysis and Design (SMAD) [73] and the NASA Systems Engineering Handbook [74],

as well as more subsystems-specific documents such as Spacecraft Thermal Control [75]

or Guidance and Control technology of Spacecraft on Elliptical Orbit [76]. Figure 3.2

below displays the distribution of the selected books per field of interest. Even if not

all spacecraft subsystems are represented, they are covered by system-level books. As

shown in Figure 3.3, most of the books selected were published in the past 10 years.

Material from the books used in this thesis has been reproduced with permission of

SNCSC.
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Figure 3.2: Distribution of books topics

Figure 3.3: Publication years of the selected books
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Wikipedia pages

The reliability of Wikipedia content may be questioned but it does represent one of the

largest source of freely available texts. Wikipedia data is often used to train Machine

Learning algorithms including BERT [77] and GTP-3 [78], or to build NLP benchmark

data sets such as the Question-answering Natural Language Inference (QNLI) and

the Recognizing Textual Entailment (RTE) sets provided by the General Language

Understanding Evaluation (GLUE) benchmark [79]. To collect Wikipedia content re-

lated to space systems, the webpage on Spacecraft Design is used as a starting point.

Additional content is found by exploring the hyperlinks interconnecting the webpages.

From the initial page, six hyperlinks, judged as most relevant to a space mission corpus,

were manually selected. These webpages were then automatically scrapped using the

Python Selenium library1, leading to the discovery of 1,023 additional non-redundant

hyperlinks. The distribution of hyperlinks per webpages, including the main page on

Spacecraft design, is shown in Figure 3.4. The list of pages to be included in the

corpus was manually filtered, for relevance to the project scope, and eventually yielded

a corpus of 242 webpages.

Figure 3.4: Distribution of Wikipedia pages per spacecraft subsystems

1https://github.com/SeleniumHQ/selenium/tree/trunk/py
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3.2.2 Additional Text Sources

Two additional text sources are used as alternative training and case study sets.

ESA Missions requirements

This text collection includes 100 requirements extracted from two ESA documents, pub-

licly available, the SMOS mission System Requirement Document [80] and MarcoPolo-

R’s Mission Requirement Document [81]. The requirements within these documents are

organised per chapter and per subsystem. For instance, all power-related requirements

are found under the chapter “Power requirements”. Design requirements are usually

associated with one spacecraft subsystem.

The distribution of requirements per topic is displayed in Figure 3.5. From this cor-

pus, 68 requirements related to the 7 topics of Attitude and Orbit Control Subsystem

(AOCS), Communication, Environment, On − Board Data Handling (OBDH),

Power, Propulsion and Thermal are used for the case study presented in Section 5.2.

Table 3.1 provides samples of requirements extracted from [80].

Figure 3.5: Mission Requirements Distribution
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Table 3.1: Sample of design requirements extracted from [80]

Subsystem Requirement

Thermal
‘The thermal control shall be achieved by passive means
and by heaters. The use of heat pipes shall be avoided.’

Attitude and Orbit
Control Subsystem

‘In Yaw Steering Mode, the attitude control laws shall be
pre-defined law only dependant on one variable: True Latitude’

Communication
‘The platform communications system shall provide

the capabilities to transmit the data stream in S-band.’

ECSS requirements

The ECSS is an initiative launched by the European Space Agency (ESA) in 1993

to define a coherent and single set of standards for all European space activities [19].

There are currently 129 active ECSS standards, organised in a Document Tree2 with

four branches: space project management, space product assurance, space engineering,

and space sustainability as shown in Figure 3.6. The branches are further organised

per disciplines, covering all topics related to space projects.

Each standard includes several requirements which briefly describe a regulatory pro-

vision to be complied within a customer - supplier context as described in [82]. Because

of the intent of using them in an obligating contract, the requirements are written in a

clear and unambiguous language. The text collection used in this thesis includes 27, 016

requirements extracted from 126 active standards (excluding the Space Sustainability

branch and the Glossary of terms). 66% of these requirements are extracted from the

61 Engineering standards, 32% from the 60 Product Assurance standards, and 2% from

the 5 Management standards. These standards were kindly collected and provided by

Mirtcheva, S. and Valera, S. (ESA). Table 3.2 provides examples of requirements for

each branch.

2https://ecss.nl/standards/ecss-document-tree-and-status/
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Figure 3.6: ECSS Document Tree as seen on the ECSS webpage

Table 3.2: Sample of ECSS Requirements

Subsystem Discipline Requirement

Management
Project planning

& implementation

‘The supplier shall demonstrate that the key personnel
have the necessary qualification, skills and experience
to perform the task for which they are allocated.’

Risk
Management

‘Risk management shall be implemented at
each level of the customer-supplier network.’

Product
Assurance

Quality
Assurance

‘The cleanliness levels shall be specified for molecular
contamination in terms of surface contamination’

Safety
‘Safety analysis shall evaluate all

disposal operations and associated hazards’

Engineering

System
Engineering

‘The system engineering function shall ensure
consistency of the requirements at system level,

at lower levels, as well as amongst levels.’
Electrical &

optical engineering
‘All executable commands shall be explicitly

acknowledged by telemetry.’
Mechanical
Engineering

‘Thermal requirements related to the launch
and ascent phases shall be specified. ’
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3.2.3 Natural Language Processing Pipeline

A NLP pipeline is a chain of analytical tasks to process raw text. The pipeline breaks

down, cleans and converts raw text into a format suitable for feature extraction. These

steps lay the necessary foundations of more complex language processing tasks [83].

Several open-source toolkits are today available, enabling the quick assembly of these

pipelines.

NLP Library selection

Stanford CoreNLP [84], Apache OpenNLP [85], the Natural Language Tool Kit (NLTK)

[86], and Explosion’s spaCy [87] are the current major open-source NLP tools. These

tool kits handle similar syntactical operations.

CoreNLP was developed by Professor Manning and his team from the Stanford

University [84]. This toolkit is written in Java. OpenNLP [85] is a ML based toolkit

for the processing of natural language text also written in Java. Both CoreNLP and

openNLP have Python wrappers. NLTK [86] and spaCy [87] are the key NLP libraries

in Python. NLTK is the most well-known tool kit for NLP pipeline. SpaCy is a most

recent tool, oriented towards production and fast development.

As highlighted in [88], few published studies tend to justify the use of their NLP

libraries, although results obtained are impacted by this choice. As the authors of [88]

demonstrated, NLTK performed better than spaCy, and CoreNLP on tokenization but

achieved poorer results on Part-Of-Speech (POS) tagging. SpaCy is substantially faster

than many other libraries, while NLTK offers a wider range of libraries and modules [89].

NLTK is oriented towards research and thus grants access to a wider range of methods,

while spaCy limits the choice of its users and is oriented towards production. The

authors of [89] note that OpenNLP obtained poorer results on a NER task.

Since POS is not performed by the NLP pipeline presented here, and Python is

the preferred programming language for this thesis, NLTK is chosen to implement the

pipeline.
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NLP pipeline block elements

An overview of the NLP pipeline developed in the frame of this thesis is displayed in

Figure 3.7. The pipeline takes as input raw text parsed from word documents, PDF

and text files with the Apache Tika library3. The building blocks of a NLP pipeline

vary in function of the processing goals. For instance POS tagging is not implemented

here but will be applied in later sections focusing on syntactical analyses. To tailor

a regular NLP pipeline to a domain-specific corpus, terms, acronyms and stopwords

relevant to space systems are integrated to the pipeline. Figure 3.8 displays an example

of the NLP processing. The building blocks of the NLP pipeline are the following:

• Sentence Segmentation: Blocks of text are first divided in sentences. NLTK

uses the Punkt sentence segmenter from [90]. Punkt alleviates splitting ambigu-

ities by identifiying abbreviations, for instance, it will not split a sentence after

Fig. or e.g.

• Tokenization: Tokenization is the task of splitting text into simple units called

tokens, producing a list of words and punctuations. In NLTK, the method

word tokenize divides text by calling the Treebank tokenizer relying on regu-

lar expressions (regex) to tokenize text as found in the Penn Treebank (PTB), a

very large dataset of annotated words maintained by the University of Pennsyl-

vania [86,91]. A regex is a sequence of characters specifying a search pattern.

• Trimming: Trimming is a simple housekeeping step to removes any blanks before

and after a token. When performing frequency analysis, tokens with a blank space

introduce redundancy.

• Special Character and Non English words removal: Special characters and

non-English words add noise and are therefore removed using regex matching.

• Acronyms Expansion: Acronyms are common in domain-specific corpora and

contain relevant information. An annotated list of abbreviated terms related to

space systems is used to expand acronyms found in the corpus. The list and

expansion process are further detailed in a below section.

3https://tika.apache.org/
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• Normalisation: This step converts all tokens to lower case, putting all words

on the same level. This step needs to take place after the acronym expansion as

acronyms are usually written in capital letters.

• Multi-words identification: N-grams, also called multi-words (MWs) expres-

sions are sequences of n words with a single meaning, for instance, artificial

intelligence or jet engine. Separating MW in different tokens would result in

loosing meaning, thus tokens corresponding to a MW are merged. The identifi-

cation of the few MW with acronyms such as RF reflector or PCB manufacturer

is however done before the acronyms expansion. This process, and the list of

domain-specific MW which it is based on are detailed in a later section.

• Lemmatization: Lemmatization converts the inflected forms of words to their

root form or lemma, for instance, converting corpora to corpus or women to

woman. The NLTK lemmatizer is based on Wordnet, a large open-source lexical

database developed by the Princeton University [92]. Stemming is an alternative

approach removing affixes from word, turning them into their stem form. The

main difference between lemmatization and stemming is that the former ensures a

conversion to root words which are present in the dictionary, thus producing valid

lexicon inputs. Since a first application explored in this thesis is the generation

of a domain-specific lexicon, lemmatization rather than stemming is implemented

in the NLP pipeline.

• Stopwords Removal: Stopwords are frequent words with low informative value

[86] such as the or a. The NLTK library offers a pre-set list of 179 English terms

including pronouns as i, we, and common verbs as have or do. The stopword lists

is tailored to the domain-specific corpus with a term frequency-inverse document

frequency (tf-idf) approach as presented below.
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Figure 3.7: Overview of the domain-specific NLP pipeline

Multi-words Extraction

2,704 terms are exported from the 2017 ECSS glossary of terms [18]. Among these

terms, 1,591 are non-redundant MWs and 80 include acronyms which are expanded.

52



Chapter 3. Corpus

Figure 3.8: Example of the NLP Pipeline process and output

Sequence of tokens corresponding to a MW expression are merged into a single to-

ken to capture their domain-specific meaning. The distribution of MWs found in the

ECSS glossary, along with examples, is displayed in Table 3.3. Longer sequences are

significantly less frequent that bigram (2-grams) and trigram (3-grams).
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Table 3.3: Distribution of domain-specific multi-words

n-gram
Number

(%)
Sample

2-grams
975

(61.3%)

heat dissipation,
requirement traceability,
solar array,
space mission,
verification matrix

3-grams
458

(28.8%)

end of life,
critical crack size,
signal to noise ratio,
single event upset,
space segment subsystem

4-grams
102

(6.4%)

mean time to repair,
out of band emission,
single event gate rupture,
solar energetic particle event,
total ionizing dose level

5-grams
46

(2.9%)

high efficiency particulate air filter,
probability of correct attitude determination,
solar cell anti reflection coating,
total non ionizing dose level,
yield design factor of safety

6-grams
8

(0.5%)

24 hour equivalent noise exposure level,
environmental control and life support system,
projected peak to peak insulation distance,
run on and run off tabs,
temporary degradation of space segment function

7-grams
1

(0.1%)
dominant and recessive states of canbus signals

9-grams
1

(0.1%)
oxygen concentration limit during the combustion of
polymeric materials

Total 1,591

Additional MWs were extracted from the corpus with the NLTK collocations library

[86]. Collocations are sequence of words unusually often found together. The extracted

MWs were verified manually. An additional 66 bigrams and 53 trigrams are thus

discovered and added to the list of MWs to be identified within the NLP pipeline. A

sample of these new terms is displayed in Table 3.4.
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Table 3.4: Multi-words discovered through the collocation analysis

bigram trigram

atlantic anomaly active debris removal
collision avoidance coronal mass ejection

lessons learned synthetic aperture radar
optical imaging technical risk assessment

study team van allen belts

Acronyms Expansion

1,442 non redundant abbreviated terms are found in the list of ECSS abbreviated

terms, released in 2017 [18]. These abbreviated terms, or acronyms, are extracted from

the 64 active ECSS standards. These documents cover all disciplines related to space

systems, and are distributed in 4 main branches: space project management, space

product assurance, space engineering, and space sustainability. Many acronyms are

found across several documents, and sometimes have different expansions. For instance,

CTE is defined as coefficient of thermal expansion in the ECSS-E-ST-32-08C standard

on space materials, while in another standard on radiation, ECSS-E-ST-10-12C, CTE

is expanded as charge transfer efficiency. Similarly, MOS is defined as margin of safety

in the ECSS-E-ST-32C standard on structural requirements, while it corresponds to

metal oxide semiconductor in the standard related to radiation hardness assurance for

electronic components, ECSS-Q-ST-60-15C.

At this processing level, the pipeline lacks disambiguation, and therefore cannot

assess an acronym’s context and associate it with the correct expansion. Thus the

choice is made to only expand acronyms with a unique possible expansion. Acronyms

corresponding to named entities such as “ESA”, “CERN” or “NASA” are also not

expanded, and considered as single entities. Eventually, a manually curated list of

1,133 acronyms and their expansion is used to expand acronyms found in the corpus

documents. Acronyms are expanded as a single token of several words.
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Stopword list

To tailor the stopword list to a corpus, a term frequency-inverse document frequency

(tf-idf) analysis of each corpus is run. Tf-idf is a statistical method evaluating the

relevance of a word by assigning it a weight based on its frequency in a document

but also among the whole corpus. The concept of idf was invented in 1972 by British

computer scientist Karen Spärck Jones [93]. Tf-idf is defined by [94] as:

tf − idft,d = tft,d ∗ idft (3.1)

with

idft = log
N

dft
(3.2)

where tft,d is the frequency of term t in document d and idft the inverse document

frequency of t among a corpus of N documents with a document frequency dft corre-

sponding to the number of documents where the term t is found. Thus the idf of a

rare term is close to 1, whereas the idf of a frequent term tends toward 0. A threshold

of 15% is arbitrarily set to only remove the tokens with the lowest tf-idf since these

tokens have low informativeness value. A tailored stopword list is thus generated for

each corpus. Table 3.5 displays samples of terms added to the tailored stopword lists.

Table 3.5: Sample of words with low tf-idf

Feasibility
Reports

Academic
Publications

Books
Wikipedia
Webpages

tec (department name),
internal,
noordwijk (location CDF),
content,
appendix

special issue,
international conference,
workshop,
mails,
abstract

springer,
edition,
text,
elsevier,
mediagallery

reference,
language,
licence,
common creative,
edited

3.2.4 Corpora Statistics

Table 3.6 displays the corpus statistics after being processed by the NLP pipeline. A

total of 2,278,193 sentences, including 22,609,372 tokens are collected. The academic

publications represent 81.1% of this corpus, followed by the books (12.5%), the fea-

siblity reports (4.3%) and the Wikipedia pages (2.1%). Proportionally, the amount
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of MWs and acronyms found in the feasibility reports is significantly higher than for

other corpora. This was to be expected as the ECSS and ESA work closely. Journal

publications, books and Wikipedia pages are also written by authors worldwide and

don’t necessarily abide to European standards. Most of the multi-words identified are

bigrams. This was also to be expected as a majority of ECSS MWs are bigrams as

shown in Table 3.3. Table 3.7 displays the statistics obtained for full corpus, merging

the four main text sources. Finally, Table 3.8 provides the statistics for the additional

text sources.
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Table 3.6: Main Corpora Statistics

Feasibility
Reports

Academic
Publications

Books
Wikipedia
Webpages

Nb. of
documents

55 4,991 39 242

Corpus
Size

542 MB 13.3 GB 1.16 GB 8.95 MB

Nb. of
sentences

98,352 1,737,293 274,807 46,544

Nb. of
tokens

1,264,948 15,151,242 2,520,398 472,397

Average
Nb. of

tokens per
sentences

12.9 8.7 9.2 10.15

Dictionary
Size

28,651 254,482 69,905 28,782

Nb. of
MW

22,905
(667 unique)

82,537
(945 unique)

21,300
(896 unique)

3,630
(369 unique)

Top 5
MW

solar array,
baseline design,
design drivers,
ground station,

propulsion system

heat flux,
space debris,

mass flow rate,
finite element,
control system

launch vehicle,
coordinate system,

control system,
ascending node,

solar array

deep space,
kinetic energy,

electric propulsion,
specific impulse,

van allen
Nb. of

acronyms
expanded

37,719
(564 unique)

162,959
(825 unique)

31,850
(671 unique)

4,920
(363 unique)

Top 5
acronyms

S/C
(Spacecraft),

AOCS
(Attitude
and Orbit

Control System),
TRL

(Technology
Readiness Level),

GNC
(Guidance
Navigation

and Control),
LEO

(Low Earth
Orbit)

GPS
(Global

Positioning
System),

GNSS
(Global Navigation
Satellite System),

CFD
(Computational

Fluid Dynamics),
GEO

(Geostationary
Orbit),
LEO

GPS,
LEO,
GEO,
OBC

(On-board
Computer),

PCDU
(Power Control

and Distribution
Unit)

GPS,
UTC

(Universal Time
Coordinated),

DRAM
(Dynamic Random
Access Memory),

PV
(Pressurized

pressure Vessel),
CPU

(Central
Processing

Unit)
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Table 3.7: Combined Main Corpus Statistics

Combined Corpus

Nb. of
documents

5,327

Corpus Size 15 GB
Nb. of

sentences
2,157,117

Nb. of
tokens

19,452,556

Average
Nb. of

tokens per
sentences

9

Dictionary
Size

305,364

Nb. of
MW

130,779
(1,168 unique)

Top 5
MW

magnetic field, control system, space debris,
remote sensing, heat flux

Nb. of
acronyms
expanded

237,448
(908 unique)

Top 5
acronyms

GPS (Global Navigation Satellite System),
GNSS (Global Navigation Satellite System),
CFD (Computational Fluid Dynamics),
LEO (Low Earth Orbit) ,
GEO (Geostationary Orbit),
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Table 3.8: Additional Corpora Statistics

Mission
Requirements

ECSS
Requirements

Corpus Size 17 KB 10 MB
Nb. of

sentences
100 27,016

Nb. of
tokens

1,297 382,990

Average
Nb. of
tokens

per sentences

13 14

Dictionary
Size

477 11,478

Nb. of
MW

23
(12 unique)

9,220
(1,020 unique)

Top 5
MW

ground segment, data handling,
propulsion system, control system,

bit error rate

application process, space segment,
propulsion system, ground segment,

execution notification
Nb. of

acronyms
expanded

63
(17 unique)

7,828
(646 unique)

Top 5
acronyms

TBC
(To Be Confirmed),

OBDH
(On-Board Data Handling),

AOCS
(Attitude and Orbit Control System),

TCS
(Thermal Control System),

S/C
(Spacecraft)

PCB
(Printed Circuit Board),

OBCP
(Original Baseline Cost Plan) ,

DRD
(Document Requirements Definition),

AOCS,
RF

(Radio Frequency)
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3.3 Semi-structured Data Collection

An Engineering Model (EM) is the equivalent of a spacecraft design blueprint. As

the Concurrent Engineering process is iterative, one EM may contain several design

iterations of a same spacecraft. Within one iteration, several design options are usually

studied to facilitate trade-offs decisions. For instance, one design option might have a

propulsion system and a second option not. Each design option is linked to a spacecraft

product tree, organised per subsystem and containing the parameters of each equipment

as shown in Figure 3.9.

Figure 3.9: Unformalised Schema of a basic Engineering Model structure

61



Chapter 3. Corpus

3.3.1 The ECSS-E-TM-10-25A Technical Memorandum

EMs generated during feasibility studies by the ESTEC CDF team are based on the data

model defined in the ECSS-E-TM-10-25A technical memorandum [72]. This memoran-

dum defines the recommendations for model-based data exchange at the early phases

of engineering design. In [95], the International Council on Systems Engineering (IN-

COSE) defines MBSE as:

The formalised application of modeling to support system requirements,

design, analysis, verification and validation activities beginning in the con-

ceptual design phase and continuing throughout development and later life

cycle phases.

System Markup Language (SysML) is the standard architecture modeling language

for MBSE applications 4. SysML is based on Unified Modeling Language (UML), the

language in which the information model of the EMs is written. UML is furthermore

introduced in Section 6.3.

A standardised data model is necessary for CE facilities to cooperate on concurrent

design, enabling them to exchange models and definitions. The ECSS-E-TM-10-25A

TM addresses the Phase 0 and A, but is not specific to space mission design and can

be applied to various engineering fields. Although a technical memorandum is not a

normative document, it is a first step towards standardisation. The data exchange

protocol is split into two parts:

1. The System Engineering Information Model: The information model is

called the System Engineering Information Model (SEIM). It is the core of the

data model and defines the main object type and the relationships between them

as shown on Figure 3.10. The SEIM is defined in the Annex A of the techni-

cal memorandum, and is provided in three formats: as a UML model, as an

ISO 10303-11 EXPRESS SCHEMA specification, and as an XML Schema (XSD)

specification. UML notation will be introduced in Chapter 4.

4https://sysml.org/
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2. The System Engineering Reference Data Library (SERDL): The SERDL

is a reference data library storing predefined parameters that are often used in

studies. For instance, expert disciplines such as Thermal or System Engineering

are already defined in the SERDL and can easily be assigned to study participants.

The SERDL is specified in the Annex B of the technical memorandum, an extract

is shown on Figure 3.11.

As shown on Figure 3.10, the object types and relationships are not specific to space

systems. The objects such as Option, Equipment, or Element could be applied to any

engineering field. This flexibility however comes at the expense of the semantics.

Figure 3.10: SEIM main information object types and relationships (informal UML
class diagram) as seen in [72].

The two main software packages currently implementing the ECSS-E-TM-10-25A

data model are the Open Concurrent Design Tool (OCDT) used by ESA and the

Concurrent Design Platform CDP4 developed by the RHEA Group. Both software

allow to visualise and update the product tree of the design options and iterations in

near real-time. The software allows the experts to update the spacecraft design during

design sessions and share the updates with the rest of the team.
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Figure 3.11: Example of SERDL content for roles and disciplines instances (UML class
/ object diagram) as seen in [72].

The spacecraft design is stored on a server. When a new element is defined, or

a parameter value is updated, the modifications are pushed to the server. Then the

experts can pull down the updated value and are therefore always up-to-date with

the latest parameter values. In March 2021, RHEA and ESA announced the future

deployment of a new tool merging OCDT with the CDP4, called COMET [96]. In this

thesis, EMs are generated with the CDP4 Community Edition.

The Open Concurrent Design Tool (OCDT)

The OCDT is a client/server software package developed under an ESA contract. It

has a three tier architecture based on clients, web services and database server as

illustrated in Figure 3.12. The data is stored in a PostgreSQL database for persistent

data storage. ConCORDE, standing for Concurrent Concepts, Options, Requirements

and Design Editor, is the main end-user client tool. ConCORDE is implemented as
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a plug-in to Microsoft Excel. The interaction between the database and the clients

is handled by the Web Services Processors (WSP). According to [97], the server can

support CE teams of more than 20 experts, and the model content can be synchronised

at least twice a minute. The OCDT software package is distributed under an ESA

community open source software licence, and is only available to users qualifying as

members of the OCDT Community. Only organisation that are legally based in an

ESA member state or cooperating state can qualify.

Figure 3.12: OCDT Architecture derived from [97]

CDP4 Community Edition

The CDP4 has a similar architecture as the OCDT, however it is an open-source tool.

The CDP4 back-end is a database storing all the Engineering Models, transactions

to and from the database are managed by the CDP4 Web Services [98]. The CDP4

client enables the domain engineers to open and edit the different EMs. The CDP4

client is implemented both as an Excel plugin and as a desktop application. The CDP4

client also offers different plug-ins for domain-specific tools, including an integration
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of the satsearch database5 allowing a live search of equipment [99]. Finally, CDP4

implements the export of Engineering Models with the JSON protocol, as defined in

the Annex C of the ECSS-E-TM-10-25A. Figure 3.13 shows the product tree for the

final iteration of the STRATHcube study (presented below) visualised with the CDP4

desktop application.

Figure 3.13: Product Tree of the STRATHcube mission final iteration visualised with
the CDP4 desktop application.

3.3.2 Engineering Models Library

The EMs library includes the models of NEACORE and STRATHcube, two feasibility

studies led at the CCDS, the Strathclyde’s concurrent engineering facility. The CDP4-

Community Edition was used for both studies to store each iteration and design options.

5https://satsearch.co/
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NEACORE

NEACORE, standing for Nanospacecraft Exploration of Asteroids by COllision and

flyby REconnaissance, is an interplanetary mission concept involving up to six 12U

CubeSats [35]. A CubeSat is a small satellite made of several cubic units. 1U corre-

sponds to the basic unit of 10cm3. A 3U CubeSat consists in 3 basic units stacked on

top of each other. The primary scientific goal of the mission is to improve the knowl-

edge of Near-Earth Asteroids (NEAs). To do so, two different sets of payloads were

considered, involving a Light Detection and Ranging (LIDAR) device and a camera to

measure the NEA’s position, velocity and shape, as well as a spectrometer to map the

surface composition of the asteroid. The mission is expected to last between 3 and 6

years, with a low-thrust propulsion system.

This study was led at the CCDS, in the frame of a first internal Concurrent Design

Challenge meant to familiarise students with the CE process. 17 PhD students from the

Departments of Mechanical & Aerospace Engineering (MAE) and Electronic & Elec-

trical Engineering (EEE) participated in the challenge over a week in April 2019. The

challenge structure was inspired from the ESA Academy yearly Concurrent Engineering

Challenge.

Throughout the challenge, the design was iterated three times. All iterations were

recorded in the engineering model. The final design iteration involves two options

with different sets of payloads as the LIDAR, spectrometer and camera could not be

accommodated on the same spacecraft. A common spacecraft platform was designed to

support both design options. The mass budgets of both options for the final iteration

are summarised in Table 3.9. The final design for the LIDAR option is displayed on

Figure 3.14.

Table 3.9: Mass Budget of the NEACORE mission final design

Subsystem
Mass [kg]

LIDAR Option
Mass [kg]

Spectrometer Option

Bus 17.9 17.9
Instrument 2.69 1.44

Total Dry mass 20.59 19.34
Total Dry Mass with 10% margin 22.65 21.27
Total Wet Mass with 10% margin 24.24 22.86
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Figure 3.14: NEACORE Configuration with the LIDAR payload as seen in [35]

STRATHcube

The feasibility study for the STRATHcube mission took place remotely during the

COVID-19 pandemic lockdown in May 2020. The CE approach was thus adapted to

the local social distancing restrictions as presented in [34]. 29 students participated in

this challenge. The mission concept was developed in support of an internal student-led

application to the ESA Education ‘Fly Your Satellite’ programme. The latter program

enables students to launch a CubeSat in Low Earth Orbit (LEO) from the International

Space Station (ISS).

As specified by the ESA program, the volume of the candidate mission is limited

to a 3U CubeSat [100]. Its primary scientific objective is to identify space debris with

a 3D phased array antenna. A secondary objective is to perform measurements during

re-entry using several heat flux, pressure sensors and UV/visual spectrometers [101].

The mission is expected to run for a minimum of 6 months.

The design was iterated three times during the feasibility study. Several design

options were considered. A key mission driver was the size of the payload antenna which

required a 3U platform and could not be accommodated with a propulsion system.

After in-dept mission analysis, the propulsion system was discarded, greatly alleviating
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the cost and mass budgets. Eventually, the final iteration converged towards a single

design option involving the 3D phase array antenna and a 3U platform shown on

Figure 3.15. The primary and secondary payloads weight 2 kg. A 1.44 kg bus was

designed to support the payloads. With a system margin of 10%, the final mass of

the STRATHcube CubeSat is 3.78 kg. This is 5.6% below the maximum mass for a

standard 3U CubeSat [100].

Figure 3.15: STRATHcube final iteration 3U configuration

As for the NEACORE study, participants were encouraged to report their subsystem

equipment and parameters in the study’s EM. Figure 3.13 displays the product tree for

the final iteration of the STRATHcube study. The top element is the spacecraft, then

subtypes corresponds to the different spacecraft subsystems. The Subsystem - Power

branch is expanded to display its various equipment. In the left window, Element

definitions, new components can be defined as well as their parameters. For instance

a new solar panel can be defined, its volume and efficiency parameters specified. The

Element definitions window is used to store equipment, as a virtual shelf. To be actually

used on the spacecraft and appear on the product tree, they must be assigned to a

subsystem as an Element usage.
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3.4 Chapter Summary

This chapter presented the corpora, both unstructured and semi-structured, used to

train the various methods and generate the results of this thesis. The text collection is

the first open-source curated textual data set related to space systems. Table 3.10 sum-

marises the usage of the unstructured data in Chapters 4 and 5. The semi-structured

data set is used in Chapters 6.

Table 3.10: Unstructured data collection usage

Main texts Additional texts

Method Reports
Journal

Publications
Books

Wiki
Pages

Mission
Req.

ECSS
Req.

Lexicon
Generation

in 4.3
Analysis X X X X - -

Topic
Modelling

in 5.2

Training X X X X - -
Case
Study

- - - - X -

Word
Embedding

in 4.4

Training X X X X - -
Case
Study

X X X X - -

Document
Embedding

in 5.3

Training - - - - - X
Case
Study

X - - - - -

Contextualised
Embedding

in 4.5

Training - X X X - -
Case
Study

- - - - - X
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Towards a Space Systems

Ontology

4.1 Chapter Overview

Large amounts of unstructured data have been accumulated over the past decades in the

field of space systems engineering. To centralise data from heterogeneous sources into

the DEA’s Knowledge Graph, a common conceptual model, an ontology, is needed.

Unfortunately, there is currently no standardised European space systems ontology,

and creating an ontology is a tedious and lengthy task requiring several domain and

ontology experts.

This chapter explores the possibility to semi-automatically generate the first ele-

ments of a space systems ontology based on the Ontology Learning Layer Cake frame-

work. Following an introduction to the latter framework, statistical methods are applied

to generate a domain-specific terminology from unstructured data. A new word em-

bedding (word2vec) model is trained to then identify domain-specific synonyms and

concepts. Lastly, a novel family of contextualised embedding models, based on the

Transformer architecture, learns deep embeddings of concepts related to space systems.

71



Chapter 4. Towards a Space Systems Ontology

4.2 Introduction to Ontology Learning

The universe of discourse represents all aspects of the world, concepts, facts addressed

by a domain. A conceptual schema, or an ontology, formulates the universe of discourse

by defining all of its relevant concepts, properties and relations. An ontology therefore

contains the necessary knowledge to structure domain-specific textual data, and from

there build the reasoning capacities of a virtual assistant. Unfortunately, there is

currently no standardised European space systems ontology, although discussions were

kick-started by the ESA Overall Semantic Modelling for System Engineering (OSMoSE)

initiative in June 2019 [102]. The OSMoSE initiative aims to develop a space systems

ontology to facilitate information exchange through interoperability between model-

based infrastructures. Semantic interoperability is enabled by a common language: an

ontology. Developing an ontology is however a lengthy and tedious process, involving

several human domain experts, and therefore prone to human error and subjectivity.

The work presented here studies the possibility of accelerating the first phases of

the ontology development by semi-automatically identifying terms, synonyms and con-

cepts from unstructured data. The methodology relies on natural language processing

and follows the steps of the Ontology Learning Layer Cake framework defined by Cimi-

ano [103] and Buitelaar et al. [104] structuring automatic ontology generation. This

bottom-up approach enables the identification of terms and concepts used in practice

by engineers.

4.2.1 Knowledge Representation and Formal Logic

Lakemeter and Nebel [105] define Knowledge Representation (KR) as

the area of Artificial Intelligence that deals with the problem of representing,

maintaining, and manipulating knowledge about an application domain.

KR is, here, understood as a machine-understandable representation of reality, although

it is also a medium for human expression and communication as well [106]. According

to [106], KR provides a representation of the reality, and ontologies, by providing a

committing set of terms and relations, are at the heart of KR systems.
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Logic is required for representing knowledge and eventually allow reasoning ac-

cording to Nebel [107]. Two common logic systems are First-Order Logic (FOL) and

Description Logics (DL) [108]. In FOL, universal and existential quantifiers allow as-

sertions about sets of objects as seen in the below logical axioms, 4.2 and 4.2. An

axiom, also known as postulate or assumption, is a statement taken to be true. Axioms

serve as starting point for further reasoning and arguments. With the FOL quantifiers,

the predicate All spacecraft have an orbit in natural language becomes:

∀X : Spacecraft(X) ⇒ hasOrbit(X) (4.1)

and the predicate There are (one or more) payload on spacecraft :

∃X : Spacecraft(X) ∧ hasPayload(X) (4.2)

DL is a family of languages for KR. Most DLs are a subset of FOL, but they gen-

erally present a better compromise of expressivity and scalability than FOL [109]. DL

systems are generally characterised by a T-box and an A-Box composing the Knowl-

edge Base, as well as a R-box [110]. The T-box is a set of terminological axioms, it

contains assertions about concepts, for instance, Subsystem ⊑ Spacecraft (Subsys-

tem is a subsumption of Spacecraft) and Contractor ≡ Stakeholder (Contractor is the

equivalent of a Stakeholder). The A-box is a set of assertional axioms, it contains the

instances of T-box concepts, for instance, isMainPayload(TROPOMI, Sentinel − 5)

or Sentinel − 5 : Spacecraft.The R-box is a role box and contains assertions about

roles, for instance, isLaunched ⊑ hasOrbit.

The logical basis of semantic web technologies, including the Web Ontology Lan-

guage, OWL, is based on DL. This family of logic is in fact at the basis of several

ontologies’ formal models.
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4.2.2 Ontologies

Definition

In 1993, Tom Gruber, a figure in the field of ontologies, defined the notion of an

ontology as an “explicit, formal specification of a shared conceptualization” [111]. By

explicit, Gruber means that all concepts must be defined, by formal that it must be

machine-understandable, and by shared that there must be consensus.

Gruber refined his definition in the Encyclopedia of Databases Systems [112] in

2008:

In the context of computer and information sciences, an ontology defines a

set of representational primitives with which to model a domain of knowl-

edge or discourse. The representational primitives are typically classes (or

sets), attributes (or properties), and relationships (or relations among class

members). The definitions of the representational primitives include infor-

mation about their meaning and constraints on their logically consistent

application.

Sabou in [113] concurs with the above adding that ontologies provide a common

vocabulary field and concepts definition facilitating human-human, human-machine and

machine-machine communications. To summarise, ontologies standardise the semantics

of a field of knowledge. As underlined by Maedche and Staab, in [114], ontologies

significantly contributed to the success of the Semantic Web. The latter is an extension

of the World Wide Web through standards set by the World Wide Web Consortium

(W3C) to structure the content of web pages into machine-readable data.

The basic elements of an ontology are the classes (entities), attributes and relation-

ships. An example of a basic ontology for a space mission is displayed in Figure 4.1. The

entity Spacecraft has two attributes, status and missionObjectives. Both of these at-

tributes provide information on the mission’s status, for instance, operational, planned,

or decommissioned, and on its objectives, for instance, wildfire monitoring or biomass

measurements. The Spacecraft entity is related to an Orbit entity. The latter has sev-

eral attributes, inclination, altitude, period, and type defining the orbital parameters.
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The GroundStation entity is linked to the Spacecraft entity through an uplink relation-

ship, mimicking the upload of commands to the spacecraft. The latter is related to

the GroundStation entity through a downlink entity representing the transmission of

space-based measurements to the ground. Finally, the GroundStation entity is related

to a Country entity by the locatedIn relation.

Figure 4.1: Example of a simple space mission ontology, entities are shown in grey
rectangles, attributes in circles and relationships as lines.

Figure 4.2 displays an example of the above ontology, populated with data on the

SMOS (Soil Moisture and Ocean Salinity)1 mission.

Figure 4.2: Example of a populated ontology

1https://directory.eoportal.org/web/eoportal/satellite-missions/s/smos
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An ontology differs from a glossary of terms, a taxonomy or a thesauri as:

1. a glossary lists terms and their definition,

2. a taxonomy classifies concepts,

3. a thesauri provides the association and relations of concepts,

4. but only an ontology provides the rules and knowledge about which relations are

allowed and make sense.

Ontology types

Roussey et al. [108] present two different types of ontology classification, either based on

the language expressivity and formality, or based on the scope. According to the first

classification, the goal is, in this thesis, to develop a Formal Ontology, relying on formal

logic. This ontology type is the only one that contains logical definitions according

to [108]. The standard of the World Wide Web, OWL is a formal ontology. Since

the ontology developed here targets the domain of space systems, it is also a domain

ontology. Domain ontologies are only applicable to a specific universe of discourse.

4.2.3 Ontology Learning Layer Cake

Coined by Maedche and Staab, in [114], Ontology Learning (OL) is a field of research en-

compassing the set of methods and techniques to build an ontology in a semi-automatic

fashion. The work presented here addresses OL from text. The latter relies on text min-

ing approaches to extract an ontology from textual data. The recent advances in NLP

and ML have boosted OL from text as underlined by Lourdusamy and Abraham [115].

Cimiano [103] and Buitelaar et al. [104] attempted to structure the tasks of OL. The

results is the so-called Ontology Learning Layer Cake shown in Figure 4.3. The output

of the bottom layer feeds the upper layer, building step-by-step, an ontology. The first

layer consists in the acquisition of the relevant basic building blocks, the terms. The

second layer merges synonym terms. For instance, the words satellite and spacecraft

are synonyms. Then, similar terms are clustered into concepts. The words c-band and

k-band belong, for instance, to a frequency band concept. The Relations layer links

76



Chapter 4. Towards a Space Systems Ontology

the different concepts through various relationships. For instance, the antenna concept

is linked to a frequency band. Lastly, the Axioms layer defines the axiom schemata

and definitions. They are propositions which are always taken as true. As shown

on Figure 4.3, each antenna x is connected to a frequency band y. Axioms can thus

be used as a starting point for reasoning and deducing other axioms or for verifying

the ontology integrity. Staad and Struder [116], Wong et al. [117], and Lehmann and

Völker [118] all agree that the Layer Cake has become a reference to structure the steps

of OL.

Figure 4.3: Ontology Learning Layer Cake derived from [103]

To summarise, the OL Layer Cake is a framework to semi-automatically build on-

tologies. To build an ontology from scratch, one has to follow all the steps described

in Figure 4.3. Various methods can be applied to complete those steps.
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4.3 Domain-Specific Lexicon Generation

The methodology and results from this section were partly presented in “Space mission

design ontology: extraction of domain-specific entities and concepts similarity analysis”

by Berquand, A., Moshfeghi, Y., and Riccardi, A. at the AIAA Scitech 2020 Forum in-

vited session on Cognitive Assistants [11], and at the OSMoSE Space System Ontology

first brainstorming workshop in June 2019 [102].

This section addresses the semi-automatic generation of the Term layer of the OL

Layer Cake. The research presented here makes the following contributions:

1. The Ontology Learning Layer Cake framework is, for the first time, applied to a

collection of texts related to space systems.

2. Statistical methods accelerate the construction of a domain-specific lexicon by

identifying common concepts in the literature, but they are not sufficient to pro-

duce a complete lexicon.

Section 4.3.1 provides the background on previous similar work. Section 4.3.2 briefly

summarises the approach which is detailed in depth in Section 4.3.3. Finally, the results

of the domain-specific lexica generation and validation are presented and discussed in

Section 4.3.4.

4.3.1 Background

In [119], Marciniak and Mykowiecka recover around 80% of known domain words from

1,200 hospital discharge documents with a frequency based method. Martin-Chozas and

Calleja, in [120], apply two frequency-based methods, C-value and tf-idf, to extract a

terminology related to Spanish labour law. The authors do note that the Part-Of-

Speech (POS) tagging errors in the processing affect their results. Human validation

will be used in this study to compensate similar POS errors. They also underline

the advantages of using several extraction methods to highlight different features of

the corpus. Finally, Ahmad and Gillam, in [121], describe an approach to extract

keywords from a collection of documents related to nuclear physics, in the frame of
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ontology construction. The author do not filter nouns with Part-Of-Speech tagging

but concludes that their keywords are mostly nouns. They produce a terminology

based on a frequency analysis and a Weirdness Index filtering. their approach is similar

to the one presented here.

4.3.2 Approach

Statistical methods of text mining are applied here to build the Term layer of the OL

Layer Cake. The terminology related to space systems is semi-automatically extracted

from the main text collection presented in Section 3.2.1.

The lexicon is to be generated in two steps: (i) domain-specific terms are identified

from a frequency-based analysis enhanced with an additional filtering with either tf-

idf or the Weirdness Index, (ii) the terms are validated against a general lexicon and

a domain-specific dictionary. The approach is summarised in Figure 4.4 and further

detailed in the methodology section.

Figure 4.4: Methodology for lexicon generation

4.3.3 Methodology

Lexicon Generation:

In English, words are associated to a Part-Of-Speech (POS), also called syntactic cate-

gory, addressing words with similar grammatical properties. The classic POS categories

are adjective, adverb, conjunction, determiner, interjection, noun, numeral, preposition,

pronoun, and verb. POS tagging is a common NLP task associating tokens with their

syntactic category. Each category is divided into sub-categories identified by a unique

79



Chapter 4. Towards a Space Systems Ontology

tag by the NLTK POS tagger as shown in Table 4.1. Several non-grammatical tags

such as FW (Foreign Word) or SYM (Symbol) can also be identified by the NLTK

POS tagger.

Figure 4.5 displays the tags distribution for each subcorpus dictionary with the

exception of categories representing less than 1% of words. Several categories are not

represented as the POS tagging is applied to processed text and, for instance, all sym-

bols and stop words have been filtered. To compare with a large corpus of general

English text, the POS tags for the British National Corpus (BNC) dictionary are also

compiled. The BNC2 is a 100 million word collection from various general British En-

glish sources, ranging from regional newspaper to popular fiction and academic books.

It is managed by Oxford University Computing Services on behalf of the BNC Con-

sortium. As shown on Figure 4.5, the distributions are similar for the domain-specific

and general dictionaries, with the noun being a predominant syntactic category.

Figure 4.5: Distribution of the Part-of-Speech tags found in the study corpora and the
British National Corpus (BNC).

2http://www.natcorp.ox.ac.uk/
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Table 4.1: Part-of-Speech tags of the NLTK POS Tagger

Part of
Speech

Tag Definition Examples

Adjective
JJ adjective obscure, hot,

JJR comparative adjective easier, cleaner
JJS superlative adjective largest, greatest

Adverb

RB adverb safely, remotely
RBR comparative adverb lesser, heavier
RBS superlative adverb furthest, worst
WRB wh-adverb however which

Conjunction CC conjunction, coordinating altogether, either

Determiner
DT determiner another, every

PDT pre-determiner both, many
WDT wh-determiner that, what

Interjection UH interjection wow, ah

Noun

NN common noun, singular or mass satellite, rocket
NNS common noun, plural orbits, subsystems
NNP proper noun, singular airbus, esa

NNPS proper noun, plural Great Lakes, Andes
Numeral CD numeral, cardinal seven, million

Preposition
IN preposition, subordinating upon, above
TO “to” as preposition to

Pronoun

PRP personal pronoun she, ours
PRP$ possessive pronoun her, mine
WP wh-pronoun whom, whosoever
WP$ possessive wh-pronoun whose

Verb

VB verb, base form disrupt, authorise
VBD verb, past tense wrapped, filtered
VBG verb, present participle or gerund stopping, refueling
VBN verb, past participle fixed, registered

VBP
verb, present tense,

not 3rd person singular
launch, measure

VBZ
verb, present tense,
3rd person singular

observes, uploads

MD modal auxiliary should, might

Other

EX existential there there
FW foreign word bonjour soleil
POS genitive marker ’s
LS list item marker A.a, 1.2
RP particle on, into

SYM symbol %, $
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Concepts are primarily nouns, the lexicon terms are thus limited to singular and

plural common nouns, respectively tagged as NN and NNS. Proper nouns, NNP and

NNPS, are filtered as they represent named entities that could be seen as the instantia-

tion of concepts. For instance, Sentinel-1 is the name of a satellite, an instantiation of

the concept spacecraft. Verbs will become of interest to link space systems concepts at

a later stage. As shown in Figure 4.6, the majority of noun tags corresponds to singular

and plural common nouns. The singular and plural proper noun actually represent less

than 5% of noun tags. The BNC dictionary has a higher proportion of plural nouns

as the domain-specific corpus was subject to lemmatisation in the NLP pipeline. The

lemmatisation process is however not perfect and has failed to map several plural terms

to their singular lemma.

Figure 4.6: Distribution of common and proper nouns tags found in the corpora

A key assumption for generating the lexica is that a document related to a specific

topic will more frequently use domain-specific words. Thus a first lexicon is generated

with a frequency analysis. This analysis is however not sufficient to ensure that the

extracted terms are domain-specific and not just common words frequently used in

English. To remove frequent but common words, an additional filtering is done either

with a tf-idf analysis or the Weirdness Index (WI) [121].
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This method yields three lexica:

1. Lexicon 1: Term Frequency

This lexicon includes all nouns with a frequency above a set threshold.

2. Lexicon 2: Term Frequency + tf-idf

This lexicon is built on top of the first lexicon, filtering tokens with tf-idf scores

below a set threshold. Tf-idf was previously defined in Section 3.2, Equation 3.1.

In the NLP pipeline, the tf-idf scores are used to filter the terms with low tf-idf

scores and therefore low informativeness value, while for the Terms layer, words

with a tf-idf above a set threshold are kept.

3. Lexicon 3: Term Frequency + Weirdness Index (WI)

This third lexicon is built on top of the first lexicon with an additional filtering

based on the Weirdness Index (WI). This method is presented in [121] applied to a

nuclear physics corpus. This index allows to compare the use of a word, based on

its frequency, between a domain-specific corpus and a large corpus representing

the general language. In this case, the latter corpus used is the BNC. The index,

WI, is defined in [121] as:

WI =
NGfS

(1 + fG)NS
(4.3)

where fS is the frequency of the word in the specialised corpus, fG its frequency in

the general corpus, the BNC, and NS , NG are respectively the number of tokens

in the specialised and general corpus. Only terms with a WI above a set threshold

are kept.

This methodology is applied to each subcorpus to highlight the difference in lan-

guage per source. A final human-curated lexicon is generated combining all four text

sources. To select the cut-off thresholds, the variations of the z-score, also called stan-

dard score, are computed for each corpus. The z-score is a statistical measurement

to position a value with respect to the average of a group of values. A z-score of 0

corresponds to the average, a score of 1 corresponds to a value one standard deviation
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from the average. The z-score is defined as:

zi =
xi − µ

σ
(4.4)

where zi is the z-score of a value, µ the average of the values sample, and σ the

standard deviation.

Lexicon validation:

As underlined in [115], there is currently no gold standard evaluation for OL. To evalu-

ate the quality of the lexica generated, two comparisons are done with a general English

lexicon and a domain-specific dictionary:

1. Comparison to a general English lexicon: WordNet. WordNet is an open-

source large lexical database of English, developed by the Princeton University

[92]. Calling Wordnet a ‘lexicon’, a list of words, is a misuse of language as the

authors developed a tool that resembles a thesaurus, gathering synonyms into

synsets. WordNet is however used as a mere lexicon for this validation step. The

assumption is that classic English thesauri such as WordNet do not contain all

domain-specific terms. Therefore, to represent a domain-specific lexicon, the final

lexicon of candidate entities should minimise the number of entities also found in

WordNet.

2. Comparison to a domain-specific dictionary: ECSS Terms and Ac-

cronyms. The ECSS glossary of terms and definitions is a human validated

dictionary of terms related to space systems [122]. This glossary is already partly

used in the NLP pipeline to identify multi-words. The glossary is a human val-

idated space systems lexicon. The ECSS list of abbreviated terms [18] com-

plements the multi-words lexicon for this validation steps. The final lexicon of

candidate entities automatically extracted should maximise the number of entities

also found in the ECSS documents.
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4.3.4 Results & Discussion

Threshold selection

For each corpus’s dictionary, the z-score of each term’s frequency is computed. The

distributions of z-scores obtained for the book corpus is displayed Figure 4.7. A simi-

lar trend emerges for all corpora, where a majority of words are between −0.5 of the

standard deviation and 0 (corresponding to the frequency average). Similar figures

are obtained with the tf-idf and WI-based lexica. To focus on the terms with highest

frequency, tf-idf and WI scores, the threshold is set to a null z-score, thus all terms

respectively above the average frequency, tf-idf or WI score are kept.

Figure 4.7: Frequency-based Z-score distribution for the book corpus
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Lexica Generation

Tables 4.2, 4.3, and 4.4 respectively display the lexica obtained with the frequency

analysis, tf-idf, and the WI scoring. The largest frequency lexica is extracted from the

Publications corpus, which is also the largest corpus containing 151, 972 unique common

nouns. Similar words are found within the top terms of each lexicon, suggesting a

high overlap of the frequency lexica’ content. The redundancy in frequency lexica is

confirmed by Figure 4.8a. Since the tf-idf and WI lexica are built from the frequency

lexicon, they contain less terms but they do push forward terms that are more specific

to each corpus. The tf-idf score is computed with respect to all four corpora, as shown

in Figure 4.8b, this results in a lexicon specific to each corpus. For instance, the top

words of the reports corpus include words such as requirement, margin, design driver

and preliminary (design) which correspond to a corpus focused on describing design

options answering to a set of requirements and mission objectives. On the other hand,

the WI lexica highlight domain-specific multi-words, 2-grams and higher, which are less

likely found in a common corpus. As seen in Table 4.4, there is a higher density of

multi-words found in the top 10 words, such as global positioning system or low earth

orbit. The WI lexicon does also succeed in highlighting the specifics of each corpus,

with words such as trade-off or technology readiness level, found in the reports corpus’s

lexicon. However, by focusing on highly uncommon words, the WI-based lexicon skips

basic terms such as mission or satellite that are necessary to build an ontology of space

systems. Several words, such as arise or surveying, were misclassified as common nouns

and eluded the POS filtering. Removing these, as well as additional noise, requires

human annotators.
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Table 4.2: Frequency lexica. Words in blue appear in more than one lexicon.

Corpus Reports Publications Books Wikipedia

Dict. Size 28,651 254,482 69,905 28,782
Unique
Nouns

15,185 151,972 37,644 15,436

Lexicon Size 1,367 6,957 2,812 1,862
Average (std) 49 (363.2) 58 (1025.6) 38 (403.7) 17 (95.9)

Top
10

words

mission model satellite space
mass time system system

system control orbit satellite
design system spacecraft spacecraft

spacecraft method space energy
requirement result time earth

power space data power
orbit flow mission field
option value design time
cost data power mission

Bottom
5

words

close-up bnnts grass de-orbit

projection beam plasma
mean time
to failure

surveying

radiosisotope
heater unit

turbulence flame cryocooler barycenter

hydrogen gpls coopetition gradiometers
yelle seaplane exceedance multi junction
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Table 4.3: Tf-Idf lexica. Words in blue appear in more than one lexicon.

Corpus Reports Publications Books Wikipedia

Frequency
Lexicon Size

1,367 6,957 2,812 1,862

Tf-idf
Lexicon Size

339 1,323 661 493

Average (std) 0.06 (0.15) 0.06 (0.17) 0.036 (0.11) 0.017 (0.045)

Top
10

words

requirement model satellite earth
minimum level orbit material
orbit science space space

propellant control altitude radio
margin space impact wave
payload flow requirement satellite

design drivers algorithm science right
potential orbital linear sail

degree profile operating cite
preliminary satellite accuracy permanent

Bottom
5

words

outer arise fibre curiosity
swing by solenoid sidereal day portrait

shell orlando telecontrol modeling

paint
coronal

mass ejection
acceptance joule

stabilisation enter education ambiant
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Table 4.4: WI lexica. Words in blue appear in more than one lexicon.

Corpus Reports Publications Books Wikipedia

Frequency
Lexicon
Size

1,367 6,957 2,812 1,862

WI
Lexicon
Size

270 1,480 551 263

Average
(std)

19,694 (63,500) 8,589 (31579) 5,886 (21,815) 2,145 (8,117)

Top
10

words

attitude and orbit
control system

global
positioning

system
maneuver

global
positioning

system

trade-off aerosp
global

positioning
system

flyby

technology
readiness level

computational
fluid dynamics

geostationary
orbit

dynamic random
access memory

design drivers scramjet low earth orbit maneuver

perigee combustor on-board
pressurised pressure

vessel
guidance navigation

and control
real time radio frequency deep space

electric propulsion
geostationary

orbit
on-board computer radio frequency

downlink root mean square downlink delta-v
low earth orbit low earth orbit real-time alternating current

ground station finite element
power control

and distribution unit
central

processing unit

Bottom
5

words

yelle near space astrophys download
telemetry protoflight model fiber payload

deg/sec
human machine

interface
gyroscope radioisotope

antenna
international

terrestrial
reference system

dayside fresnel

ccds compressor mbps joule
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(a) Frequency lexica (b) Tf-Idf lexica

(c) WI lexica

Figure 4.8: Overlapping of lexica

Lexica Validation

Figures 4.9 and 4.10 respectively display, for each lexicon and each corpus, the percent-

age of tokens also found in WordNet and in the ECSS glossary of terms and acronyms.

As previously described, the assumption is that a valid space system set of terms would

minimise the similarity with a general lexicon such as WordNet and maximise the simi-

larity with a domain-specific lexicon such as the ECSS glossary of terms and acronyms.

Based on Fig.4.9, the percentages of terms found in both corpora and WordNet are
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high for all frequency-based and tf-idf lexica. The WI lexica have significantly less in

common with the WordNet lexicon, and is thus confirmed as the most efficient method

for extracting domain-specific terms.

On the other hand, the similarity with the ECSS-based lexicon was low. The

maximums for each lexicon types were achieved for the ESA reports corpus. The

latter is the most likely to adhere to the European standards, and therefore to include

ECSS terms and acronyms. The WI approach had the most overlap with the glossary,

demonstrating the approach’s efficiency in highlighting highly technical terms. Yet,

the maximum similarity observed was only of 25.9%. Basic words such as orbit and

mass, but also complex terms such as line of sight or design driver, were found in

the automatically generated lexica but not in the ECSS glossary. Table 4.5 provides

additional examples of the overlap and separation.

The semi-generated lexica and the ECSS glossary of terms have a too low overlap to

demonstrate that statistical methods are sufficient to reconstruct a complete domain-

specific lexicon. These results highlights the difference between the bottom-up and top-

down approaches, and the fact that the ECSS glossary might not reflect the terminology

used in practice. The terms discovered in the texts could thus be used to enrich lexica

generated with a top-down approach.

Table 4.5: Sample of terms only found in the semi-automatically generated lexicon or
in the ECSS glossary, as well as terms found in both.

Terms only found in
the semi-automatic lexica

Terms found in
both lexica

Terms only found in
the ECSS lexicon

acceptance review,
center of mass,

delta v,
ground station,

perigee

baseline,
design,
lifetime,
payload,

propellant

nominal condition,
on-board memory,

product tree,
software unit,
transmitter

Merged Lexicon

The four frequency-based lexica, which include all terms from the tf-idf and WI lexica,

are merged into a single combined lexicon. It could have been argued that only the WI

lexica should be merged as they shared the most similarities with the ECSS glossary.
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However, these lexica also failed to cover basic terms such as mission and satellite, found

in the frequency-based lexica, which are highly relevant to a space systems ontology.

The terms are sorted in alphabetical order, discarding the frequency values as the

corpora have disproportionate sizes. The final curated lexicon contains 3,511 terms,

validated by human annotators. This lexicon includes 22% of the ECSS glossary terms.

It is used as input for the Synonym layer implementation presented in Section 4.4.

4.3.5 Conclusions

This section outlined a first application of the OL Layer Cake to a corpus related to

space systems. The methodology for the Terms layer, based on a frequency analy-

sis, complemented with a tf-idf and a Weirdness Index filtering, semi-automatically

identify key terms in space systems engineering. The frequency-based lexica extract

fundamental and basic terms, while the tf-idf and WI methods respectively highlight

corpus-specific and complex words (n-grams). With the POS misclassification and

remaining noise, human domain-experts are still required to validate the lexicon terms.

These statistical methods are however not sufficient to reconstruct a complete

domain-specific lexicon as the semi-generated lexica have a low overlap with the domain-

specific glossary. On the other hand, this also means that the manually curated lex-

icon does not integrate terms commonly found in the domain-specific literature. The

bottom-up statistical approach presented here could therefore be used to complement

top-down methods, or to promptly lay the basis for a new domain-specific lexicon.

In future work, additional text sources could be added to ensure the completeness of

the lexicon. When an official space systems ontology is released it will become possible

to more precisely quantify the completeness of the approach proposed here. In the

meantime, simple statistical methods as the ones presented here provide a robust base

for the construction of domain-specific terminology.
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Figure 4.9: Comparison between WordNet and all automatically generated lexica

Figure 4.10: Comparison between the ECSS glossary of terms and acronyms and all
automatically generated lexica
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4.4 Synonyms and Concepts with Word embedding

The approach and methodology from this section were presented in “Space mission de-

sign ontology: extraction of domain-specific entities and concepts similarity analysis”

by Berquand, A., Moshfeghi, Y., and Riccardi, A. at the AIAA Scitech 2020 Forum in-

vited session on Cognitive Assistants [11], and at the OSMoSE Space System Ontology

First brainstorming workshop in June 2019 [102].

In Section 4.3, a domain-specific lexicon is semi-automatically derived from a cor-

pus of textual data. This lexicon lays the first layer of an Ontology Learning Layer

Cake. As shown in Figure 4.3, the next layers are related to synonyms and concepts.

These steps refine the lexicon by merging synonym entities and clustering terms into

concepts. For instance, the words astronaut and cosmonaut, or satellite and spacecraft

are interexchangeable synonyms. The words c-band, l-band, and p-band all belong to

the concept of communication wavelength. Available British thesauri such as WordNet

provide a basis for similar concept identification. However, these thesauri are usually

not adapted to domain-specific terminologies.

The work presented here identifies the synonyms and concepts from a domain-

specific lexicon with a word embedding model trained for the first time on a corpus

of documents related to space systems. Word embedding methods map a word to a

representation vector depending on its context. Similar terms have similar context

and thus representation vectors. The word representations learned by the model can

thus contribute to the semi-automatic generation of the synonyms and concepts layers

of a space systems ontology. The vector representations of the domain-specific terms

are learned with a word2vec model trained with the main corpus of unstructured data

presented in Section 3.2.1. To summarise, the research presented in this section makes

the following contributions:

1. The second layer of the Ontology Learning Layer Cake is, for the first time,

applied to a collection of texts related to space systems.

2. A word embedding model, word2vec, is for the first time trained on a space
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systems corpus to produce domain-specific representation vectors.

3. The potential of using word embedding to identify similar terms and concepts

related to space systems engineering is demonstrated.

Section 4.4.1 provides the background on word embedding methods, the word2vec

architecture, as well as past similar work. Section 4.4.2 summarises the approach

to discover synonyms and concepts from the semi-automatically lexicon generated in

Section 4.3. Section 4.4.3 presents the hyper-parameters of the word2vec model and

the comparison metrics of cosine similarity. Finally, the representation vectors obtained

with the trained word2vec model are compared and discussed in Section 4.4.4.

4.4.1 Background

A detailed background on the origin and evolution of word embedding methods is pro-

vided in Appendix 8.2, Section 8.2.2. This section focuses on the word2vec framework.

Continuous Bag-of-Words and Skip-gram architectures

Mikolov et al. present two architectures for their word2vec framework [123], shown in

Figure 4.11. The first proposed architecture is the Continuous Bag-of-Words (CBOW)

model, similar to the FNNLM presented by Bengio et al. [124], but without the hidden

layer. While the FNNLM architecture only takes into account previous terms to predict

a next word, the CBOW architecture looks at the words both before and after the target

word. The range of words taken into account is called the context window. In this

architecture, the word order is not considered. The Skip-gram architecture is similar

to CBOW’s, but instead of predicting a word based on its surrounding terms, the

model attempts to predict the surrounding terms based on the target word. As defined

in [125], the training objective of the Skip-gram model is to maximise the average log

probability defined in Equation 4.5 as:

1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(wt+j |wt) (4.5)

where T is the number of embedded words, c the size of the context window and
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p(wt+j |wt) the probability of word wtj to be within the context window of the target

word wt.

In [123], Mikolov et al. observed than both CBOW and Skip-gram architectures

achieved higher accuracy on semantic and syntactic tasks than the feedforward NNLM

and Recurrent NNLM methods. The semantic tasks included for instance the iden-

tification of capital city relationship such as Bogota-Colombia or of currency such as

France-Euro. The syntactic tasks targeted among others the extraction of superlative

relationship such as fast-fastest or of nationality adjective such as Scotland-Scottish.

The Skip-gram architecture was shown to perform slightly worse than the CBOW on

syntactic but significantly better on semantic tasks. For the purpose of concept and

synonyms identification, the Skip-gram architecture will therefore be favoured here.

Figure 4.11: CBOW and SG Architecture, derived from [123]

Optimisation of the Skip-gram model

Soon after introducing the CBOW and Skip-gram architectures, Mikolov et al. released

a second paper [125], in which they suggested the use of sub-sampling of frequent words
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and Negative Sampling to reduce the computational cost and improve the embedding

quality of the Skip-gram architecture. With sub-sampling, the authors filter frequent

words with low informativeness value such as the or a and accelerate the learning. The

sub-sampling depends on the probability of each word wi defined in Equation 4.6 as:

P (wi) = 1 −

√
t

f(wi)
(4.6)

where f(wi) is the frequency of the word wi, and t a threshold of around 10−5

as suggested by the authors. Mikolov et al. encourage the use of subsampling as it

improves the training time and results in significantly better word representations.

The second contribution of their paper is the introduction of Negative Sampling

as an alternative to hierarchical softmax. In a neural network, softmax is a common

classifier activation for the output layer which provides a probability distribution sum-

ming to 1. The softmax layer updates all output vectors at each training instance,

and therefore quickly becomes unpractical to scale up and costly for large vocabularies.

This downside was already underlined in [124]. An alternative is to limit the number

of output vectors updated per training iteration, either with hierarchical softmax or

sampling. As summarised in [126], hierarchical softmax is a technique for approximat-

ing the softmax. The model uses a binary tree to organise the vocabulary, each word

being a unique leaf of the tree with a unique path linking it to the root as shown in

Figure 4.12. In their first paper [123], Mikolov et al. use a Huffman tree to represent

the vocabulary. A Huffman tree places rare words at deeper levels (long binary codes),

and the most frequent words at shallower level (short binary code) of the tree. When

the softmax would require x outputs to be evaluated, the hierarchical softmax reduces

the complexity to the computation of log2 (x) and the Huffman tree decreases it even

more [123].

In their second paper [125], Mikolov et al. propose a more straightforward solution

based on Negative Sampling. Instead of reorganising the vocabulary with hierarchical

softmax, Negative Sampling simply reduces the output layer computational cost by

updating only a sample of output vectors. Furthermore, negative samples (random
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Figure 4.12: An example of Huffman binary tree for the hierarchical softmax, an ex-
ample of path from the root to the w5 word is highlighted. Each leaf is a word and the
coloured units are inner units. Derived from [126].

output words) are chosen for a noise distribution. Mikolov et al. recommend a number

of negative samples k between 5 and 20 [125]. The training objective E with Negative

Sampling is thus defined by Equation 4.7 defined in [126] as:

E = − log σ(v
′T
wO

h) −
∑

wi∈Wneg

log σ(v
′T
wi
h) (4.7)

where wO is the output word and the positive example, v′
wO

is the output vector, h

the output value of the hidden layer, Wneg is the set of k negative samples, and v′
wi

the

update vectors of the negative sampling. Mikolov et al. encourage the use of Negative

Sampling as it contributes to the learning of high-quality word representations and

significantly speeds up the computation.

Similar Work

The recent advances in word embedding have benefited the research on Ontology Learn-

ing, embedding were successfully applied to the development of domain-specific on-

tologies in the legal [127], medical [128], biomedical [129], and nutrition [130] fields.

The works presented in [127] and [131] are the closest to the approach proposed here.
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In [127], a dictionary of legal terms is first computed based on statistical methods and

POS tagging. Then, synonym terms are clustered with a word2vec model and a simi-

larity measurement called cosine similarity. In [131], keywords are extracted from the

English Wikipedia and then clustered into concepts with a word2vec embedding. The

authors of [128] and [130] focus on enriching pre-existing ontologies from either medical

or nutrition texts with word representation learned with a word2vec model. In [130],

the authors achieve a 89.7% increase in accuracy compared to an expert-curated ontol-

ogy using word2vec embedding. Finally, the authors of [129] focus on the merging of

similar entities in a biomedical ontology with a word2vec model. The authors under-

lines how previous matching methods based on terminological and structural features

lack the semantics understanding that word embedding can achieve.

Although word embedding appears as a common method for building and enriching

ontologies, it has not yet been applied to the field of space systems. As a matter of

fact no word2vec model trained on a space systems corpus was encountered in the

Literature.

4.4.2 Approach

The objective is to leverage word embedding methods to merge synonym entities and

identify the concepts in the domain-specific lexicon semi-automatically generated in

Section 4.3. A word2vec model is trained with the main corpus of unstructured data

presented in Section 3.2.1 including the ESA feasibility reports, books, publications

and Wikipedia pages. As words with similar context yield similar representation vec-

tors, the comparison of the representation vectors should lead to the semi-automatic

generation of the Synonym and Concepts layers in the Ontology Learning Layer Cake.

The approach, displayed in Figure 4.13, thus leverages (i) word embedding to map

the domain-specific lexicon terms to unique representation vectors with the word2vec

model, and (ii) the common similarity metrics of cosine similarity to compare the vec-

tors.
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Figure 4.13: Methodology for the semi-automatic generation of Synonym and Concepts
layers

4.4.3 Methodology

Word2vec model hyperparameters

The key hyperparameters of the word2vec model are summarised in Table 4.6. Based

on the suggestions of [125], the Skip-gram architecture, sub-sampling and Negative

Sampling are used instead of the CBOW architecture and hierarchical softmax. A grid

search is completed for a window size from 2 to 10 with a step of 1, an embedding

dimension from 100 to 400 with a step of 100, and a negative sample range from 5

to 9 with a step of 2. The models are trained with the open-source Gensim Python

library [132]. The model with a window of 2 (on each side of the target word), an

embedding dimension of 100, and a number of negative samples of 7 performed the

best.

Table 4.6: Word2vec Hyperparameter

Hyperparameter Setting Parameter Description

Model Architecture Skip-gram Architecture of the algorithm (either CBOW or Skip-gram)

Window Size 2
Maximum distance between the current
and target word within a sentence

Embedding Dimension 100 Size of the representation vector
Negative Sampling 7 Number of noise words introduced for negative sampling
Epoch 15 Number of training iterations

Minimum Count 2
Minimum word frequency threshold
(all words with a lower frequency are ignored)
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Cosine Similarity

The cosine similarity is a common method to compute the similarity between the vec-

tors. The cosine similarity cos(θ), between two vectors A and B, of dimension n, is

defined by [127] as:

cos(θ) =
A.B

| A || B |
=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

(4.8)

A cosine similarity of 1 denotes identical vectors. The higher the cosine similarity

value, the most similar the terms are.

4.4.4 Results & Discussion

To select the cosine similarity threshold, the similarities between the vectors of each

lexicon term are computed. The distribution of the 10 highest cosine similarity values

obtained for each lexicon term is displayed on Figure 4.14. The average is chosen as

threshold. The terms with a cosine similarity above the average are thus considered

as potentially synonyms or items of a concept. Out of the original curated lexicon of

3,511 terms, 1,756 are linked to at least another term with a cosine similarity above

the threshold of 0.71.
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Figure 4.14: Distribution of the 10 highest cosine similarities values obtained for all
lexicon terms

Vectors with high dimensions are difficult to interpret. However, with a Principal

Component Analysis (PCA) [133], the vectors can be projected in a two-dimensional

space. Similar concepts should have similar representation vectors and therefore should

appear in the same area of the graph. Figure 4.15 displays the PCA projection of a

selected sample of terms. The model appears to be successful in clustering terms

into concepts. The cluster in the bottom right corner of the graph includes orbital

parameters terms such as inclination or eccentricity. The cluster with the terms rocket,

launch vehicle and upper stage could be related to a launcher concept.
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Figure 4.15: PCA projection for sample of concepts clusters obtained with the word2vec
model

The manual verification of the similarities reveals a fraction, around 3.7%, of similar

terms correspond to exchangeable synonyms. A sample of discovered synonyms is shown

in Figure 4.17a. The value of the cosine similarity between these synonyms also varies

greatly as shown on Figure 4.16. It is thus not sufficient to use a higher cosine similarity

threshold to distinguish inter-exchangeable synonyms from concept clusters. Human

validation is necessary. Moreover, as shown in Figure 4.17b, antonyms also have similar

representation vectors as they are often found in comparable contexts.

The embedding has additional unexpected benefits. Acronyms and their expansions,

words sharing the same lemma, or words with different spellings that were missed by

the NLP pipeline also have similar context and could thus be identified. The merg-

ing of these redundant terms contributes to enhancing the quality of the lexicon and

completing the expansions of domain-specific acronyms. As seen in Table 4.7, the repre-

sentation vectors of the dofs and degrees of freedom words have a high cosine similarity.

Similarly, words such as singularity which should have been filtered by the POS can
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Figure 4.16: Distribution of the cosine similarities values obtained for the synonyms

now be linked to the singular term. The English spelling of vapour is found similar

to its American variant vapor. Finally, the representation vectors seem to also be able

to contribute to identifying the hierarchies between terms, which could be useful to

further semantic analysis. Thus, as shown in Table 4.7, the terms space debris and

debris are found to be related.

Table 4.7: Alternative types of similarities discovered by the word2vec model

Application Examples (term 1, term 2: cosine similarity value)

Acronyms
adcs, attitude and orbit control system: 0.77
dofs, degrees of freedom: 0.82

Lemma
model, modeling: 0.78
backscatter, backscattering: 0.73
singularity, singular: 0.73

Spelling
re-entry, reentry: 0.86
vapor (US), vapour (UK): 0.90
bi-propellant, bipropellant: 0.77

Hierachy

cosmic ray, cosmic: 0.78
galactic cosmic ray, cosmic: 0.76
atomic clock, clock: 0.72
space debris, debris: 0.86
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(a) Synonyms

(b) Antonyms

Figure 4.17: PCA Projection of selected terms to illustrate the similarities between
synonyms and antonyms terms
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4.4.5 Conclusions

Theses results confirmed that the word2vec model and cosine similarity could success-

fully identify and associate similar concepts, as well as contribute to improving the Term

layer of the OL Layer Cake. However, domain-experts are needed to assess the type

of context similarity as not only concepts and synonyms but also antonyms, acronyms

and misspelled terms have similar representation vectors.
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4.5 SpaceTransformers: Concept Recognition

This section presents an approach and results published by the IEEE Access journal in

the paper “SpaceTransformers: language modeling for space systems” by Berquand. A,

Darm, P. and Riccardi, A. [14]

Traditional word embedding techniques such as word2vec and GloVe output a single

representation vector per word disregarding the polysemy of terms. For instance, the

word spring which may stand for a season, a source of water or an elastic body has a

single word2vec representation vector. Contextualised embedding addresses the pitfall

of these global embedding methods by building word vectors based on the context in

which they appear. This type of embedding would yield three vectors for the word

spring. The BERT language model, standing for Bidirectional Encoder Representa-

tions from Transformers, proposed by Delvin et al. in [77] is one of the most popular

contextualised embedding methods. BERT is a deep learning language model, a model

assigning a probability distribution over sequences of words matching the distribution

of a language. BERT is inspired from the Transformer architecture and attention

mechanism introduced by Vaswani et al. in [134].

Contextualised embedding has profoundly impacted the NLP landscape. The BERT

model advanced the State-Of-The-Art (SOTA) performance on 11 NLP tasks [77]. It is

today largely used to power Google queries, response suggestion and word predictions

in Gmail. BERT is a large pre-trained language model which can be fine-tuned to

various downstream NLP applications. This process is called Transfer Learning, and it

consists of two stages: (i) a pre-training phase in which contextualised words embed-

dings are learned through self-supervised training tasks on a large unlabelled corpus,

and (ii) a second phase in which the pre-trained model is fine-tuned for a specific task.

The performance of the downstream NLP tasks are thus greatly improved with the

knowledge transferred from the pre-trained models. Transfer learning brings a decisive

advantage for NLP applications, especially for domains where annotated corpora are

scarce such as space systems engineering. The introduction of these large pre-trained
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model has been dubbed as the ImageNet moment of NLP as they may have a similar

impact on the field as ImageNet models had on computer vision.

This section addresses the development of contextualised embeddings for space sys-

tems. While pre-trained transformer models such as BERT or RoBERTa (Robustly

Optimized BERT Pretraining Approach) [135] are trained on general corpora, domain-

specific models such as SciBERT [136] have proven to be more adapted to domain-

specific downstream tasks. There are however currently no models providing contextu-

alised embedding for space systems. Pre-training language models from scratch is highly

resource intensive, requiring large corpora (160 GB for RoBERTa [135]) and costly com-

putational resources (7 days of training on a Tensor Processing Unit (TPU) for SciB-

ERT [136]). Instead, it is suggested here to further pre-train a general baseline model

on a domain-specific corpus. The BERT-Base, RoBERTa-Base and SciBERT-scivocab

models are thus selected to build SpaceTransformers, a family of three models for space

systems language modeling: SpaceBERT, SpaceRoBERTa and SpaceSciBERT. While

models pre-trained on a general corpus learned contextualised words embeddings for a

general or scientific English vocabulary, with the additional further pre-training, these

models will become specialised in space systems engineering. The models performance

are evaluated through a fine-tuning Concept Recognition (CR) task applied to space

systems terms annotated by hand by three human annotators. CR is a first essen-

tial step for the identification and extraction of domain-specific fundamental concepts,

enabling the structuring of accumulated data via the construction of ontologies.

The contributions of this section are summarised as follow:

1. A novel family of models, SpaceTransformers, including three models: Space-

BERT, SpaceRoBERTa and SpaceSciBERT is further pre-trained from BERT,

RoBERTa, and SciBERT on a space systems corpus.

2. A novel labelling scheme based on space standards and its corresponding hand-

annotated data set for Concept Recognition (CR) of space systems terms is re-

leased.

3. A thorough comparison of the performance of domain-specific models with respect

to several baseline models on a classification task are provided for the first time.
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4. Further pre-training from RoBERTa-Base is demonstrated to considerably im-

prove the results on the downstream domain-specific CR task.

Section 4.5.1 briefly introduces the attention mechanism and the Transformer archi-

tecture, subword tokenization, as well as several general and domain-specific pre-trained

models. Section 4.5.2 summarises the approach to train the spaceTransformer family.

Section 4.5.3 presents the training hyperparameter selection and the labelling scheme

applied to the ECSS requirements corpus for the case study. Finally, Section 4.5.4 and

Section 4.5.5 respectively detail the training and CR results as well as reflections on

the contextualised embedding approach.

4.5.1 Background

A detailed background for this section is provided Appendix 8.2, Section 8.2.3 and is

recommended to get acquainted with the attention mechanism and the Transformer’s

architecture. The appendix also reviews known general pre-trained models, including

their training tasks and tokenization approaches.

As a reminder, Figure 4.18 summarises the contextualised embedding process with

the BERT model. The input sentence is tokenized with WordPiece [137], a subword

tokenizer. RoBERTa relies on another tokenizer as discussed in Appendix 8.2. The

subword tokenizer adds two special tokens, CLS and SEP, respectively used as classifi-

cation token and to mark the end of a sentence. Each token is mapped to a vocabulary

id. The embedding relies on the attention mechanism as presented in Figure 8.6 in

Appendix 8.2. The model outputs are the contextualised embeddings, vectors with a

size corresponding to the number of hidden units, 768 of the BERT model.
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Figure 4.18: Overview of the BERT embedding process

Transfer Learning

The purpose of transfer learning is to first learn from an initial training objective, then

apply it to a different target objective. Let s be an input sequence consisting of m

words such that:

s = (t1, .., tm) (4.9)

where ti is the ith word of the sequence. These tokens have a fixed initial embedding

of dimension n, noted as xi. The pre-training phase yields a contextualised embedding

yi of dimension d for each embedding xi of a term ti:

f : Rn × Θf → Rd, f(xi, θf ) = yi (4.10)
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where θf ∈ Θf represents a particular set of model parameters. In the pre-training

phase, the model f is trained in a self-supervised fashion. In a second phase, the

pre-trained model is fine-tuned for a specific task. The contextualised representations

previously obtained are used as inputs to the model

g : Rd × Θg → Rq, g(yi, θg) = zi (4.11)

The output is a probability distribution through an identity or softmax activation

function, configured by the parameters θg ∈ Θg and of dimension q. The parametrisa-

tion of the fine-tuned model is thus configured by

θft = [θf , θg] (4.12)

This framework has proven to be more efficient than training a task-specific model

from scratch, requiring at least 10 times less task-specific data samples [77, 138]. The

number of pre-training parameters, θf , is usually much higher than the number of fine-

tuning parameters θg. For instance, the configuration of BERT-Base involves a θf,BERT

of 110M parameters [77]. Thus, the training set required for fine-tuning is significantly

smaller than for the pre-training, while avoiding over-fitting.

Domain-Specific Language Models

There are three approaches found in the Literature to generate domain-specific language

models: (i) a generic model is fine-tuned on a domain-specific task, (ii) a model is further

pre-trained from a generic pre-trained model with a domain-specific corpus, or (iii) a

model is trained from scratch on a domain-specific corpus.

Fine-tuning a pre-trained model for a domain-specific task is the quickest and eas-

iest approach. In [139], the authors fine-tuned BERT-Base on a patent database for a

classification task. Their model, patentBERT achieved better results than the previ-

ous SOTA method based on a Convolutional Neural Network (CNN) and word vector

embedding. Krishnan et al., in [140], describe a downstream application similar to the

work presented here. The authors fine-tuned BERT-Base on a CR task to identify con-
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cepts related to space systems engineering. Their study is so far the only application

of Transfer Learning in the space field. Their labelled dataset was however based on a

single document, the NASA System Engineering Handbook [141] and they chose high-

levels labels such as event or location whereas the labels used in this study cover all

management, product assurance and engineering disciplines found in 126 ECSS space

standards.

Pre-training from scratch or further pre-training on a domain-specific corpus en-

ables the introduction of domain-specific words embeddings in the language model,

improving the performances on downstream domain-specific tasks. BioBERT [142] and

VNLawBERT [143] were both further pre-trained from BERT-Base respectively with

biomedical publications and a Vietnamese legal corpus. A clinical language model pre-

sented in [144] was further pre-trained from BERT-Base and from BioBERT. Both

ClinicalBERT [145] and FinBERT [146] were trained from scratch on an architecture

similar to BERT’s with, respectively, a corpus of clinical notes and a large financial cor-

pora. The benefits of either further pre-training or training from scratch on a domain-

specific corpus have been largely proven by these studies as they all outperformed their

baseline general language models on domain-specific tasks.

Further pre-training or training from scratch appears as a trade-off between the

domain-specific corpus size, the available computational resources, and the fine-tuning

performances sought-after. Training from scratch is resource intensive, it requires a

large domain-specific corpus and heavy computational resources. Both BERT and

SciBERT use a corpus of around 3B tokens. The training of BERT-Base was performed

in 4 days on 4 cloud TPUs [77]. RoBERTa was trained in one day over 1024 V100

GPUs [135]. SciBERT took 7 days to train from scratch with a single TPU v3 with

3 cores [136]. In [147], a legal language model, LEGAL-BERT, is trained on a 12GB

corpus of legal text in English, either from scratch or further trained from BERT-Base.

The authors found that both were valid approaches with similar results. The training

corpus used here has a similar size as [147] and a single NVIDIA V100 GPU with 16

cores is available through the ARCHIE-WeST High Performance Computer3 to train

3www.archie-west.ac.uk
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the models. Based on these limitations, the decision was taken to further pre-train the

domain-specific models rather than train them from scratch.

Concept Recognition for space systems

CR is a NLP task used to identify, extract, and classify relevant terms from unstructured

text. It is a word-level annotation exercise and concepts are loosely defined as sequences

that represent a specific cognitive construct in their domain [148]. In the context of

systems engineering, these concepts could be “engineering unit”, “system architecture”

or “system analysis”, labelled as examples for the label “system concepts” by Krishnan

et al. in [140].

There are various CR approaches found in the Literature. Rule-based and pattern

matching systems leverage hand-crafted rules on the text and its linguistic features

to extract concepts as shown in [149]. Alternatively, other methods are based on

supervised ML methods, trained from example inputs and their expected outcomes.

Linguistic feature-based ML systems such as support-vector-machines (SVM), decision

trees, and conditional random fields used to be the preferred methods for CR [150].

In the last years though, they have been increasingly replaced by Deep Learning ap-

proaches using word embedding as input features [151, 152]. Language models and

Transfer Learning have notably advanced the field in recent years. Transfer Learning

increases the performances of CR applications, as shown by [153] and [154], requiring

a smaller labelled dataset than before. The contextualised representation of a word

in the transformer architecture contributes to recognising and differentiating concepts

based on the context, increasing the accuracy of the model’s predictions.

4.5.2 Approach

The approach, summarised in Figure 4.19, applies the transfer learning process. The

SpaceBERT, SpaceRoBERTa and SpaceSciBERT models are respectively further pre-

trained from BERT-Base, RoBERTa-Base, and SciBERT-scivocab. The models are

then fine-tuned on a domain-specific CR task. The further pre-training corpus includes

the main text sources presented in Section 3.2.1, with the exception of the ESA CDF
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reports. The models were trained with the ARCHIE-WeSt High Performance Computer

based at the University of Strathclyde. Access to the reports being only granted through

a remote ESA server, this subcorpus could not be used for external computations on

ARCHIE. Using the abstracts of the publications was also found to yield better results

than using the full journal publications documents. The reason is most likely that

papers include mathematical notations, figures and tables which introduce noise. The

fine-tuning data set includes the ECSS requirements corpus presented in Section 3.2.2.

The text is not processed with the NLP pipeline presented in Section 3.2.3 as the

BERT and RoBERTa models rely on their own subword tokenizers. The statistics of

both corpora are reminded in Table 4.8.

Figure 4.19: Overview of the further training and fine-tuning approach with Space-
BERT, SpaceRoBERTa, and SpaceSciBERT.

Table 4.8: Reminder of the Further Pre-training and fine-tuning corpus statistics

Further Pre-training corpus Fine-tuning corpus

Corpus
Publications
Abstracts

Books
Wikipedia
Webpages

All
ECSS

Requirements

Number of
documents

4,991 39 242 5,327 27,016

Number of
sentences

37,957
(10.5%)

274,807
(76.5%)

46,544
(13%)

359,308
(100%)

27,016
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4.5.3 Methodology

Further Pre-training

Further pre-training a model

f : Rn × Θf → Rd, (4.13)

means that in the pre-training phase, instead of randomly initialising the weights θf ,

the weights values of a baseline model such as BERT, RoBERTa or SciBERT are reused.

Hence the weights θf for the three further pre-training tasks are initialised with the

following set of weights

θf,0 = θf,BERT , (4.14)

θf,0 = θf,RoBERTa, (4.15)

θf,0 = θf,SciBERT (4.16)

where θf,BERT , θf,RoBERTa and θf,SciBERT are respectively the set of weights of the

pre-trained models BERT, RoBERTa and SciBERT.

Weights initialisation from a pre-trained model also implies the reuse of the original

model vocabulary. The authors of the SciBERT model [136] observed an average im-

provement of only +0.76 F1 score on biomedical tasks when using their domain-specific

vocabulary. They concluded that training with a domain-specific corpus had more im-

pact than using a domain-specific vocabulary. A study similar to the one presented

here, BioBERT [142], chose to rely on the bert-base vocabulary. The authors assessed

that since the WordPiece tokenization used to build the BERT vocabulary reduces

OOV issues it was fit to represent and fine-tune their domain-specific terms. An alter-

native to training from scratch with a domain-specific corpus is to replace “Unused”

tokens in the vocabulary with domain-specific words.

To assess if a modification of the original vocabulary was necessary, the top thou-

sand most frequent words from the domain-specific corpora are extracted and compared

to the vocabulary of bert-base-uncased, roberta-base, and scivocab-uncased. The top

10 most frequent words in the domain-specific frequency-based lexicon are: “satel-
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lite”, “system”, “orbit”, “space”, “spacecraft”, “data”, “time”, “mission”, “model”,

and “control”. Out of this frequency-based lexicon, 87, 8% of the words were already

included in the bert-base-uncased vocabulary, 88, 8% in the roberta-base vocabulary,

89, 9% in the scivocab. Within these 1000 words, the 10% most frequent words were

included in all three vocabularies already. Table 4.9 gives a sample of the words not

found in the generic models vocabularies. As the amount of domain-specific vocabu-

lary not covered by the original vocabularies was not significant (less than 15%), it was

decided to re-use the vocabularies and tokenizers of the baseline models.

Table 4.9: Sample of terms not found in the generic models, words in bold are missing
from more than one vocabulary.

Vocabulary bert-base-uncased roberta-base scivocab

Number of terms
not found in

baseline vocab.
123 112 101

Top 5

subsystem,
thruster,

propellant,
perturbation,
telemetry

thruster,
propellant,

perturbation,
telemetry,
actuator

rocket,
thruster,

propellant,
lunar,

telemetry

The configuration and pre-trained weights of the BERT-Base, RoBERTa-Base and

SciBERT models are accessed through the HuggingFace library and their Python Trans-

formers library [155]. For each model the pre-training weights and hyperparameters are

thus initialised from one of the three baseline models with the exception of the batch

size and maximum sequence length. The batch size is set to 256, as for RoBERTa [135],

with a gradient accumulation step of 16. The maximum sequence length of the input

is set to 512 as defined in BERT [77]. The models are further pre-trained for 70 epochs

on one NVIDIA V100 GPU hosted on ARCHIE-WeST High Performance computer.

The further pre-training corpus is split between a training and a testing set, based on

the classic 80%/20% partition.

Requirements labelling

For the fine-tuning of the pre-trained models, the corpus presented in Section 3.2.2 is

used as a basis for the annotated dataset. The requirements are written in a precise and
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brief manner, with a high density of concepts relevant to space systems, making them

useful for generating a CR dataset in this domain. An annotation scheme is carefully

designed to cover the whole spectrum of the ECSS standards and their requirements,

creating labels for each of the three main branches: Management, Product assurance

and Engineering. The labels are constructed from domain-experience of three human

annotators as well as with the help of online available taxonomies in the space domain

such as the ESA Technology tree [156], the ESA Product tree [157] and the NASA

taxonomy viewer 4. 18 labels were eventually defined for the annotation scheme. The

complete description for each label is found at github.com/strath-ace/smart-nlp.

Table 4.10 summarises the annotation scheme, providing a short description and ex-

amples for each label.

The single requirements were annotated with the commercial software tool Prodigy

from the software company explosion.ai 5. To facilitate the annotation process, re-

quirements addressing similar topics were annotated simultaneously. The process was

repeated for all topics, also ensuring that similar numbers of requirements were selected

so that the resulting dataset would be balanced. Subsequently, requirements from the

whole corpus were picked to cover the complete scope of the ECSS in a balanced way.

The annotation process was considered done once the performance of the CR classifier

were within an acceptable accuracy. Eventually 882 requirements were annotated. Each

annotator labelled the whole fine-tuning corpus independently. These results were then

compared, showing a high level of inter-annotator agreement of 96.5%. Discrepancies

between the three different datasets of the respective annotators were discussed and

eliminated from the final set. The resulting numbers of annotated concepts present in

the final dataset are shown in Table 4.11. The number of unique concepts found per

label, as well as the ratio of unique concepts to the total number of concepts, called

non-overlapping, are also displayed.

4https://techport.nasa.gov/view/taxonomy
5https://prodi.gy/
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Table 4.10: Annotation scheme summary

Label Short description Examples

Management

Project documentation Project deliverables
Certificate of conformity, PCB definition dossier,
final review team report

Project scope Functions, characteristics, and goals of the mission mission phases, project requirements, product functionality
System engineering Design, components and functions of a system solution dynamic architecture design, system level considerations
Product assurance
Nonconformance Non-fulfilment of a requirement explosion, material degradation, cuts, abrasions
Quality control Compliance with requirements and specifications acceptance tests, evaluation report, unit level testing
Safety & risk control Dependability, availability, maintainability, and safety safety-approved procedure, worst-cases, emergency controls
Engineering
Cleanliness Contamination and sterilisation system cleanliness, contamination control plan, particle counter

Communication
Communication and navigation infrastructure
for telemetry/telecommand (TM/TC)

telecommand packet, Link budget, message subtype 28

Guidance Navigation
& Control (GN&C)

Design and implementation of control subsystem,
analysis and definition of trajectory

star sensor, natural perigee rise, apogee fall

Materials & EEE
Electrical, electronic and
electro-mechanical (EEE) Components, materials

Printed Circuit Board, sandwich items, fastener

Measurement Physical units 30 J, 60 mW
On-Board Data Handling
(OBDH)

Data management, data acquisition, data storage,
on-board networking and network management

data-sending lane, DATA OUT signal,
Distribution Transfer Descriptor

Parameter Generic characteristic supplier performance, track width, manufacturing tolerances

Power
Power subsystem architecture, energy storage,
power generation; distribution; and conditioning

nuclear-energy sources, RTGs, output short circuit,
power-energy resources

Propulsion
Generation of forces and torques to change
velocity and orientation of S/C

thruster generated plasma, sloshing analysis

Space environment
Effects and environmental conditions
governing the space environment

displacement damage, secondary protons, electron-bremsstrahlung

Structure & mechanisms
Structural and mechanical subsystem,
mechanism subsystem devices

satellite mechanical structure, static unit load, attachment devices

Thermal Thermal management
thermo-optical properties measurement, heat pipe,
two- phases heat transport equipment
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Table 4.11: Summary of annotated concepts per label

Labels
Number

of concepts
Number
of uniques

Ratio
non-overlapping

Quality control 529 366 0.69
Space environment 518 392 0.76

Parameter 433 327 0.76
OBDH 410 317 0.773

System engineering 331 192 0.58
Measurement 301 260 0.86

Power 287 234 0.815
Materials & EEEs 275 203 0.74

Structure & mechanisms 253 223 0.88
Safety & Risk control 225 188 0.84

GN&C 206 164 0.8
Project scope 203 153 0.75

Communication 191 152 0.8
Thermal 185 139 0.75

Project documentation 154 122 0.79
Propulsion 151 118 0.78

Nonconformance 118 88 0.75
Cleanliness 91 64 0.70

Sum / mean* 5447 4112 0.78*

Fine-tuning for Concept recognition

The Python Transformers library from HuggingFace [155] was again used to load the

pre-trained and further pre-trained models. For CR, a linear layer is added as output

layer with a softmax activation function. The models were trained three times with a

10-fold, 80%/20% split, cross validation. Another assumption for the training was to

reinitialise the weights of the final layer if the fine-tuning resulted in a failed run for

the fold. This is in accordance with previous studies, which stated that the random

initialisation of the fine-tuning layers can have a significance influence on the fine-tuning

results in computer vision [158] as well as NLP [159]. A failed run was defined as when

the validation accuracy stayed below classifying all examples with the majority class,

classifying every word as a non-concept [160] .

Further hyperparameters for the fine-tuning were a linear decreasing learning rate

and a batch size of 16. The models were trained for up to 10 epochs. To compare

the models’ predictions, the results of the epoch with the lowest validation loss for
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each respective fold were taken. One benefit of the further pre-training was already

observed during fine-tuning. In comparison to RoBERTa with three failed runs overall,

SpaceRoBERTa did not fail any.

4.5.4 Results

Models Selection

Several trials were run for both uncased and cased vocabularies and various batch

sizes. Further pre-training on uncased vocabulary yielded better results than cased

vocabulary. This was to be expected as the labelled concepts are not named entities

and thus casing is not relevant to the application. A higher batch size of 256 also

yielded better results than lower batch sizes of 16 or 32.

The models are further pre-trained for 70 epochs which is enough to achieve the

convergence of the evaluation perplexity as shown in Figure 4.20. Perplexity is a com-

mon metrics for evaluating language models. It quantifies how well a model reduces

the uncertainty in the prediction of the language in a tokenized sequence of text X.

Perplexity PPL is derived from the cross-entropy H and is defined in [161] as:

PPL = 2Hp(X) (4.17)

with

Hp(X) =
1

|X|
log2

1

P (X)
(4.18)

where |X| is the number of words in text X, P (X) is the probability of the sequence

of words provided by the model, Hp(X) the cross-entropy of the text in relation to the

model, and finally PPL the perplexity of the model.

These results were obtained using the ARCHIE-WeSt High Performance Computer

based at the University of Strathclyde. The SpaceBERT model trained for 60 epochs,

the SpaceRoBERTa model trained for 57 epochs, and the SpaceSciBERT trained for

54 epochs were eventually selected. These models either correspond to the start of

the perplexity convergence or to a local minimum close to convergence. Although of

disparate initial configuration and pre-training corpus, these models interestingly take
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Figure 4.20: Evolution of the evaluation perplexity in function of the number of further
pre-training epochs.

a similar number of further pre-training epochs to converge.

Concept Recognition Results

Figure 4.21 displays the evolution of the validation loss for all models with respect to

the number of fine-tuning epochs. The validation loss curves have a parabola-like shape

reaching a minimum after a certain number of epochs. When comparing the minimums

of each model, the validation loss appears to be the lowest for SpaceRoBERTa and the

highest for BERT. While SpaceSciBERT and SciBERT have similar validation losses,

SpaceRoBERTa, and SpaceBERT demonstrate significant improvements with respect

to their respective baseline models. Although the results were averaged over 30 folds,

the standard deviation for the validation loss is still high. Former studies [159, 160]

reported similar issues for comparable dataset sizes.

The CR F1 scores for all 6 models and 18 labels are reported in Table 4.12. The
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Figure 4.21: Evolution of the validation loss in function of the number of fine-tuning
epochs

results were computed from the epochs with the lowest average validation loss, averaged

over all 30 folds. The standard deviation is provided along with the F1 score. The

weighted label represents the averaged F1 score over all the labels weighted by the

number of examples in the validation set, and is defined as:

weighted =
1∑

l∈L nŷl

∑
l∈L

nŷlF1(yl, ŷl) (4.19)

where l is one label from the set L of all labels, ŷl is the set of true samples for label

l, yl is the set of predicted samples for label l, F1(yl, ŷl) is the F1 score calculated for

label l, and nŷl is the number of true samples for label l.

Considering only this weighted F1 score, SpaceRoBERTa clearly outperforms the

other models, followed by SpaceSciBERT. BERT and RoBERTa obtain the lowest

scores.

Furthermore SpaceRoBERTa ranks the highest on several labels. As shown on

Table 4.12, the labels, displaying the most significant improvements compared to the

baseline of BERT, are GN&C with a 7.8% improvement, then Space environment with

4.5%, followed by Thermal with around 4% improvement, and Structure & mecha-
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nism 3.8%. SpaceSciBERT substantially improves the score of the Communication

and OBDH labels, respectively by 12% and 4%, compared to BERT.

Altogether, the reported F1 scores are consistent with the observed validation loss

trends, with SpaceRoBERTa leading the F1 score table and the further pre-trained

models outperforming their baselines. The standard deviations of the single scores are

still generally high, usually exceeding the achieved improvement between the baseline

and the further pre-trained models. Therefore, statistical tests are conducted and

summarised in Section 4.5.4 to evaluate the statistical significance of the results.

To fully assess the impact of the further pre-training with a domain-specific corpus,

the scores of the baseline models are compared to their respective space variant in Fig-

ure 4.22. SpaceRoBERTa again displays the most significant improvements compared

to its baseline model RoBERTa. All three domain-specific models show substantial

improvements for the Propulsion, Space environment, Structure & mechanisms, Com-

munication, GN&C, and OBDH labels. These labels corresponds to the main engineer-

ing disciplines of a spacecraft subsystems. However the score of more general labels

such as Safety & risk control, Nonconformance, and Quality control were either unaf-

fected or slightly deteriorated by the further pre-training. These labels all belong to

the ECSS branch of Product assurance. For the remaining labels, no clear trend can be

inferred as the further pre-training resulted either in an improvement or a deterioration

of performances depending on the model used.

A more thorough investigation is conducted for the SpaceRoBERTa model as it

achieved the highest performance. Figure 4.23 displays the confusion matrix for the

SpaceRoBERTa model. The majority of samples are concentrated on the diagonal, thus

predictions are predominantly accurate. A few incorrect classifications occur between

the OBDH and Communication labels, indicating a lack of clear boundaries between

the two topics.
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Table 4.12: Results for the F1 scores of 30-fold cross-validation for each model and each label. The best score for each label is
highlighted with a grey background. The standard deviation is presented for each label below the respective F1 score.

Label BERT SpaceBERT SciBERT SpaceSciBERT RoBERTa SpaceRoBERTa

Cleanliness 0.7090.101 0.6990.108 0.710.109 0.7080.127 0.7030.138 0.7220.105
GN&C 0.7030.082 0.7230.064 0.7150.068 0.7390.055 0.7080.075 0.7580.071

Materials & EEEs 0.6640.083 0.6590.073 0.6550.086 0.6540.062 0.6470.071 0.6650.069
Measurement 0.8880.024 0.8790.024 0.8830.033 0.8750.034 0.8890.03 0.890.026

Nonconformance 0.5580.079 0.5420.105 0.5170.097 0.5170.072 0.5430.126 0.5370.098
OBDH 0.7360.054 0.7550.063 0.7510.051 0.7670.057 0.7060.062 0.7610.054

Parameter 0.5210.046 0.5040.056 0.5280.054 0.5160.048 0.5050.04 0.5390.055
Power 0.8160.042 0.8050.058 0.8240.041 0.8290.04 0.7860.076 0.8190.044

Project documentation 0.5080.058 0.4870.072 0.4890.081 0.4910.076 0.4790.1 0.5110.073
Project scope 0.6240.052 0.6230.063 0.6210.063 0.6160.062 0.6070.069 0.6170.06
Propulsion 0.6990.065 0.7120.057 0.6840.063 0.7070.057 0.6370.066 0.7220.053

Quality control 0.7340.049 0.7180.046 0.7340.045 0.7220.048 0.7310.053 0.7230.049
Safety & risk control 0.6890.047 0.6780.052 0.6880.06 0.6760.051 0.7010.063 0.6920.067
Space environment 0.740.068 0.750.053 0.7570.055 0.7720.049 0.7250.11 0.7730.056

Structure & mechanisms 0.5420.084 0.560.075 0.5470.092 0.5560.084 0.4990.113 0.5630.087
System engineering 0.6170.061 0.6310.06 0.5920.064 0.6290.062 0.610.075 0.630.064
Communication 0.6440.084 0.6770.068 0.6720.094 0.7210.059 0.6160.134 0.6820.108

Thermal 0.7420.045 0.760.063 0.7580.046 0.7560.054 0.7120.108 0.7720.055
weighted 0.6990.019 0.7010.024 0.7030.02 0.7090.019 0.6620.114 0.7150.029

Control method Bonferroni-Dunn test

SpaceRoBERTa 1.639• 1.833• 1.778• 1.694• 3.055• -
Bonferroni-Dunn test CDα=0.05 = 1.606
• Statistically difference with α = 0.05
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Figure 4.22: Variations (in %) between the performance of the baseline models and
respective further pre-trained space models.

The annotated requirement shown in Figure 4.24 illustrates this overlap. SpaceR-

oBERTa wrongly associates the concepts found in this requirement to the Commu-

nication label instead of the OBDH label as they were manually assigned to. These

concepts, including communication frame and command word, actually fall under the

domain of signal processing and can be used both in a communication or data handling

context. The requirement was here extracted from a standard related to data handling.

This information is however hidden from the model and therefore cannot be used to

guide the model. The ambiguity of these terms were already highlighted by the human

annotators.

Figure 4.25 quantifies the number of new concepts not seen by the model during

training but found in the validation set, demonstrating the ability of the model to

generalise over the training set and discover new concepts in unevaluated samples. The
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Figure 4.23: Confusion matrix of the fine-tuned SpaceRoBERTa model (the majority
class “non-concept” is excluded).

prediction of the model was compared for one fold to a simple look-up approach. The

latter method identifies concepts present in both training and validation sets. As seen

in Figure 4.25, the prediction with the fine-tuned model achieves substantially better

results than the look-up approach. Out of 844 unique concepts, 690 were recognised

exactly by the model and 78 concepts were partly recognised. For partial recognition,

the span was either too long or too short. For instance, the concept 50W resistors,

corresponding to two labelled concepts 50W and resistor were merged by the model.

126



Chapter 4. Towards a Space Systems Ontology

(a) Hand-annotated requirement

(b) Annotations obtained with SpaceRoBERTa

Figure 4.24: Comparison of manual annotation and model prediction

The concept flight production was extracted by the model while the full labelled concept

was proto-flight production. Alternatively, the look-up approach resulted in only 170

complete matches, and 187 part matches.

Statistical Tests

The results obtained have been statistically analysed with the Friedman pre-hoc and the

Bonferroni-Dunn and Nemenyi post-hoc tests. To determine the statistical significance

of the F1 score of each method with respect to the labels set, a non-parametric Friedman

test was completed with the ranking of the F1 score of the best model as the test

variable. The Friedman test shows that the proposed method is statistically significant

at a level of 5% as the confidence interval is C0 = (0, F5 = 2.322) and the F-distribution

statistical values is F ∗ = 6.330 /∈ C0. Consequently Friedman test rejects the null-

hypothesis that all models perform equally well in mean ranking. Based on this rejection

the Nemenyi post-hoc is completed to compare the performances of the different models.

The difference in ranking, as resulting from the Nememyi tests can be observed in Figure
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Figure 4.25: Number of unique concepts detected by the SpaceRoBERTa model, com-
pared to a simple look-up approach

5.7, for α = 0.05. The results of the Bonferroni-Dunn test for α = 0.05 are reported

in Table 4.12. From the results of both tests it can be concluded that SpaceRoBERTa

has a significant higher ranking than all the other methods and RoBERTa, its baseline,

the lowest one. The remaining methods, BERT, SciBERT and their space counterpart

instead, have not a significant difference in mean ranking.

Figure 4.26: Nemenyi CD diagram comparing the generalisation F1 score rankings of
the different methods (α = 0.05).
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4.5.5 Discussions & Future Work

The weighted F1 scores demonstrate that the domain-specific models outperformed

their respective baseline models. SpaceRoBERTa benefited the most from the further

pre-training with an increase of 8% F1 score with respect to RoBERTa. SpaceBERT

and SpaceSciBERT have less significant improvements, respectively displaying increases

of 0.3% and 0.85%. Both SpaceSciBERT and SciBERT outperformed SpaceBERT and

BERT proving that the scientific pre-training gave an additional advantage to train-

ing from a general model. The decisive advantage came from combining the domain-

specific training corpus with the alternative pre-training architecture and tokenizer of

RoBERTa. Indeed, the latter model is pre-trained on a single Masked Language Model

task [135] whereas the BERT-based models are also trained on a Next Sentence Pre-

diction task [77, 136]. The statistical analysis and Bonferroni-Dunn test, ignoring the

number of labels in the evaluation set unlike the weighted F1 score, demonstrated that

there is no significant difference between SpaceBERT, SpaceSciBERT and their base-

line counterpart. The Bonferroni-Dunn test however confirmed the significant higher

ranking of SpaceRoBERTA.

Labels covering less domain-specific concepts such as Nonconformance, Project

Scope, and Quality Control benefited less from the further pre-training. Domain-specific

labels such as Propulsion, Structure & Mechanisms, and Communication however saw

their F1 score significantly increased for all space models. These results were obtained

for one fine-tuning task. When fine-tuning for another task it is recommended to not

discard SpaceSciBERT nor SpaceBERT as different models might be more adapted to

different applications.

In future work, other pre-training tasks, beyond MLM and NSP, could be explored

as in [162] where a domain-specific model was trained on four different tasks. This is

a resource intensive approach requiring additional computational power and a larger

training set. The study could also be extended to other BERT-based model, notably

DistilBERT [163], a lighter version of BERT which still achieves similar performances

but is 60% faster to train. DistilBERT illustrates a counter-trend in the field of Trans-

formers which disapproves of the exponential growth of parameters for economical and
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environmental reasons. Strubell et al. in [164] estimated the approximate financial

and environmental cost of these large pre-trained models. According to Strubell et al.,

training BERT on GPU is roughly equivalent to a trans-American flight with an esti-

mated 700 kg of CO2 emission. Futhermore, Strubell et al. estimate the compute cloud

cost of GPT-2, trained for 168 hours (1 week) on 32 TPUv3 chips, to £9,290.–£30,940.

To improve the performances over ambiguous concepts that could belong to several

engineering disciplines, information should be integrated about the original document

the requirements were extracted from. Related to the fine-tuning, the comparison could

be extended to additional downstream tasks to further compare the performances of

SpaceRoBERTa, SpaceSciBERT and SpaceBERT. CR can as well support additional

text mining operations on the ECSS standards. Standards contain key information

on space systems, and they are highly correlated. Thus, a follow-up task could be

to associate similar requirements based on common concepts. This application could

facilitate the identification of requirements relevant to a new project. Darm explores

this application in his master thesis [165].

4.5.6 Conclusions

This study introduced SpaceTransformers a new family of three models: SpaceBERT,

SpaceRoBERTa and SpaceSciBERT, providing contextualised words embeddings for

space systems. Three novel domain specific models were further pre-trained from

BERT-Base, RoBERTa-Base and SciBERT-scivocab on a domain-specific corpus. The

pre-trained and further pre-trained models were evaluated on a CR task with a new la-

belled dataset of space systems concepts. All further pre-trained models outperformed

their respective baseline models. The model further pre-trained from RoBERTa-Base,

SpaceRoBERTa, achieved the most significant improvement, and the highest ranking.

The statistical analysis however showed a lack of significant difference in mean ranking

for the remaining models.

This new family of models can contribute to the fine-tuning of any NLP downstream

tasks, improving the performances on domain-specific applications.
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4.6 Chapter Summary

Findings from this chapter demonstrated that text mining and NLP methods could ac-

celerate the development of domain-specific ontologies, by supporting the identification

of the terminology, concepts and synonyms. These methods alone are, however, not

enough yet, and domain experts are required to validate the outputs. These methods

do enable a bottom-up approach which complements the classic top-down strategy.

The field of NLP is fast evolving, contextualised embedding were just emerging at

the start of this thesis. The Transfer Learning tsunami originated by the Transformer

architecture has deeply impacted the NLP landscape and will contribute to open further

opportunities for text mining applications. Further pre-training and fine-tuning from

large pre-trained models overcome the corpus size obstacle, enabling new applications

in fields with few open source data set or labelled corpus.
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Chapter 5

Task Automation

5.1 Chapter Overview

As highlighted by the survey results presented in Section 2.2, the overwhelming volume

of accumulated data hinders the design process of space missions. Past accumulated

data contain a wealth of information that experts want to access, for instance, they

ranked past mission reports as their second preferred source of information in Figure 2.9.

Knowledge reuse is, however, currently mostly done manually, or relying on colleagues’

knowledge.

This chapter presents the domain-adaptation of two text mining methods, Topic

Modelling and document embedding, to automate tasks usually done manually by sys-

tems engineers. A probabilistic model of Topic Modelling is trained to learn the prob-

ability distributions of topics related to key spacecraft subsystems, and automatically

recognise the topics of mission requirements. A document embedding (doc2vec) model

learns the representation vectors of past mission reports to identify similar missions

and accelerate heritage analysis.
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5.2 SpaceLDA: Requirements Categorisation with Topic

Modelling

The approach, methodology and results (apart from the publications corpus) from this

section were adapted from Berquand, A., Moshfeghi, Y., and Riccardi, A., “SpaceLDA:

Topic Distributions Aggregation from a Heterogeneous Corpus for Space Systems” pub-

lished in the journal of Engineering Applications of Artificial Intelligence [13]

The design of highly complex systems such as spacecraft are driven by hundreds

of requirements evolving throughout the various design stages. Requirements Manage-

ment, the process of documenting, analysing and tracking requirements, is an essential

but time-consuming task. This section suggests a novel strategy based on Topic Mod-

eling (TM) to facilitate the management of spacecraft design requirements, notably

supporting their categorisation. TM is a ML method used to identify, learn, and ex-

tract latent topics from documents. Following a bottom-up approach, TM learns from

a corpus of documents the word distributions of the topics found in the documents.

The goal is thus to train a TM model on a domain-specific corpus to learn the word

distributions of key spacecraft subsystems such as the Propulsion, Thermal, or Power

subsystems. Once the model learns to recognise subsystems topics, it can link a re-

quirement to its relevant subsystem.

A novel domain-specific semi-supervised Latent Dirichlet Allocation (LDA) model

enriched with lexical priors and an optimised Weighted Sum (WS) called spaceLDA

is thus trained on the corpus introduced in Section 3.2.1. The spaceLDA model is

fine-tuned for the extraction of topics related to space systems. As the training corpus

is heterogeneous, the spaceLDA model is independently trained on the four corpus

subsets to avoid under-representing smaller corpora. To merge the topic distributions

obtained from each model, a novel aggregation approach based on an optimised WS is

applied. The training of the spaceLDA model is enriched by human-validated lexical

priors encouraging the discovery of topics related to key spacecraft subsystems.

The spaceLDA model is then evaluated with a case study addressing the categori-
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sation of spacecraft design requirements. Requirements extracted from public ESA

reports, presented in Section 3.2.2, are submitted as unseen data to the spaceLDA

model. The resulting aggregated topic distribution enables the association of each re-

quirement with a spacecraft subsystem. The spaceLDA performances are compared to

an unsupervised LDA model trained on the same heterogeneous training corpus. The

performance of the WS aggregation method is compared to a state of the art aggrega-

tion method based on the Jensen-Shannon (JS) divergence. The results demonstrate

that the spaceLDA model successfully identifies the topics of new (unseen) require-

ments and that the proposed approach surpasses the use of a classic LDA model and

the state of the art aggregation method. To summarise, the research presented in this

section makes the following contributions:

1. A novel domain-specific LDA model, named spaceLDA, enriched with lexical

priors and an optimised WS is trained.

2. The spaceLDA approach is shown to outperform the unsupervised LDA model

and a literature method for aggregating per-topic word distributions.

3. The potential for Requirements Management with Topic Modelling is demon-

strated through a practical case study.

Section 5.2.1 introduces Topic Modelling, the LDA model and past applications

of Topic Modelling in the field of space systems and Requirement Managements. Sec-

tion 5.2.2 details the approach followed to train the spaceLDA model, and Section 5.2.3

the key building blocks of the methodology applied. Section 5.2.4 compares the per-

topic word distributions obtained from each subcorpus, and Section 5.2.5 presents the

results of the case study. The results of this study are discussed in Section 5.2.6.

The source code and domain-specific models are available at github.com/strath-

ace/smart-nlp.

5.2.1 Background

LDA was first introduced in [166] as a generative probabilistic model for discrete data

collections. Topic Modelling assumes that a document is a mixture of topics, and an
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LDA model represents a corpus of documents as a distribution probability over latent

(hidden) topics. Each latent topic is described by a word distribution, a sorted list of

words associated with a probability indicating their likelihood to belong to the latent

topic. For instance, a Propulsion topic’s distribution could include the words thruster,

engine or propellant. LDA is an extension of Probabilistic Latent Semantic Analysis

(pLSA) [167] using Dirichlet priors. The evolution of Topic Modelling methods, includ-

ing pLSA, is provided in Appendix 8.2, Section 8.2.4. A Dirichlet distribution creates

probability distributions summing to 1 and is commonly used as priors in Bayesian

statistics to establish the prior belief of the probability distribution. Within an LDA

model, each document is a probability distribution over topics, and each topic is a prob-

ability distribution over words. Thus, the probability distribution of topics T among a

corpus of documents can be defined as in [168]:

p(M |α, β) =

∫
p(θ|α)

(
N∏
i=1

T∑
z=1

p(z|θ)p(wi|βz)

)
dθ (5.1)

where M is a document composed of N words wi, z is the topic for the N -th word

of document M , p(z|θ) is a multinomial distribution given by θ and followed by topic z,

p(wi|βz) is the probability that word wi belongs to topic z given by βz. β and α are the

Dirichlet distribution parameters, respectively for the per-topic word distribution and

for the per-document topic distribution. θ follows the hyperparameter α. Figure 5.1

displays the equivalent graphical representation of a LDA model as presented in [166].

Figure 5.1: LDA model graphical representation as seen in [166]
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Semi-supervised Latent Dirichlet Allocation

The LDA model can be trained in a semi-supervised fashion to guide the extraction

of latent topics. The initial probability distribution of a word to belong to a topic,

p(wi|βz), is randomly set at the start of the modelling process. For a semi-supervised

LDA, this initial probability can be increased at the start of the process to influence

the composition of the per-topic word distribution. The concept of inputting lexical

priors, or seed words, into a model is presented by Jagarlamudi et al. in [169]. With

the Gensim Python library developed by [132] and used to train the spaceLDA model,

η, a matrix representing for each topic, the probability of each word to belong to it, can

be provided to the model to impose the asymmetric priors over the word distribution.

Application of Topic Modeling to space systems

While TM has been commonly used for text mining tasks, such as collaborative filter-

ing [168] or trend forecasting [170, 171], applications in the space field are scarce.The

publication of Layman et al., [172], is the closest work to the approach presented here.

Layman et al. apply LDA to identify topics and trends in NASA problem reports.

These reports include textual descriptions of anomalies detected during testing and

operations, as well as details on the resulting corrective actions. TM successfully en-

ables the authors to extract trends of reported anomalies from thousands of documents.

From these previous studies found in the Literature, the use of TM at the early design

stages of a space mission for requirements categorisation appears as a novel application.

Requirements Management and Machine Learning

Requirements Management is the process of documenting, analysing and tracking re-

quirements. It is, therefore, an essential process for large-scale and complex projects.

Iqbal et al. in [173], recently surveyed the ML methods applied to Requirement Engi-

neering, noticing an increasing effort to merge both fields. The classification methods

mentioned by the authors mostly include classic approaches such as Support Vector

Machines, Conditional Random Field Network and Näıves Bayes. The authors only

briefly mentioned Topic Modeling and the more recent method of word embedding,
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word2vec. The latter word embedding method proposed by Mikolov and his team

in [123] enables the mapping of the context of a term into a vector. Word2vec was

addressed in Section 4.4. Both TM and word embedding appear as novel methods

for Requirements Management, let alone Requirements Management in the space field.

However, without detailed preliminary knowledge of words most likely to describe each

spacecraft subsystem, a word embedding approach could not be directly applied. The

TM approach was therefore preferred as it enabled the definition of per-topic word

distributions for each spacecraft subsystem. Based on the analysis of the current state

of the art, the training of a domain-specific LDA tailored to space systems and its

application to Requirements Management addresses a knowledge gap.

5.2.2 Approach

The core approach of the spaceLDA model training is based on two key components:

1. Lexical priors to steer the topics extraction.

2. An optimised WS to aggregate models trained on different corpus subsets.

Lexical priors reflecting key spacecraft subsystems can influence the extraction of

topics relevant to space systems. The priors’ probabilities are set to 0.95 while the prob-

abilities of the remaining words are set to 0. This approach entails a semi-supervised

training of the spaceLDA model. The lexical priors selection is further detailed in

Section 5.2.3.

The spaceLDA approach proposes a novel method to aggregate topic distributions.

A first approach to aggregate results of models trained on heterogeneous data is usually

to alter the basic architecture of the LDA model and combine the data sets during the

model training. In [174], the authors combined the Author Topic Model, developed

by [175], with LDA to form a Heterogeneous Topic Model. However, a simpler and

preferred approach would not alter the classic LDA architecture. Several authors have

investigated post-training aggregations, meaning a merging of the per-document topic

distributions. To aggregate models, a common first step is to identify similar topic

distributions. Blei and Lafferty, [176], rely on a graph-based method. Blair et al., [177],
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compare the cosine similarity and the JS divergence to identify similar topics, proving

the higher performance of the latter in creating more coherent topics. Blair et al.

furthermore implemented the aggregation of models trained on an unchanging corpus

but with varying Dirichlet priors and topic numbers.

The scope of this study differs from previous work as it intends to combine models

trained on a heterogeneous corpus to capitalise on the diversity of the space mission

design data collected. Combining independent models has the main advantage that it

requires no modification of the underlying architecture of the basic LDA models. Thus

allowing the use of standard libraries such as the Gensim Python library. In [178],

the authors combine models pre-trained with various LDA parameters and subsets of

the same corpus preprocessed with disparate methods. However, the authors do not

aggregate similar topics together but rather consider that they form a large list of topic

distributions. The concept of weighting and optimising the topic distributions obtained

from different models over the same unseen data with an optimised WS is introduced

here. Only in [179], the concept of weight matrix is mentioned but is adopted to regulate

the influence of more recent inputs to update an online LDA model. The aggregation

of per-document topic distributions based on an optimised WS with a state of the art

method to aggregate per-topic word distributions based on the JS divergence will thus

be compared.

Figure 5.2 summarises the approach to train the spaceLDA model. From the cu-

rated domain-specific text collection, a spaceLDA model is trained in a semi-supervised

fashion with lexical priors. To avoid eclipsing smaller data sets, the model is trained

separately on each training set based either on publications, feasibility reports, books,

or Wikipedia pages. A requirement is extracted from the case study corpus and submit-

ted to the models. Each model yields a per-requirement topic distribution, highlighting

its most salient topics. To converge towards a single topic distribution, the distributions

are aggregated based on an optimised WS.
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Figure 5.2: Overview of the spaceLDA approach

5.2.3 Methodology

Hyperparameters study

Three main inputs are required to train a model with the Python Gensim Library:

• the dictionary, which maps words, or tokens, to identification numbers (ids),

• the corpus, or document-term matrix, which provides per document, the words

identification numbers and their frequency within the document,

• the number of latent topics to be discovered.

The Dirichlet prior alpha is set to 1/n where n is the number of topics. The number

of training passes is set to 500. The first two inputs are derived from the corpus. To

determine the number of latent topics, several spaceLDA models with different numbers

of topics are trained with the Gensim Python library and compared. The evaluation

metric of perplexity, presented in the next section, determines which model is best

fitted to represent the corpus’ topic distribution. The training corpus is split between
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a training and a testing set, following the classic 80%/20% partition. 5-fold cross-

validation is applied to find the number of optimal topics and retain the final model.

The testing set is used for the final evaluation of the retained model post-optimisation.

SpaceLDA model evaluation

Perplexity is an intrinsic evaluation metric used to evaluate LDA topics [166,170]. The

same evaluation metrics was used in Section 4.5. Perplexity evaluates here how well

the probability distribution generated represents the corpus and measures the likelihood

that the model will perform well with unseen, new, data. The value of perplexity must

be minimised, and is defined by Equation 4.17.

Topics labelling

The latent topics’ word distributions produced by the model are not labelled. Therefore,

human-validated labels are provided to ensure the reproducibility of the results. Three

human annotators were involved in assigning topic labels to the word distributions,

working independently and manually. A final label was elected when at least two of

the three annotators agreed. Without a clear majority, the human annotators shortly

debated to converge towards a single label. The annotators were given the following

labels to choose from: AOCS, Communication, Environment, Ground Segment,

Launch, Mission Analysis, OBDH, Payload, Power, Propulsion, and Thermal.

The annotators also had the option to propose a topic label outside of this selection. It

was made clear to the annotators that they could associate more than one label to each

word distribution and that one label could be associated with several distributions.

Word distribution associated with a same label are not merged, thus there can be

several distributions within a model representing a same subsystem.

Lexical priors selection

Seven sets of lexical priors were defined in an attempt to steer the model towards topics

corresponding to 7 key spacecraft subsystems: AOCS, Communication, Environment,

OBDH, Power, Propulsion, and Thermal. Each set is composed of around 20 words,
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selected with domain-specific experts, based on the analysis of unsupervised models’

distributions and on the results presented in Section 4.3. Each word can only belong

to one set to avoid topic overlap. The priors selected, presented in Table 5.1, are based

on a list of keywords or relevant concepts associated to each topic. The list is validated

by the same human annotators who performed the manual labelling.

Table 5.1: Set of lexical priors per topics (organised alphabetically)

Topic Label Lexical Priors

Attitude and Orbit
Control Subsystem

(AOCS)

angular, attitude, attitude control, body, freedom,
gravity gradient, guidance, gyroscope, magnetotorquers,
momentum, motion, navigation, reaction wheel, sensor,

spin stabilised, stabilisation, star tracker, torque, torquer, wheel

Communication

antenna, band, bandwidth, c-band, command, communication,
frequency, ka-band, l-band, receiver, reception, relay,

satellite communication, s-band, telecommand, telemetry,
tracking, transmitter, packet, x-band,

Environment

background, charging, cosmic, debris, dose, electron,
environment, gamma radiation, gamma ray, geomagnetic,

particle, protection, radiation, ray, shield, single event,
shielding, single event upset, space debris, van allen

On-Board
Data Handling

bit, bitrate, computer, cpu, data, data handling,
data rate, decoder, downlink, dram, encoder, execution,

gbit, instruction, measurement, memory, operation,
processor, ram, sram, storage, tag, uplink

Power

battery, battery powered, cell, charge, circuit, current,
cycle, depth of discharge, discharge, energy, lithium,

photovoltaic, power, power supply, primary, secondary,
solar cell, solar power, voltage, watt

Propulsion

delta v, electric, electric propulsion, engine, exhaust, fuel,
impulse, ion, isp, nuclear, plasma, propellant, propellant mass,

propulsion, propulsion system, sail, spacecraft propulsion,
thrust, thruster, total impulse

Thermal

coating, cooling, degree, heat, heat pipe, heater,
heating, insulation, louver, mirror, multi layer insulation,

radiator, reflective, reflector, temperature, thermal,
thermal control, thermal control system, thermodynamics, overheating

Optimised weighted sum

The WS approach acts on the level of the per-document topic distribution. θ̂i denotes

the aggregated topic distribution for the unseen data, document i. The WS combines

the topic distributions θ(i,j) of each model Mj for the same document i but balanced
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by a model weight wj as shown on equation 5.2 based on [180].

θ̂i =

M∑
j=1

wjθ(i,j)

M∑
j=1

wj

(5.2)

Since this method does not produce new word distributions, it does not entail

the tedious process of relabelling. The weights are optimised with a Tree of Parzen

Estimators (TPE) algorithm [181] available through the hyperopt Python library [182].

The objective function maximises the area of the accuracy plot. Figure 5.3 summarises

the WS aggregation approach.

Figure 5.3: Schema of the proposed aggregation method

Topic identification of unseen data

The dictionary of the model is used to map words to their ids. A new corpus document-

term matrix is generated based on this dictionary. The topic distribution defined by

the spaceLDA model can then be applied to the new (unseen) document. The output

is a list of latent topics along with their probability to represent the document.
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Case study evaluation: Accuracy Score and Mean Reciprocal Ranking

The accuracy score only takes into consideration the primary topic of a per-document

topic distribution. If this topic matches the requirement’s ground truth, then the

matching is considered a success. The accuracy score is divided by the number of

unseen data, or requirements, submitted to the model. Therefore, the best performance

corresponds to an accuracy score of 1.

The Mean Reciprocal Ranking (MRR) takes into consideration the top n topics of

a per-document topic distribution. The score is inversely proportional to the correct

answer, topic rank, as shown in Equation 5.3 based on the definition from [183]:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(5.3)

with Q the number of queries, ranki, the rank of the ground truth. Only the top two

topics will be taken into consideration.

5.2.4 Model Training Results

A hyperparameter optimisation is run to identify the optimal number of latent top-

ics for each sub-corpus. Four LDA models are then trained with lexical priors in a

semi-supervised fashion. Their resulting per-topic word distributions are analysed and

compared with distributions generated by unsupervised LDA models trained on the

same domain-specific corpora. At this stage, the models are not aggregated.

Hyperparameters optimisation

For each training corpus, the optimisation process described in Section 5.2.3 is run to

identify the optimum number of latent topics. The optimisation process is run for a

number of topics ranging from 4 to 100 and for each training set. The resulting average

perplexity measures are displayed on Figure 5.4 up to 40 topics.
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Figure 5.4: Perplexity evolution

Setting a perplexity threshold to 0.9E-4 and manually investigating the topics con-

tent of models satisfying the perplexity threshold, a topic number of 22 was chosen for

the Wikipedia training set. Following the same process, a topic number of 30 latent

topics was selected for the reports training set. A model was trained with this set, ob-

taining a perplexity of 1.35e-06 in its final evaluation, computed with the held-out part

of the training corpus. The higher number of latent topics was assumed to result from

the variety of missions covered by the reports, as well as the higher complexity of the

experts’ vocabulary writing these reports. For the books training set, a topic number

of 24, corresponding to the local minimum, was chosen. A final model obtained a per-

plexity score of 1.85e-05, similar scores to the above models, although the values of the

mean perplexity measures are generally higher for this training set. The publications

corpus representing a significantly higher amount of data requires a higher number of

topics. To keep the number of topics at a manageable level, the threshold requirement

is waived. The perplexity analysis is completed with a manual verification of the topic

word distributions, and thus a topic number of 40 is selected. A final model is trained
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on the publications corpus for 40 topics and achieves a perplexity of 1.69E-4 on the

training set.

SpaceLDA per-topic word distributions

The LDA model training is a stochastic process; however, the results presented in

this subsection represent trends observed with several trained models. The spaceLDA

models are trained using the 164 lexical priors presented in Table 5.1. Not all lexical

priors could be found in the corpora’ dictionaries. Therefore nineteen words, including

the terms “bit”, “cpu”, “magnetotorquers”, “power supply”, “satellite communication”,

“spacecraft propulsion” and “spin stabilised”, are not boosted. Unsupervised models

are also trained on the same corpora to compare the latent topics extracted with and

without lexical priors.

Tables 5.2, 5.3, 5.4, and 5.5 display the top 5 terms of per-topic word distributions

extracted from the training corpora by the spaceLDA and the unsupervised LDA mod-

els. In these tables, the lexical priors are highlighted in blue and bold. Terms found in

unsupervised word distributions that happened to match a lexical prior are underlined

for comparison purposes. The complete word distributions of each model are available

at https://github.com/strath-ace/smart-nlp.

The distributions obtained from the publications, Table 5.2, and the Wikipedia,

Table 5.5, training corpora are similar for both training approaches. The unsupervised

model seems to already be able to identify the topics of interest within these corpora

without the priors guidance. The number of lexical priors found in the publications-

based distributions is few. The large vocabulary of the publications corpus might have

reduced the impact of the lexical priors.

With the reports training corpus, Table 5.3, complex phrases (more than 2-grams

words) such as ‘ultra high frequency ’ seems to be given less attention in the semi-

supervised distributions influenced by lexical priors. The unsupervised distributions

promote terms which are less domain-specific, such as ‘laser’ (found in an Environment

topic), ‘bipods’ or ‘telescope’ (both found in a Thermal topic).

Finally, the unsupervised distributions extracted from the books, Table 5.4, appear
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to combine different topics. For instance, the Communication topic unsupervised word

distribution includes the term ‘low thrust’, a propulsion concept. The Propulsion

topic distribution includes the term ‘thermal control’. Overall the word distributions

extracted by the spaceLDA model provided a more accurate representation of each

spacecraft subsystem. The lexical priors notably enabled to remove noisy terms from

distributions based on the reports and books corpora.

The word distributions of each model are manually labelled. Figure 5.5 summarises

the labels obtained for each corpus. Its large number of topics and corpus size allows the

publications-base model to cover most topics of interest. A significant improvement is

noticed between the unsupervised and the semi-supervised training. Three topics which

were not previously extracted, OBDH, Payload, and Power, are now found. The priors

are thus successful to encourage the extraction of topics that might be less prevalent

and are overlooked by the unsupervised model. Within the Wikipedia corpus, most

of the topics of interest could also be identified. The variation between the spaceLDA

models and the unsupervised training is again minimal for this corpus. The benefits

of lexical priors is more apparent for the other training sets. In the case of the reports

corpus, it is clear that the unsupervised model focused on two topics, Propulsion and

Environment. The priors balanced this attention, enabling the expression of other

topics of interest. Similarly, in the case of the books corpus, several noisy topics (tagged

as Other and not represented in the Figure) were extracted by the unsupervised model.

In conclusion, the lexical priors contributed to the extraction of more relevant topics.

To further analyse the content of word distributions, the average numbers of lexical

priors found in the top 50 of each topic word distributions is computed and displayed

in Figure 5.6. For the unsupervised models, the priors are not used as lexical priors as

they don’t interfere in the training process, however, they can still appear in the word

distributions. For the publications-based models, the average of lexical priors actually

slightly decreases from 15, 6% to 13.2% from the unsupervised to the semi-supervised

training. The average of the unsupervised model is driven by the high percentage of

lexical priors found in the Launch topic. Nevertheless the semi-supervised training

introduces lexical priors in the definition of several other topics. For the model trained
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with the Wikipedia set, the unsupervised topics, considering all categories, contain

on average 18,1% of lexical priors against 19,2% for the spaceLDA model. For the

model trained with the reports or books sets, the difference is far more prominent.

For the reports training set, over all categories, the average for the spaceLDA topics

is 44%, compared to 4% for the unsupervised model. Similarly, for the books corpus,

the average number of lexical priors increased from 8% to 31% with the spaceLDA

approach.

Table 5.2: Comparison of per-topic word distributions obtained from spaceLDA and
unsupervised models trained with the publications corpus. Terms in blue and bold
correspond to lexical priors.

Topic Label Training
Topic Word Distribution

Top 5 elements

Attitude and Orbit
Control Subsystem

spaceLDA attitude, spacecraft, angular, space, torque
Unsupervised attitude, spacecraft, torque, angular, target

Launch
spaceLDA rocket, fuel, rate, combustion, propellant

Unsupervised thrust, thruster, rocket, engine, propulsion

Mission
Analysis

spaceLDA orbit, time, transfer, satellite, trajectory
Unsupervised satellite, orbit, mission, constellation, orbital

On-board Data
Handling

spaceLDA error, measurement, estimation, state, filter
Unsupervised image, feature, detection, frame, processing

Thermal
spaceLDA temperature, heat, model, thermal, flow

Unsupervised temperature, heat, thermal, flow, wall
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Table 5.3: Comparison of per-topic word distributions obtained from spaceLDA and
unsupervised models trained with the reports corpus. Lexical priors are highlighted.

Topic Label Training
Topic Word Distribution

Top 5 elements

Communication
spaceLDA

x-band, band, telemetry,
modulation, telecommand

Unsupervised
ultra high frequency, orbiter, localisation,

conjunction, arrival

Environment
spaceLDA

radiation, shielding, particle,
environment, electron

Unsupervised
bench, interferometer, decoherence,

nanoparticles, laser

Power
spaceLDA energy, capacity, panel, solar power, voltage

Unsupervised
laser interferometer space antenna,

electric propulsion, laser, constellation, telescope

Propulsion
spaceLDA

propellant, transfer, refuelling,
optical, geostationary orbit

Unsupervised
electric propulsion, asteroid, eprop,

boost, arrival

Thermal
spaceLDA

overheating, thermodynamics, reflective,
thermal control system, thermal control

Unsupervised cooling, telescope, cryogenic, spectro, bipods
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Table 5.4: Comparison of per-topic word distributions obtained from spaceLDA and
unsupervised models trained with the books corpus. Lexical priors are highlighted.

Topic Label Training
Topic Word Distribution

Top 5 elements

Attitude and Orbit
Control Subsystem

spaceLDA
attitude, vector, matrix,

control, frame

Unsupervised
quaternion, covariance, kalman,

kinematics, architect

Communication
spaceLDA orbit, service, data, antenna, communication

Unsupervised
decentralised, nonlinear, synchronisation,

topology, low thrust

On-Board
Data

Handling

spaceLDA
on board computer, data,

interface, frame, power, channel

Unsupervised
on board computer,

power control and distribution unit,
connector, register, spacewire

Propulsion
spaceLDA

propulsion, fuel, electric,
thruster, propulsion system

Unsupervised
nozzle, packet, combustion,

thermal control, qualification

Thermal
spaceLDA thermal, heat, temperature, control, orbit

Unsupervised
thermal control, insulation,

coating, pumped, vapour

Table 5.5: Comparison of per-topic word distributions obtained from spaceLDA and
unsupervised models trained with the Wikipedia corpus. Lexical priors are highlighted.

Topic Label Training
Topic Word Distribution

Top 5 elements

Attitude and
Orbit Control

System

spaceLDA
momentum, angular, velocity, motion,

particle

Unsupervised
attitude, sensor, wheel,
orientation, momentum

Communication
spaceLDA radio, frequency, signal, antenna, receiver

Unsupervised radio, antenna, receiver, signal, wave

Environment
spaceLDA cosmic, radiation, particle, belt, allen

Unsupervised radiation, gamma, cosmic, particle, decay

On-board Data
Handling

spaceLDA
memory, dynamic random access memory,

cable, data, cell

Unsupervised
memory, dynamic random z access memory,

cable, cell, computer

Power
spaceLDA

cell, power, photovoltaic,
pressurised pressure vessel, electricity

Unsupervised capacitor, voltage, circuit, capacitance, resistance

Thermal
spaceLDA heat, heating, temperature, material, thermal

Unsupervised heat, temperature, thermal, heat pipe, cooling
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Figure 5.5: Evolution of topics labelling between unsupervised models (blue distribu-
tion) and spaceLDA (semi-supervised) (orange distribution) for each training set.
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Figure 5.6: Average percentage of lexical priors found in each topic distribution and
each training set with the spaceLDA (semi-supervised) or unsupervised models.

5.2.5 Case Study Results

This section presents the aggregation methods parameters and the case study results.

A selection of design requirements are submitted as new unseen documents to the

spaceLDA model. The model provides in return a topic distribution for each require-

ment. These are then compared to the requirements’ ground truth. The latter ground
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truth corresponds to the chapter the requirement was extracted from. For instance,

all requirements related to the Thermal subsystem will be extracted from the relevant

Thermal Subsystem chapter and their ground truth labelled as thermal.

The performance of the spaceLDA is compared to three approaches, either based

on a semi or unsupervised training, and aggregated with the optimised Weighted Sum

(WS) or the Jensen-Shannon divergence. All assessed methods are summarised in

Table 5.6. To ensure robustness, the training process is run ten times for both training

approaches and each of the 4 training set, yielding in total 40 spaceLDA models and

40 unsupervised LDA models. Each aggregation method is applied to each set of

40 models. For instance, with the method c, the 40 unsupervised LDA models are

aggregated with the JS divergence.

Table 5.6: Overview of compared methods in the case study

spaceLDA method a method b method c

Training with lexical priors X X
Unsupervised training X X

Optimised WS aggregation X X
JS divergence aggregation X X

Aggregation of per-document topic distribution with an optimised weighted

sum

With this aggregation method, the merging occurs after each model has generated a

topic distribution for the unseen document. The contribution of each model is bal-

anced with weights to optimise the categorisation performance. The hyperparameter

optimisation ran with the hyperopt Python library yields the following linearised weight

combinations:

1. SpaceLDA models: 0.55 for the Wikipedia-based, 0.38 for the book-based, 0.056

for the report-based, and 0.019 for publication-based models.

2. Unsupervised models (method b): 0.70 for the Wikipedia-based, 0.16 for the

publication-based, 0.13 for the report-based, and 0.015 for the book-based models.
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For this case study, the weights of the Wikipedia-based are significantly higher

than for the other training corpora. Indeed, selected Wikipedia pages are more likely

to briefly describe the architecture of space systems than the feasibility reports detailing

applied examples of spacecraft design or the books and publications corpus covering

broader topics. Therefore, the Wikipedia corpus is given more influence with a higher

weight. The weights would need to be fine-tuned again for another case study.

Aggregation of per-topic word distribution with the Jensen-Shannon diver-

gence

As presented by Blair et al. in [177], the Jensen-Shannon (JS) divergence enables the

symmetric measurement of similarity between two or more probability distributions.

A value of the JS divergence equals to 0 indicates a complete similarity and a value

of 1 a complete dissimilarity. Provided the divergence between n similar topics of M

models with Ti topics is lower than the JS divergence threshold, γ, an aggregated topic

φ̂k can be generated following equation 5.4 based on [177]. φ(i,j) being the per-topic

word distribution of topic Tj in model Mi.

φ̂k =


M∑
i=1

Ti∑
j=1

φ(i,j)

n , if DJS(φ(i,j)||φx) ≤ γ

0, otherwise

(5.4)

The aggregation process is separately run on the 40 unsupervised models (method

c) and on the 40 spaceLDA models (method a). In each case, 40 models (10 per training

set) amount to 1,160 word distributions to be aggregated into one model. To compare

the distributions obtained from heterogeneous sources, a new dictionary is generated

based on the vocabulary gathered from all word distributions. The probability distribu-

tions are reorganised according to this common dictionary. The JS divergence is com-

puted for each per-topic word distribution with regards to the 1,159 other distributions.

A threshold of 0.3 is set to retain only the closest distributions. All topic distributions

with a JS divergence lower than this threshold are aggregated. Otherwise, topics are

kept as such. Eventually, the unsupervised models yield one aggregated model with
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906 topics, while the semi-supervised models yield one aggregated model with 829 top-

ics. 196 word distributions were thus aggregated for the unsupervised models and 373

for the semi-supervised models. This demonstrates that the lexical priors yield more

similar per-topic word distributions. The topics are manually labelled by human anno-

tators. The unseen data will be converted to a bag of words based on the aggregated

model dictionary.

Categorisation results and comparison

The case study corpus includes 68 mission requirements, presented in Section 3.2.2,

related to the topics of AOCS, Communication, Environment, OBDH, Power,

Propulsion, and Thermal. The documents’ chapters, corresponding to the spacecraft’s

subsystems, from which the requirements are extracted are used as ground truths. Ac-

curacy and Mean Reciprocal Ranking (MRR) are used to evaluate the models’ per-

formances. The performances of the different models are compared in Tables 5.7- 5.8

where the spaceLDA method clearly outperforms the other approaches.

Table 5.7: Categorisation Accuracy - the highest score per category are underlined in
bold and the results of the proposed method are highlighted in the grey column.

Training Lexical Priors Unsupervised

Aggregation Method
WS

(spaceLDA)
JS Divergence

(method a)
WS

(method b)
JS Divergence

(method c)

L
a
b
e
ls

AOCS 0.64 0.36 0.73 0.55
Communication 0.7 0.2 0.6 0.4
Environment 0.2 0.1 0.2 0

OBDH 0.6 0.5 0.3 0.1
Power 0.64 0.27 0.73 0.36

Propulsion 0.8 0 0.8 0.4
Thermal 0.73 0.18 0.55 0.64

Average Accuracy 0.61 0.23 0.56 0.35
Average Ranking 1.43 3.57 1.86 3.14

Control Method Bonferroni-Dunn Test
SpaceLDA - 2.14 0.43 1.71

154



Chapter 5. Task Automation

Table 5.8: Categorisation MRR - the highest scores per category are underlined in bold
and the results of the proposed method are highlighted in the grey column.

Training Lexical Priors Unsupervised

Aggregation Method
WS

(spaceLDA)
JS Divergence

(method a)
WS

(method b)
JS Divergence

(method c)

L
a
b
e
ls

AOCS 0.73 0.45 0.73 0.59
Communication 0.7 0.4 0.65 0.45
Environment 0.2 0.2 0.2 0.05

OBDH 0.7 0.6 0.3 0.25
Power 0.68 0.32 0.77 0.45

Propulsion 0.8 0.5 0.8 0.5
Thermal 0.82 0.36 0.68 0.82

Average MRR 0.66 0.4 0.59 0.44

The accuracy results have been statistically analysed with the Friedman pre-hoc,

and the Bonferroni-Dunn and Nemenyi post-hoc tests. To determine the statistical

significance of the accuracy score of each method with respect to the categories set,

a non-parametric Friedman test is completed with the ranking of the best model set

as test variable. The Friedman test shows that the proposed method is statistically

significant at a level of 5% as the confidence interval is C0 = (0, F5 = 3.16) and

the F-distribution statistical values is F ∗ = 9.98 /∈ C0. Therefore the Friedman test

rejects the null-hypothesis that all models perform equally well. Following this rejection,

a Nemenyi post-hoc test is completed to compare the performances of the different

models. The difference in ranking, as resulting from the Nememyi tests can be observed

in Figure 5.7, for α = 0.05, where the critical difference (CD) is of 1.77. The results

of the Bonferroni-Dunn test for α = 0.05 are reported in Table 5.7. The Bonferroni-

Dunn critical difference is of 1.65. From the results of both tests it can be concluded

that spaceLDA has a significant higher ranking than method a and c. SpaceLDA

however does not have a significant difference in mean ranking with respect to method

b, suggesting that the aggregation method choice contributed more than the use of

lexical priors to the performance increase.

In Tables 5.9, 5.10, 5.11, 5.12, and 5.13, samples of per-requirement topic distri-

butions obtained with both training and aggregation approaches are displayed. Each

distribution is a probabilistic distribution of the topics most likely to be found in the
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Figure 5.7: Nemenyi CD diagram comparing the generalisation accuracy score rankings
of the different methods (α = 0.05).

assessed requirement. The spaceLDA model notably outperforms the other methods for

the OBDH and Communication labels, as illustrated in Tables 5.9-5.10. The spaceLDA

model also achieves a high accuracy for the Thermal category, while the method a ob-

tains the lowest accuracy. This trend is reflected in Table 5.11 where the spaceLDA,

methods b and c successfully associate the requirement to its correct category, while

method a selects it as second choice.

On the other hand, as seen in Tables 5.7-5.8, the categorisation of Power require-

ments is one of the only two categories for which the spaceLDA is outperformed by

another approach. Even then, the WS approach, relying on the unsupervised mod-

els’ aggregation, performs better than the JS divergence aggregation. To improve the

performance of the spaceLDA model, the lexical priors used to identify and define the

Power topics should be improved. This trend is illustrated by an example in Table 5.12,

where only the method b succeeds in identifying the main topic from the first try.

Finally, as shown in Table 5.13, a last example is provided for an OBDH require-

ment. All methods successfully identify the requirements’ topics either as a first or

second choice.
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Table 5.9: Example of topic distributions obtained for an OBDH requirement. The
ground truth topic is underlined in bold in the distributions.

OBDH
Requirement

The DHS shall provide reconfiguration
capabilities in case of failure detection.

Training Aggregation Topic Distribution

Lexical
Priors

WS
‘OBDH’: 0.21,

‘communication’: 0.14
JS ‘AOCS’: 0.75

Unsupervised
WS

‘launch’: 0.3,
‘AOCS’: 0.17

JS
‘AOCS’: 0.5,
‘OBDH’: 0.17

Table 5.10: Example of topic distributions obtained for a communication requirement.
The ground truth topic is underlined in bold in the distributions.

Communication
Requirement

All images taken by navigation cameras
and required to be sent to ground

(e.g. asteroid shape model, local slopes around
sampling sites, etc), if any, shall be downloaded.

Training Aggregation Topic Distribution

Lexical
Priors

WS
‘communication’: 0.3,
‘mission analysis’: 0.19

JS
‘other’: 0.65,

‘communication’: 0.26

Unsupervised
WS

‘mission analysis’: 0.16,
‘environment’: 0.15

JS
‘OBDH’: 0.63,
‘other’: 0.27

Table 5.11: Example of topic distributions obtained for a Thermal requirement. The
ground truth topic is underlined in bold in the distributions.

Thermal
Requirement

The TCS shall ensure survival
thermal environment under

the established anomaly conditions.

Training Aggregation Topic Distribution

Lexical
Priors

WS
‘thermal’: 0.33,

‘other’: 0.19

JS
‘communication’: 0.42,

‘thermal’: 0.23

Unsupervised
WS

‘thermal’: 0.30,
‘mission analysis’: 0.16

JS
‘thermal’: 0.7 ,

‘other’: 0.15
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Table 5.12: Example of topic distributions obtained for a Power requirement. The
ground truth topic is underlined in bold in the distributions.

Power
Requirement

Cell performance and degradation factors
shall be justified according to

in orbit experience and
supporting ground testing.

Training Aggregation Topic Distribution

Lexical
Priors

WS
‘other’: 0.24,
‘power’: 0.17

JS ‘propulsion’: 0.86

Unsupervised
WS

‘power’: 0.30,
‘propulsion’: 0.16

JS
‘other’: 0.46,
‘power’: 0.36

Table 5.13: Example of topic distributions obtained for an OBDH requirement. The
ground truth topic is underlined in bold in the distributions.

OBDH
Requirement

The payload module data handling
functionality shall be implemented

in a correlator and control unit (CCU).

Training Aggregation Topic Distribution

Lexical
Priors

WS
‘OBDH’: 0.4,

other: 0.1

JS
‘OBDH’: 0.75 ,

‘communication’: 0.13

Unsupervised
WS

‘OBDH’: 0.21,
launch: 0.17

JS
other: 0.63,
OBDH: 0.37

5.2.6 Discussion

The semi-supervised training of the spaceLDA model outperforms the classic LDA un-

supervised training. The outputs of the unsupervised models were, however, useful in

supporting the definition of the lexical priors which are then used for the spaceLDA

training. The heterogeneity of the training data sets meant that, for each design re-

quirement, as many topic distributions as models were found. Hence the proposition to

merge distributions with an optimised WS to converge towards a single per-requirement

topic distribution. This aggregation method outperformed the JS divergence aggrega-

tion method. The WS is a more flexible option allowing to balance the influence of the
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different corpora, enabling fine-tuning depending on the case study. In addition, this

method does not require relabelling the topics of the merged model, enabling quicker

re-use of pre-trained models. The WS optimisation assigned heavier weights to the

Wikipedia corpus. This was expected as the per-topic word distributions based on the

Wikipedia corpus covered most of the topics of interest and were of high quality. The

selected Wikipedia pages solely targeted spacecraft subsystems, and were more likely

to efficiently and shortly describe the architecture of space systems. On the other

hand, the feasibility reports provided applied examples of spacecraft design and the

publications and books were larger corpora and thus covered broader ranges of topics.

5.2.7 Conclusion & Future Work

This section introduced a novel domain-specific TM model, spaceLDA, tailored to space

systems, enriched with lexical priors and an optimised WS. The practical application of

TM to support space mission design was established through a case study on the cate-

gorisation of design requirements. The statistical analysis demonstrated the significant

higher ranking of spaceLDA with respect to methods a and c, thus showing that the

optimised WS method outperforms the state of the art aggregation method based on

the JS divergence. SpaceLDA showed a lack of significant difference in mean ranking

with respect to method b, thus suggesting that the aggregation method had a higher

impact on the performances than the usage of lexical priors.

Although applied to a corpus related to space systems, the approach proposed here

is extendable to any domain-specific corpus. In future work, the application of TM

could be extended to the classification of documents. The TM approach could be

compared to a word embedding approach. Labels could be automatically assigned to

topics to mitigate the subjectivity of the manual labelling.
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5.3 Document Embedding for Heritage Analysis

The doc2vec model used to generate the results presented here was first published in

Berquand, A. & Riccardi, A., “From Engineering Models to Knowledge Graph: De-

livering New Insights Into Models” at the 9th International Systems & Concurrent

Engineering for Space Applications Conference (SECESA 2020) [12]. The methodology

and results were presented to the ESA CDF team in February 2021.

Heritage analysis, screening for past similar missions, is one of the first tasks per-

formed by engineers in preparation of a feasibility study. Experts may be inspired

from previous design solutions, anticipate trade-offs, and overall avoid “re-inventing

the wheel”. The heritage analysis contributes to refining the initial design parameters

on which the design convergence will depend. This process is critical as it helps kick-off

the study. According to the expert survey presented in Section 2.2, the identification

of past similar studies is mostly done through the interactions with experienced col-

leagues. The ESA CDF is also currently deploying a study portal where past feasibility

report are identified by a set of metadata. Metadata keyword search is another basic

tool for heritage analysis but it does require human annotation.

The challenge of automatic heritage analysis is addressed twice in this thesis. The

approach presented in this section is based on unstructured data, the ESA CDF fea-

sibility reports introduced in Section 3.2.1, and document representation vectors. In

Chapter 6, the similarity of missions is assessed from the semi-structured data con-

tained in the Engineering Models introduced in Section 3.3 and based on the ESA

CDF’s metadata list. The doc2vec model presented in this section is involved in the

similarity computation of both case studies.

This section is meant as a brief add-on to Section 4.4 discussing word representation

vectors. A doc2vec model, the document-level extension of word2vec, is for the first

time trained on a corpus related to space systems and applied to the discovery of past

similar space missions.

Section 5.3.1 provides the background on document embedding methods, focusing
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on the doc2vec model and past similar work. Section 5.3.2 briefly describes the approach

to map full study reports or chapters to representation vectors with a doc2vec model.

Section 5.3.3 presents the hyper-parameters of the doc2vec model and an analysis of

the chapters found in the study reports. Finally, the representation vectors obtained

with the trained doc2vev model are used to find similar missions, and the results for a

case study are detailed in Section 5.3.4.

5.3.1 Background

Document embedding methods

Bag-of-words and Topic Modelling are classic document representation methods. With

the BOW approach, summarised in Figure 5.8, a document is mapped to a vector

of length n, corresponding to its vocabulary size. Each vector element of index i

corresponds to the frequency of a word w in the document. This method could be

seen as the document-level equivalent of OHE. The comparison between vectors of

documents is then the equivalent to comparing the frequency lexica of the documents.

Depending on the vocabulary size, this method yields sparse representations which

increase the computation cost. Topic Modelling, introduced in Section 5.2, represents

documents as topic distributions. Similar documents should cover similar topics. Both

of these methods lack to take into consideration the word’s context.

Figure 5.8: Bag-Of-Word example, the vectors are compared with the cosine similarity.
The first sentence is found to be more similar to the second sentence than to the third
random sentence.
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Similarly to the trends seen for word embedding, predicting methods have grown

more popular than count-based methods. Le and Mikolov introduced in [184] the

Paragraph Vector model, also called doc2vec, an unsupervised framework to learn the

distributed vector representations of pieces of text. Doc2vec is de facto a document-

level extension of the word2vec model presented by Mikolov et al. in [123, 125]. The

target paragraph can be of any size, from a sentence to a document.

Several authors build upon the word2vec architecture to learn sentence-levels em-

bedding. Renter et al. in [185] combine and average the vectors of the words find

in a document to learn the document vector. Pagliardini et al. propose Sent2Vec

in [186], combining the CBOW architecture of word2vec, multi-words embedding and

vectors averaging. Kiros et al. took a different approach with Skip-Through vectors

in [187]. Their method is based on Recurrent Neural Networks and takes into account

the word order. A more recent model of SentenceBERT presented in [188] is based on

a transformer architecture to be presented in Section 4.5.

Doc2vec architecture

The doc2vec model architecture is inspired from word2vec. As a matter of fact, Le

and Mikolov introduce two different architecture for their Paragraph vector model: the

Distributed Memory (DM) version based on the word2vec CBOW architecture, and

the Distributed Bag of Words (DBOW) version based on the Skip-gram architecture.

Both are respectively illustrated in Figure 5.9a and 5.9b.

In the DM architecture, each paragraph is mapped to a unique vector stored in

the matrix D, and each word embedding is stored in a matrix W . Both paragraph

and words vectors are used to predict the target word. While a paragraph vector only

contributes to the prediction of words found in the paragraph only, the word vectors are

shared across all paragraphs. The paragraph vector acts as the memory of the general

context, of the paragraph, hence the architecture’s name. In the DBOW architecture,

a text window is sampled, then a random word from this window, and the model is

trained to predict the missing word given the paragraph vector. Both architectures use

the hierarchical softmax based on a binary Huffman tree.
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(a) DM architecture

(b) DBOW architecture facility

Figure 5.9: Paragraph Vector architectures derived from [184]

Le and Mikolov found in [184] that the DM architecture is consistently better than

DBOW for sentiment analysis and information retrieval tasks. However, following

contradicting results found in the Literature [189], Lau and Baldwin further compare

both architecture and reach the conclusion that DBOW generally outperform the DM

architecture. Thus, the DBOW architecture is adopted for this study.

Past relevant applications

Similar applications are found in the legal [190, 191], patent [192], cybersecurity [193],

and even Persian poetry [194] fields. The approach is akin to the one suggested below,

to discover similar documents, the representation vectors are learned with a doc2vec

model and then compared with a cosine similarity.
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No doc2vec model trained on a corpus of space systems documents was encountered

in the Literature, this work is thus considered as the first application of document

embedding to space systems.

5.3.2 Approach

The goal is to quantify the similarity between the feasibility reports provided by the

ESA CDF team. These reports are one of the main text sources described in Sec-

tion 3.2.1. A doc2vec model is trained on a corpus of 27,016 ECSS requirements

presented in Section 3.2.2. The model is then used to embed the feasibility reports

and chapters from the reports. The model is trained on this smaller corpus rather

than the large, main, corpus to focus on highly technical knowledge, the requirements.

Embedding the chapters instead of the full documents enable a deeper analysis of the

heritage, comparing the architecture choice at subsystem level. The representation vec-

tors of the documents at report or chapter-level are then compared through a cosine

similarity measurement. The documents with the highest cosine similarity are the most

similar. The approach is summarised in Figure 5.10.

Figure 5.10: Methodology for Heritage Analysis with doc2vec
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5.3.3 Methodology

Doc2vec model hyperparameters

The hyper-parameters, displayed in Table 5.14, are set accordingly to the suggestions

of Lau and Baldwin [189] who empirically defined optimal doc2vec hyperparameters

setting for general applications. Although Le and Mikolov initially reported that the

DM architecture outperformed the DBOW architecture in [184], other research have

reported conflicting results [189]. The model is trained with the open-source Gensim

Python library [132] as the word2vec model.

Table 5.14: Hyper-parameters for doc2vec model training

Parameter Setting Parameter Description

Vector Size 300 Dimension of the representation vectors

Epochs 400 Number of training iterations

Mode DBOW DBOW or DM mode

Minimum Count 1 Minimum word frequency in corpus threshold

Window 15 Left/right context window size

Subsampling 105 Threshold to downsample high-frequency words

Negative Sampling 5 Number of negative word samples

The model is trained on the ECSS requirements introduced in Section 3.2.2. The

requirements are processed with the domain-specific NLP pipeline presented in Sec-

tion 3.2.3. The corpus is divided into a training set (80%) and a testing set (20%).

Each requirement is considered a document. Following training, a ‘sanity-check’ re-

veals that the model would associate each document/requirement from the training

set to itself with an accuracy of 0.99. Treating the testing set as unseen documents,

the average cosine similarity of a document with itself is around 0.98. The output

representation vectors are compared with the cosine similarity measure presented in

Section 4.4.3.

Chapter Selection

To obtain the representation vectors of various report sections, the chapters must first

be extracted. Although the reports are based on a similar template, they do not
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cover exactly the same topics or use the same titles for their chapters. Figure 5.11

displays the distribution of the top 15 chapters found in the table of contents of the 55

feasibility reports provided by ESA. The table of contents were extracted by identifying

capital letter words with a regular expression (regex) pattern. As shown on Figure 5.11,

the Executive Summary, Introduction and Mission Analysis sections are consistently

found in the reports. Figure 5.11 however does not take into account the naming

variations found in the reports. For instance, the Mission Objectives chapter is called

Study Objectives, Objectives or Study Objectives and approach in a few reports. These

variations prevent the automatic extraction of chapters and a human annotator is

necessary to validate the chapter titles. The occurrence of key chapters such as Systems

and Mission Objectives respectively increases from 75% to 96% and from 67% to 90%

when taking into account all title variations.

Figure 5.11: Occurrence of identical chapter titles found in 55 feasibility reports.

For this case study, the embedding will focus on three system-level chapters (Ex-

ecutive Summary, Mission Objectives and Systems), and on Mission Analysis. These
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chapters were chosen as they corresponds to key sections summarising the mission’s ar-

chitecture and design drivers. The orbit selection is also an essential criterion decided

on at the early stages of the design process, and unlikely to change.

5.3.4 Results & Discussion

Due to the confidential nature of some CDF reports, this section will reference public

documents, for instance, assessment study or definition study reports, instead of feasi-

bility study reports. Confidential missions for which no information is publicly available

will be anonymised and renamed as “Mission {A, B, ..., Z}”.

First, each of the available 55 reports is mapped to a representation vector with the

doc2vec model. The similarity of each vector with respect to the remaining 54 studies

is computed with the cosine similarity. The results are displayed as an anonymous

heatmap in Figure 5.12 where each line and column corresponds to a mission’s repre-

sentation vector. The results then focus on a case study with the ATHENA mission

study.

ATHENA Case Study

ATHENA, standing for Advanced Telescope for High-ENergy Astrophysics, is an X-ray

telescope mission selected in June 2014 as part of the ESA’s Cosmic Vision 2015-25

programme. The latter is the current planning cycle for ESA’s space science missions.

The mission’s science objectives are to map hot gas structures in the Universe and study

their physical properties as well as search for supermassive black holes. The mission

is due to be launched in the early 2030s and will be placed in an orbit around the

second Lagrange point of the Sun-Earth system L2. The CDF team ran a study for the

ATHENA mission in November 2014. This mission is chosen for the case study as (i)

its CDF report, [195], is publicly available (without sensitive items such as cost data) 1,

and (ii) the report contains information on previous similar mission that support this

analysis.

1https://www.cosmos.esa.int/web/athena/study-documents
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Figure 5.12: Anonymised heatmap of reports’ similarities. Each column and each line
correspond to a mission. The more intense the colour of their intersection, the higher
their similarity.

Several past missions are mentioned in the ATHENA report. The XEUS [196],

IXO [197] and ATHENA L1 missions are highlighted as main predecessors as they also

fly a X-ray telescope. The Herschel2, Planck3, Gaia4, Euclid [198] and PLATO [199]

missions have a similar L2 orbit. Finally, the spacecraft configuration design drivers

2https://sci.esa.int/web/herschel
3https://www.cosmos.esa.int/web/planck
4https://sci.esa.int/web/gaia
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are similar to the XMM-Newton5 and Chandra6 missions. Of the mission mentioned,

only the reports of the XEUS, IXO and PLATO missions are part of the corpus and

thus taken into consideration for this heritage analysis.

Report-level embedding results

The full ATHENA report is mapped to a representation vector with the doc2vec model

and compared to the other reports’ representation vectors. The average cosine similarity

is of 0.67 with a standard deviation of 0.07. The 10 reports most similar to the ATHENA

mission according to the cosine similarity measurement are listed in Table 5.15. Most

of the missions were studied after the ATHENA mission (post November 2014). The

IXO and XEUS missions are respectively ranked at the 6h and 9th position. A human

validation shows that the highest ranked missions either share a similar payloads (X-ray

imaging and/or telescopes), orbit (L2 Lagrange Point) or programme (Cosmic Vision

2015-2025) with the ATHENA mission. The PLATO mission which has a similar orbit

as ATHENA and was identified as a relevant past mission is however ranked 20th with

a cosine similarity of 0.71.

Most of the missions highlighted by the doc2vec embedding and cosine similarity

analysis carry a telescope, either for X-ray imaging such as Mission A, SMILE [200],

IXO, XIPE [201] and XEUS or for other imaging in visible and/or infra-red such as

ARIEL [202] and SPICA [203]. Apart from the SMILE, XIPE and Phobos-SR [204]

missions which are respectively in Highly Elliptical Orbit, Low Earth Orbit or inter-

planetary trajectories, all suggested missions are either placed in a Halo Lagrange point

L2 orbit or at least start their trajectory from L2 as the M-Argo mission [205]. Finally,

several missions are involved in the ESA Cosmic Vision 2015-2025 Programme, either

as current (ARIEL, SMILE) or former candidates (SPICA, IXO, XIPE).

Although these initial results are encouraging as they allow to quickly identify

potential similar missions, the report-level embedding approach still requires an expert’s

eye to understand how the missions are similar. The next step is thus to embed chapters

5https://www.cosmos.esa.int/web/xmm-newton
6https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Chandra_X-

Ray_Observatory
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Table 5.15: Comparison of reports vector representations obtained with the doc2vec
model.

Rank Mission
Cosine

Similarity
Year

Manual Similarity Assessment
Payload Orbit Programme

1 Mission A 0.82 12/2014 X X -
2 ARIEL 0.81 2015 X X X
3 SMILE 0.76 2015 X - X
4 SPICA 0.76 2018 X X X
5 QPPF 0.75 2018 - X -
6 IXO 0.75 2008 X X X
7 MARGO 0.74 2017 - X -
8 XIPE 0.74 2015 X - X
9 XEUS 0.74 2004 X X -
10 Phobos SR 0.74 06-2014 - - -

rather than full reports, to refine the automatic heritage analysis, by highlighting how

the missions are similar.

Chapter-level embedding results

The Executive Summary, Mission Objective, Systems, and Mission Analysis chapters

are extracted from each CDF reports, embedded with the same doc2vec model and com-

pared with the cosine similarity analysis. The Executive Summary usually contains a

complete description of the mission including background information, scientific jus-

tification, context, and systems overview. The Mission Objective chapter focuses on

the mission’s goal, while the Systems chapter summarises the system requirements and

design drivers. Finally, the Mission Analysis chapter addresses the selected orbital

parameters, station-keeping, and the orbit trade-off.

The top 10 missions with the highest cosine similarities for each chapter of interest

are highlighted in Figure 5.13. The missions which are found similar to ATHENA after

human validation are highlighted in green, the others in red. The analysis at chapter

level provides a different perspective on heritage analysis. The PLATO mission, a

known similar mission, appears in the top 10 for the Mission Objectives and Mission

Analysis. Other candidates of the Cosmic Vision 2015-2025 such as Laplace [206],

LISA [207], CHEOPS [208], THOR [209] and LOFT [210] appear in this comparison.

The results are however mixed, with accuracy as high as 80% for the Mission Objective
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chapter, and as low as 50% for the Systems chapter. For instance for the Mission

Analysis chapter, Mission A and SPICA do have similar orbits and operations as

ATHENA’s. There is a noticeable step in the cosine similarity values between the 2nd

and 3rd suggested missions. Then the 3rd, 4th, 5th and 6th missions respectively have

Earth-Moon, interplanetary and Low Earth Orbit trajectories which are very different

from ATHENA’s orbit.

5.3.5 Conclusions

The results of this case study are encouraging. The approach based on the doc2vec

model and cosine similarity allow the quick retrieval of potential relevant past missions.

It is recommended to learn the representation of chapters rather than full reports to

provide a detailed heritage analysis.

The method accuracy however varies and requires human validation. To improve

the heritage analysis outputs, the metadata parameters used by the CDF team could

be combined with the doc2vec approach. Relying on contextualised embedding such as

BERT rather than doc2vec could increase the quality of the vectors. To enhance the

quality of the representation vectors, the authors of the reports could also be compared

to remove potential author bias. This bias could be caused by the author’s writing style.

Finally, to expand the range of past missions assessed, contents from online missions

databases such as ESA EoPortal Directory7 could be integrated to the comparison.

7https://directory.eoportal.org/web/eoportal/satellite-missions/
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Figure 5.13: Outputs of the chapters comparison for the ATHENA case study. The
highest the cosine similarity value, the more similar the missions’ chapter are.
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5.4 Chapter Summary

Two new domain-specific models, spaceLDA and a space doc2vec, were developed in

this chapter. The domain adaptation of these text mining methods demonstrated the

potential for these methods to enhance knowledge management and reuse at the early

stages of space mission design by automating tasks usually done manually by engineers.

These stand-alone applications can contribute to increase the range of queries that

could be handled by the DEA as suggested in Figure 1.1. The SpaceTransformers

models presented in Section 4.5 can be fine-tuned to additional downstream applications

such as Question-Answering or Similarity Analysis, therefore also contributing to task

automation.
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6.1 Chapter Overview

The technology trade-off was initiated in Berquand et al., “Artificial Intelligence for the

Early Design Phases of Space Missions” at the 2019 IEEE Aerospace conference [9].

The approach, methodology, and mass budget application are derived from Berquand,

A. & Riccardi, A., “From Engineering Models to Knowledge Graph: Delivering New

Insights Into Models” presented at the SECESA 2020 conference [12]. The background,

methodology, and heritage application were refined in the frame of an OSIP study “Sys-

tem Engineering Models Meet Knowledge Graph” (ESA Contract No. 4000133311/

20/NL/GLC) led by Valera, S. (ESA) and Riccardi, A. (University of Strathclyde).

Engineering Models (EMs) are the second main outputs of Concurrent Engineering

studies. This type of data is considered as semi-structured rather than structured data

as it contains information, for instance requirements, in natural language. EMs contain

key information on the spacecraft design, yet these models are today not easily reused,

queried, let alone compared. On the other hand, a new type of data structure called

Knowledge Graph (KG) is getting an increasing momentum in both the academic and

industrial fields. KGs are particularly useful as they can handle data diversity, from
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high-quality complete data to sparse and incomplete data, with high scalability and

flexibility. Furthermore, KGs have reasoning and inference capabilities through their

schema structuring the graph information. They can thus infer hidden knowledge

from explicit facts. To summarise, KGs could help engineers overcome data silos,

interconnect information, provide a big-picture perspective, and infer new knowledge

that would have remained hidden otherwise. KG is also the suggested database format

for the DEA as seen in Figure 1.1.

This chapter explores how the migration of stand-alone Engineering Models (EMs)

to a common KG could enhance the data linkage, reusability and interpretability of

these models, further contributing to knowledge management and reuse at the early

stages of space mission design. The contributions of this chapter are summarised as

follow:

1. The potential for the integration of a KG based on EMs into the Concurrent

Engineering process is reflected upon.

2. A trade-off of available off-the-shelf KG tools is provided.

3. Novel mapping rules and migration pipelines from UML to TypeQL are defined.

4. The relevance of a KG to infer hidden knowledge from the EMs is demonstrated

through an automatic mass budget generation application.

5. The potential for a KG combined with a NLP layer is demonstrated through a

heritage analysis application.

Section 6.2 investigates how enhanced access to Engineering Models content could

contribute to the current Concurrent Engineering process. Section 6.3 introduces UML

concepts and examines different database types, with an emphasis on SQL and graph

databases. A trade-off of available Knowledge Graph tools leads to the selection of the

Vaticle TypeDB database. Section 6.4 summarises the approach followed to migrate the

Engineering Models to a Knowledge Graph. The mapping rules, from UML to TypeDB,

required for the migration are detailed in Section 6.5. Two case studies identified in

Section 6.2 are implemented in 6.6. Finally, Section 6.7 discusses the results. The

source code for [12] is available at github.com/strath-ace/smart-nlp.
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6.2 Motivation

As described in Section 2.1.2, and summarised in Figure 2.7, a feasibility study fol-

lowing the Concurrent Engineering approach is usually divided in three parts: the

preparation, the study itself, and the post-study. The design process is iterative, with

several consecutive design iterations and various design options for each iteration. A

feasibility study has several outputs: a study report, an Engineering Model (EM), and,

sometimes, a record of lessons learned. Chapters 4 and 5 focused on the first type of

output, unstructured data, while this chapter addresses the reuse of the EMs. Based on

the expert survey findings presented in Section 2.2, Figure 6.1 suggests how a database

populated with previous studies’ Engineering Models could support the current design

process. The database queries focus on the preparation and the study phase, as the

post-study action would consist in migrating the latest EM to the KG. The queries are

focused on both inter-model and inter-iterations comparisons. To successfully address

the queries, the database is enriched with a NLP layer.

The suggested queries of interest for the preparation phase are the following:

1. Heritage Analysis: Based on the metadata and requirements contained in the

EMs, similar missions can be clustered with an approach akin to the one presented

in Section 5.3 relying on doc2vec.

2. Estimation of initial design parameters: The quality of the input parameters

is key to enabling a faster design convergence. A common database of EMs makes

its possible to compare past previous architectures of similar missions, and helps

kick-start the design.

The suggested queries of interest for the study phase are the following:

1. Budget Evolution: The systems engineers manually keep track of the mass and

power budgets throughout the design study. These could be inferred automat-

ically from the EMs. New insights could also be derived from the evolution of

mass and power budgets accross the different iterations of an EM.

2. Metadata Evolution: The metadata assigned to each iteration can be extracted

and compared, providing further insights on the design evolution.
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3. Architecture Evolution: This type of query provides insights at subsystem

level, by comparing the equipment assigned to each subsystem per iteration. For

instance, the evolution of heater or radiator surfaces between consecutive itera-

tions can be inferred.

4. Comparison with past architectures: The subsystem architecture can be

compared to past missions’ architectures. For instance, by inferring the average

area of solar panels used in past similar missions.

Current tool for the modelling of the EMs, the OCDT, CDP4 and COMET do not

allow to compare the EMs of different missions nor to compare the different iterations

of a same EM. Although the most recent tool, COMET, offers reports generations

templates, none of the tools integrate text mining or NLP capacities, key enablers of

some above queries.
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Figure 6.1: Integration of the Knowledge Graph querying in the Concurrent Engineering design process. The green boxes
represent inter-model queries while the orange box represents the inter-iterations queries.
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6.3 Background on Information Modelling & Knowledge

Graph

Information modelling is the process of creating a data model for information to be

stored in a database. The data model represents the data objects and their associ-

ations through relationships and rules. As defined by Valera in [211], a model is a

combination of (i) a schema, structuring the regulations for a universe of discourse,

and (ii) a population, the data captured. A conceptual schema declares an ontology

of the concepts, focusing on the semantics and all concepts relevant to a universe of

discourse.

Figure 6.2 illustrates how a domain-specific model is built from a generic model.

Each model, generic and domain-specific has its own schema and population. The

generic model corresponds to one of the many languages used to specify a domain

specific model, for instance, UML. The domain-specific model represents a universe

of discourse. The population of the generic model corresponds to the schema of the

domain-specific model. For instance, Spacecraft would be a level 2 entity, Sentinel-1

(a satellite) the level 1, the population of the Spacecraft entity; and the level 3 would

be a UML class. In the frame of the ECSS-based EMs, the generic model (level 3)

consists in the building blocks of the Unified Modelling Language (UML), populated
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with the objects from the ECSS-E-TM-10-25A class diagram (level 2) such as Element,

Iteration. The domain-specific model structured with the latter is then populated with

the content of the EMs (level 1), for instance, Spacecraft or Iteration1. This section

investigates current databases and tool options to structure and host the migrated EMs

based on an UML class diagram.

Figure 6.2: Generic vs Domain-Specific Modelling. Courtesy of S. Valera (ESA, TEC-
SWT).

First, some background on the UML language and its building blocks, the starting

point of the migration, is provided. Common types of database are then described and

compared, with an emphasis on graph databases. The Knowledge Graph technology is

eventually chosen for the migration, as it integrates semantics, enabling reasoning and

the inference of hidden knowledge. The Vaticle TypeDB tool is selected following a

trade-off of available KG tools. The level 3 of the pyramid will thus require a mapping

from UML to TypeQL concepts, the level 2 a migration of the UML class diagram to

a TypeDB schema, and the level 1 will contain the Engineering Models.
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6.3.1 Unified Modeling Language

Unified Modeling Language (UML) is a standardised Object-Oriented (OO) modelling

language for specifying, visualising, constructing and documenting software systems.

As described in [212], UML was invented by Booch, Jacobson, and Rumbaugh in the

late 90s, answering a call issued by the Object Management Group (OMG) to develop

the specifications for a uniform modelling language. It was adopted as a standard by

OMG in 1997. A UML model is represented schematically by diagrams. There are

two main categories of diagrams: Structure and Behaviour [212]. Structure diagrams

provides a static view of the model architecture. The class diagram is an example of

such diagram, modelling the architecture of a system. Behaviour diagrams emphasise

the dynamic behaviour of the system, highlighting the exchanges between the objects.

A sequence diagram is an example of behavioural diagram representing the sequence

of actions followed by various objects to complete a task.

The conceptual model of the EMs to be migrated is based on a class diagram. As

described on the official UML webpage1, the building blocks of a class diagram are:

• Class: A class describes a set of objects sharing the same features, constraints

and semantics. A class is a type of classifier, an abstract metaclass describing set

of instances with common features. Classes can be abstract or concrete.

• Interface: An interface is another type of classifier, declaring a set of features

and obligations to be implemented not by the interface itself but by another

classifier. The interface is not instantiable but is fulfilled by an instance of an

instantiable classifier.

• Features: The features represents a structural or behavioural characteristics of

a classifier. For instance, a property is a structural feature and an operation is a

behavioural feature.

• Property: The property is a structural feature representing an attribute or the

end of an association. A property can be derived. A derived property is produced

or computed from other information. For instance, an “age” property would be

1https://www.uml.org/

181

https://www.uml.org/


Chapter 6. From Engineering Models to Knowledge Graph

derived from a “birthday date”. The attributes of a class are instances of property

owned by the class. Attributes can be inherited.

• Operation: Operations are a behavioural feature that may be owned by a class,

an interface or a data type. A method is the implementation of an operation. It

specifies the procedure associated to an operation.

• Relationship: A relationship links one or more related classes. The relation-

ship can thus be binary or n-ary. The different types of UML relationships are

underlined in Figure 6.3, and illustrated in the example Figure 6.4.

Figure 6.3: Overview of the main UML relationships

Figure 6.4 displays a basic example of an UML class diagram. Multiplicity is spec-

ified to indicate n-ary relationships by a 0..∗ or a 1..∗, respectively meaning from zero

or one to infinity. An association relationship connects, for instance, the Engineering-

Model to at least one Participant class. The aggregation is a sub-class of the association,

representing a “part of ” relationship. The Person class contains at least one EmailAd-

dress. In the case of a composition relationship, such as the one between the Iteration

and the Option classes, the existence of a class depends on the other. For instance if

the Iteration disappears so does the Option. The Generalisation or Inheritance rela-

tionship links a general classifier to a more specific classifier. The Participant class is

thus a sub-type of a Person class and it inherits the features of its parent class. A

dependency relationship is a directed relationship indicating that one or a set of UML
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elements depend on another model element for specification or implementation. For in-

stance, the domainOfExpertise attribute of the Participant class depends on the values

dictated by the Domain enumeration. Finally, the realisation is a special type of de-

pendency, implementing a client-supplier relation, where an object realise a behaviour

dictated by another object. For instance, the EngineeringModel class implements the

EngineeringModelSetUp.

Figure 6.4: Example of an UML class diagram

The conceptual model of a UML diagram aims to be a software blueprint, not to

model a universe of discourse. As underlined by Mkhinini et al. in [213], although

the field of ontologies and UML share similarities, the limited semantic expressivity

of UML leads to significant loss of information. Romero et al. concur by saying that

UML defines semantics imprecisely, and thus extend their UML model with additional

semantics [214]. The migrated conceptual model built from a UML class diagram will

thus inherits the UML semantic limitations.
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6.3.2 Relational vs Graph Databases

Graph databases have been increasingly popular in the past years as shown in Fig-

ure 6.5. This section provides a thorough comparison between relational and non

relational databases, with an emphasis on graph database. This comparison eventually

justifies the choice of graph databases for this chapter.

Figure 6.5: Historical trend of database systems’ popularity. The popularity changes
are computed monthly based on the averaged ranking of the best three systems per
category. Source: DB-Engines.com

Relational Databases

Relational Modelling was first introduced by E.F.Codd, a researcher at IBM, in [215].

Relational models target highly structured data, organising data in tables and rows.

The common querying language of relational databases is SQL, Structured Querying

Language. The data contained in the tables are linked by primary and foreign key pairs,

a key being a unique identifier. Relational databases implement Relational Modelling,

structuring data into tables, which can be joined to extract insights. From their first

use in the 70s, SQL databases are still popular today.
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Non-Relational Databases

Non-Relational Databases, also called NoSQL, appeared in the early 2000s, providing

new ways of storing, searching and retrieving data other than in tables with relation-

ships. With the rise of Big Data, large amount of unstructured, semi-structured and

structured data required storage solutions. As underlined by Li and Manoharan [216],

NoSQL databases appeared as an ideal solution as they claimed to be more flexible

(schema-free) and faster than SQL, and they could handle heterogeneous data.

Graph Databases

A graph database is a type of NoSQL database based on Entity-Relationship (ER)

modelling. The latter models were first suggested by Peter Chen in 1976 [217]. ER

diagrams rely on three building blocks: entities (i.e., real word objects), attributes and

relationships. With their simple construct, these models are extremely intuitive. As

underlined by Harrison [218] and Robinson et al. [219], graph databases are purpose-

built to store and navigate relationships. Connectivity is therefore a key feature of

graphs, and the relationship between data is seen as equally important as the data

itself. Graphs are also flexible and naturally additive. As described by Robinson et al.

in [219], there are three main types of graph databases:

• RDF Graph: Resource Description Framework (RDF) graphs are based on RDF

triples. RDF is a standard model for data interchange proposed for the Semantic

Web. As described in [220], RDF was first defined as a standard in 1999 by the

World Wide Web Consortium (W3C), to capture the metadata of web resources

and interlink resources in a formal, machine-understandable language. The Web

Ontology Language (OWL), the ontology language recommended by W3C, is

partly based on RDF. An RDF graph is a directed graph, with labelled nodes and

directed arcs. Each arc is a binary relationship between two nodes, or resources.

Nodes and relationships are identified by a Uniform Resource Identifier (URI).

A RDF statement is called a triple, with an object-predicate-object structure as

shown on Figure 6.6. RDF graphs integrate semantics unlike property graphs

without schema.
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Figure 6.6: Example of a RDF triple

• (Labelled) Property Graph: In a property graph, relationships are binary

and directed, they have a start and an end node. Both edges and nodes can have

properties, which as underlined in [218], allow the property graph to provide a

richer model than RDF. Property Graphs do not require a schema, therefore

might not bear semantics. The property graph is the basis of Neo4j2, one of the

most popular graph database.

• Hypergraph: Hypergraphs are a subcategory of property graphs allowing n-ary

relationships. This type of relationship can connect any numbers of nodes, and

is therefore useful for models requiring many-to-many relationships [219].

Comparison of SQL & Graph Databases

Based on the Literature Review findings, the relational and graph databases are com-

pared in Table 6.1. The trade-off takes into consideration the following parameters:

1. Data Types: This parameter indicates the types of data assimilated in the

database.

2. Structure: This parameter refers to the modelling blocks used by the database.

3. Compliance to standards: This parameter underlines whether or not the

database type follows standards.

4. Knowledge Representation: This parameter underlines which data elements

the database focuses on.

5. Reasoning Engine Performance and Query Response Time: The query

latency is key for query performances and deep analytic.

2https://neo4j.com/
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6. Use Cases: This last parameter identifies the use cases best adapted to each

database type.

Table 6.1: Databases Type Trade off

Relational Database Graph Database

Data
Types

highly structured data heteregenous data

Structure
Tables, relationships are
established by primary

and foreign keys.
Graph: nodes connected by edges

Compliance
to standards

ISO standard
RDF: W3C standard,

Property/Hypergraph: No
Knowledge

Representation
Focus on

data representation
Focus on

relationship representation

Query
Response

Time

High latency at large scale.
Query latency increase

with amount of
data stored due to

“join” queries

High performance for
complex deep analytic,

and for complex transactions

Use Cases
Transaction-focused use cases:
online transactions, accounting

Relationship-heavy use cases,
when seeking hidden connections:

fraud detection,
recommender systems,

social networks

The trade-off outputs reinforce the choice of graph databases over relational databases

for the EMs migration. Graph databases are purpose-built to store and navigate re-

lationships. The query performances of relational databases is also inferior to graph

databases due to the complexity of compute-heavy joins queries. Graph databases are

therefore more adapted to use cases involving highly interconnected data. As the pur-

pose of the migration is to query the EMs rather than modify or add content to them,

a graph database appears as the most suitable option.

6.3.3 Knowledge Graphs

This section first explores the origins of Knowledge Graphs and attempts to define

them. The evolution of KGs, from targeting web resources to becoming Enterprise KGs

adapted to entreprise information management, is briefly discussed. Finally, available

modelling tools are compared to select the tool best adapted for the migration of EMs.
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Origins

Knowledge Graphs became popular after Google released its graph in 2012. According

to a former Google Senior Vice President, Amit Singhal, Google had produced an intel-

ligent model that understands real-world entities and their relationships to one another:

things, not strings” [221], thus a model capable of far more than mere keyword match-

ing. A Google search result now comes along with a knowledge summary, containing

key facts and suggesting related information. Figure 6.7 displays the knowledge sum-

mary for an “Amelia Earhart” query. Along with an overview of her accomplishments,

the knowledge summary links to books, quotes and even related personalities.

Figure 6.7: Google Knowledge Summary obtained for an “Amelia Earhart” query

Knowledge Graphs were however not invented by Google. As underlined by Fensel

et al. in [222], KGs were originally based on Semantic Networks, networks of linked

concepts. These were first mentioned in the 1960s, as a knowledge representation

framework. The difference between KGs and Semantic Networks became blurry when,

in the late 1980s, two Dutch universities initiated a “Knowledge Graph” project, de

facto, a Semantic Network, restricting edges to a set of potential relations. Fensel et

al. do underline that these earlier concepts were narrow compared to the millions of

facts now covered by KGs.
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Definition

Several definitions for KG are found across the Literature. Fensel et al. compile various

survey’s outputs in [222] to propose the following conceptual definition: “Knowledge

Graphs are very large semantic nets that integrate various and heterogeneous informa-

tion sources to represent knowledge about certain domains of discourse”. Ehrlinger and

Wöß then propose the following: “A knowledge graph acquires and integrates informa-

tion into an ontology and applies a reasoner to derive new knowledge” in [223]. Finally,

Gomez-Perez et al., in [224], define a KG as “a set of interconnected typed entities and

their attributes” having “an ontology as its schema defining the vocabulary used in the

knowledge graph”.

All definitions encountered in the Literature seem to revolve around two key ele-

ments: (i) a KG is structured as a graph, using edges (i.e., relations) to interconnect

nodes (i.e., entities, either real world objects or abstract concepts), (ii) a KG bears

formal semantics defined by an ontology.

The key to differentiate a KG from a plain graph database is thus in the semantics.

Ontologies are used to describe a universe of discourse. An ontology can therefore act

as the schema of a KG, defining its entities, attributes and relationships. Semantics

furthermore enable the inference of new facts.

From Knowledge Graph to Enterprise Knowledge Graphs

The success of the Google’s KG set a new trend in information management. While the

Google graph initially focused on web searches and data, companies quickly understood

that this technology could be adapted to enterprise information management [225]. The

GAFA tech giants (Google, Amazon, Facebook, and Apple) have all adopted KGs to

integrate and make sense of their diverse data at a large scale [222,226]. These graphs

are usually called Enterprise Knowledge Graphs (EKG), as they are internal to the

company and retains proprietary information. EKGs are the key to breaking data

silos, connecting data to provide a big picture view and inferring new knowledge that

would have remained hidden otherwise. To cite a few examples among well known

platforms:
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• To connect members to their companies and skills, suggest new job opportunities,

and perform business and consumer analytics, LinkedIn implemented it own KG.

In [227], the LinkedIn KG is said to connect, among other entities, 450M members,

190M job listing and 9M companies.

• Airbnb, hosting over 5 million rental homes is targeting to become an end-to-end

travel platform. Therefore, to offer more than rental house listings, Airbnb has

developed its own taxonomy and KG to enhance the traveling experience of its

users. By inferring experiences (i.e., activities, events) and location perks (i.e.,

landmarks proximity, restaurants options) with the available houses, the platform

can now deliver travel insights to its users [228] .

• To encode semantics knowledge about the products sold on its platform, and

understand the context of a buyers’ query, eBay is developing a Product KG

called Beam [229].

In the space field, KGs have also gained some momentum. NASA collaborated with

Stardog3 to develop a KG for Product Lifecycle Management (PLM) and Product Data

Management (PDM), connecting data silos to facilitate the engineering of complex sys-

tems [230,231]. Another NASA team, [232], used MongoDB4 and Neo4j5 to migrate a

Lessons Learned (LL) database to a KG, identifying patterns and leading to a quicker

recall of relevant LLs during a search. Finally, GraphAware and Cambridge Intelligence

recently produced a proof-of-concept for ESA, monitoring the satellite technology mar-

ket [233, 234]. With the help of domain experts to annotate entities, GraphAware

mapped the current satellite ecosystem into a Neo4j graph. To support the visuali-

sation, the data was exported into a KG with the KeyLines product from Cambridge

Intelligence; an example is displayed in Figure 6.8.

The increasing demand for EKGs has resulted in the emergence of several consult-

ing companies such as Stardog and GraphAware (Neo4j consultancy) offering EKGs

packages. Off-the shelf tools to develop Knowledge Graphs are also available.

3https://www.stardog.com/
4https://www.mongodb.com/
5https://neo4j.com/
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Figure 6.8: Visualisation of the space ecosystem provided by GraphAware in [233],
blurred by GraphAware.

Tools Trade-Off

Nine KG modelling tools: Vaticle TypeDB (formely known as Grakn), Neo4j, GraphDB,

StarDog, Apache Jena, AllegroGraph, JanusGraph (formely known as Titan), Tiger-

Graph, and AnzoGraph DB are compared. The nine tools were chosen based on their

popularity and the fact that they can be schema-based. As previously defined, a graph

database without semantics does not qualify as a Knowledge Graph. Therefore, popular

graph databases such as Arango-DB, Microsoft Azure Cosmos DB, OrientDB, Amazon

Neptune, DGraph, or FaunaDB are not included in the comparison as they are schema

free. The goal of the trade-off is to identify the most appropriate tool for the migration

of the EMs.

Semantic Web technologies require the user to learn several languages: RDF, RDFS,

OWL, SPARQL for querying and SHACL for inference. This approach results in a high

barrier to entry that was not adapted to the study timeline. Tools independent from the

W3C, like TypeDB, reduce the complexity linked to Semantic Web Standards, while

maintaining a high degree of expressivity [235]. With TypeDB, the ontology, query

and reasoning languages are all written with one language: TypeQL. This language

requires much less complexity to model and query highly interconnected data than

SQL as demonstrated in [236] where 151-line SQL query is down-scaled to 4 lines in
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TypeQL. Thus, tools based on RDF graphs are considered in the below trade-off, but

will be penalised.

To compare the tools, the following parameters are used:

1. Portability: The tool will be considered as portable if it is compatible with the

common operative systems, e.g., Linux, macOS and Windows.

2. Learning Curve: Learning curve for developers and end-users with no back-

ground knowledge in any language/modelling framework. Learning curve for

graphs based on RDF triples have been set to “Long” due to the multiple tech-

nologies a user needs to master for schema definition, population, query and

reasoning (RDF, RDFS, OWL, SPARQL).

3. Scalability: This parameter identifies whether the tool can grow and manage an

increased demand, or has any limits in its number of nodes or relationships.

4. Inference Engine: This parameter assesses whether a reasoner is integrated to

the tool or if it needs to be built on top. An integrated reasoner saves on time

and system complexity.

5. Visualisation: This parameter judges if a visualisation interface is integrated

into the tool, again saving on time and system complexity.

6. Support: The tool support is considered strong when, in addition of documen-

tation and tutorials, there is an active and open exchange between the developers

and the users, for instance through a forum or a social media channel. A dynamic

community suggests interest in the tool and a potential long term viability. In

addition, it is useful when developing to have an easy access to previous issues

and solutions. The tool support will be considered average when documentation

and tutorials are provided, but there is no open platform for the community to ex-

change. Without documentations or tutorials, the tool support will be considered

as weak.

7. Licence: The tool could either be open-source or available through a commercial

licence. Open-source is the preferred option.
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The tools trade-off is displayed in Table 6.2. Additional table lines (i.e., generic

modelling language, developer, initial release, query language, and Python support)

provide background information on each tool. A Python API is here considered as an

asset based on subjective coding preferences.
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Table 6.2: Knowledge Graph Modelling Tools Trade-Off

AllegroGraph AnzoGraph
Apache
Jena

TypeDB GraphDB JanusGraph Neo4j Stardog TigerGraph

Generic
modelling
language

RDF
Graph

RDF
Graph

RDF
Graph

Hypergraph
RDF

Graph
Graph

Property
Graph

RDF
Graph

Parallel
Graph

Developer Franz Inc.
Cambridge
Semantics

Apache
Software

Foundation
Vaticle Ontotext

Linux
Foundation

Neo4j
Inc

Stardog-
Union

TigerGraph
Inc.

Initial
Release

2004 2018 2000 2016 2000 2017 2007 2010 2017

Query
Language

SPARQL SPARQL* SPARQL TypeQL SPARQL Gremlin Cypher SPARQL GSQL

Supports
Python

Yes Yes No, Java Yes Yes Yes Yes Yes
No, only

Java & C++
Portability Yes No, Linux Yes Yes Yes Yes Yes Yes No, Linux
Learning
Curve1

Long Long Long Short Long Average Short Long Short

Scalability
Known to handle

1 Trillion
triples

Unspecified Unspecified 264 nodes Unspecified
260 edges and

half as
many vertices

Limit on 34Bn
for both

nodes and
relations

Unspecified Unspecified

Inference
Engine

Built-in Built-in
Inference

Engines API
Built-in Built-in

Not
integrated

Not
integrated

Built-in Unknown

Visualisation
AGWebView
Webviewer

Graphileon
Visualiser

Visualiser
API

Integrated in
Deskop

Application
With Ogma JS

Supports
tools

Integrated in
Deskop

Application

Tableau
& Linkurious

GraphStudio

Support Average Average Strong Strong Average Strong Strong Strong Strong

License Commercial
Limited

Free Edition
Open Source Open Source Commercial Open Source Open Source Commercial Commercial
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From the above trade-off table, TypeDB, Neo4j and TigerGraph appear as the most

likely candidates. TigerGraph was however discarded for its lack of portability and for

its commercial licence. Neo4j is a well-established tool, with a strong community and

a user-friendly query language, Cypher. TypeDB also has a very strong community,

and a language, TypeQL, with a low-entry barrier. However, TypeDB has a decisive

advantage on both Neo4j and JanusGraph: an integrated reasoner. Although reasoning

services can be built on top of Neo4j and JanusGraph, the fact that TypeDB provides

an integrated solution considerably reduces the system complexity. As a result, the

TypeDB database from Vaticle is selected to support to migration of the Engineering

Models.

6.3.4 Vaticle TypeDB Overview

Vaticle TypeDB6, formerly known as Grakn, is an open source KG development tool.

TypeDB is based on a hypergraph, and thus allows the modelling of n-ary relation-

ships. The tool implements its own schema and query language, TypeQL. This section

provides an overview of the TypeDB concepts and reasoner, as well as front-end inter-

faces. An example then illustrates the definition of the schema and rules, as well as the

insertion of the data layer.

6https://vaticle.com/
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TypeDB concepts

As defined in the tool documentation7, there are three main types of schema concepts

in TypeDB:

• Entity: The entity is a thing with a distinct existence in the domain. An entity

can be abstract. As in UML, an abstract type cannot be instantiated. Concrete

types can inherit the attributes and roles of an abstract type.

• Relation: The relation connects entities together. Since TypeDB is a hypergraph

it allows n-ary relationships. The entities involved in a relationship play a role

in it. The role that an entity plays in a relationship, e.g.,“contains”, “refersTo”,

“isContained”, “isReferred”, has to be specified in the entity definition. Each

relation requires at least one role. A role cannot exist without a relation. One

entity type can play several roles from the same relation, different entities can

play the same role. A relation can be abstract, but the types playing a role in

that relation must also be abstract. Finally, relations may also own attributes.

• Attribute: Attributes are data attached to entities or relations. An attribute

can be abstract. The attributes can only have one type, and can only represent

an attribute. A same attribute can however be owned by different concepts types.

Table 6.3 summarises the TypeQL keywords used in version 2.0.1 to build the

schema layer of the graph. If the schema is not valid then it cannot be loaded to a

TypeDB database.

7https://docs.vaticle.com/docs/general/quickstart
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Table 6.3: TypeQL Schema Keywords Summary

Keyword Use Example

define
initiate a statement to

define schema-type element
(e.g., entity, attribute, relation)

define
mission sub entity;

undefine
initiate a statement to

delete schema-type elements
(e.g., entity, attribute, relation)

undefine
mission sub entity;

sub

Declare a subtype,
and induce inheritance.

Multiple inheritances are not allowed
in TypeDB, a choice of the developers.

(the spacecraft entity now inherits
all attributes and roles

from the mission entity.

spacecraft sub mission;

abstract
Declare that a type

cannot have instances
(abstract)

mission sub entity, abstract;

owns Assigns an attribute
mission sub entity,
owns name;

key

Follows an attribute to assign
a unique attribute to an entity or a relation.

(No instances of name
will have the same value).

mission sub entity,
owns name @key;

plays Assign a role to an entity
spacecraft sub mission,
plays downlink:emitter;

relates Declares a role within a relation
downlink sub relation,
relates emitter,
relates receiver;

Inference

The TypeDB reasoner enables the reasoning over data to infer new knowledge. The

inference in a TypeDB knowledge graph is either rule-based or type-based. Type-based

reasoning is achieved through the modelling of type hierarchies in entities, attributes

and relations. If a pear and an apple are subtypes of a fruit entity, then to get all

subtypes of fruit, one only needs to query for the fruit instances. TypeDB also enables

basic compute queries to retrieve statistical information (i.e., mean and count), find the

shortest path in-between two nodes, identify clusters within the KG and central nodes.

Rule-based inference is further discussed below based on the TypeDB documentation.

The rules cannot be used to define a new schema element (i.e., define a new entity,
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attribute or relation). A rule can only be used to insert a new instance of an entity, an

attribute or a relation already defined in the schema. Thus to infer a new relationships,

the new roles must first be defined in the schema.

A TypeDB rule is divided in two parts. On the left had side (LHS), the “when” part

contains the statements that will be verified. When these statements are validated, the

consequence(s) contained in the right hand side (RHD), the “then” side, are applied.

The “when” side of the rule is thus a conjunctive pattern while the rule’s result, the

“then” side, is atomic, meaning only one fact is inferred. Rules can be deleted. The

format for defining a rule is:

rule ruleName:

when

{ ## the condition(s)

}

then

{ ## the consequence

};

The inference process is performed at query (run) time. The inferred facts are there-

fore not stored in the KG. When the query is launched, the defined rules are inspected.

If the patterns defined in the rules are found, the rule consequence (i.e., instantiate a

new relationship) is executed. The rules are applied across the full Knowledge Graph.

The rule consequence is only applied for the time of the given transaction, and is not

stored in the graph. Which means that if a rule suddenly becomes invalid, no incorrect

information is stored in the graph.

TypeDB Front-end

There are three different interfaces to read from and write to a TypeDB database:

• TypeDB client: A Java, Node.js or Python TypeDB clients allow to remotely

perform database operations.
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• TypeDB console: The console interface allows to access a TypeDB KG from a

console environment.

• TypeDB Workbase: The Workbase is a graphical interface to visualise, write

in, and query KGs. All the TypeDB KG visualisation shown in this chapter are

screenshots of the Workbase.

The TypeDB Core and Workbase are open-source and can be downloaded from the

Vaticle website. A complete documentation is also available on their website. Most

of the scripts supporting the migration of the EMs are here developed in Python and

thus rely on the Python API to interact with the database. Visualisations of TypeDB

schema are done through the Workbase.

Figure 6.9: Schema of TypeDB Front-end

Schema, Data Layer and Inference Example

To illustrate the information modelling with TypeDB, a simple schema layer example

is defined, then populated with data. Finally, rules are defined to infer a new relation

and instantiate an attribute.

Three entities are defined in the schema layer shown on Figure 6.10: mission, space-

craft, and groundStation. The spacecraft entity inherits the attributes of the mission

entity. A spacecraft entity thus has a name, a mission status, a communication band

and some mission objectives. The downlink relationship links a spacecraft to a ground-

Station, with the spacecraft playing the role of the emitter, and the groundStation the
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role of the receiver. The groundStation entity has a name, a receiver antenna band

(antenna), and an attribute indicating whether or not the station is visible by the

spacecraft (LOS standing for Line Of Sight). The resulting schema can be visualised

with the TypeDB Workbase as shown in Figure 6.11. The entities are represented by

purple rectangles, relationships by diamond shapes and attributes by circles.

Figure 6.10: Example of a TypeQL schema layer for a downlink example
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Figure 6.11: Visualisation of the schema via the TypeDB Workbase

The schema layer can then be populated with data with the keyword insert. A

data layer, shown in Figure 6.12, is populated with one spacecraft and two ground-

stations. The spacecraft SMOS is an operational mission communicating within the

S-band range (frequency of 2-4 GHz). Both ground-stations, Kiruna and Kourou, have

a S-band antenna and could therefore receive the data transmitted by SMOS. Only

the Kiruna station is however visible by SMOS. The populated graph can be visualised

through the TypeDB Workbase as shown on Figure 6.13.

Figure 6.12: Example of a TypeQL data layer

Figure 6.13: Visualisation of the populated graph via the TypeDB Workbase
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Now, a human would easily deduce that the SMOS spacecraft should downlink

(transmit) its data through the Kiruna station as it cannot see the Kourou station. For

the inference engine to reach the same conclusion, two rules, displayed in Figure 6.14,

are written in TypeQL to (i) infer whether or not a spacecraft can downlink through

a ground station and (ii) in which frequency this transmission is done. Note that the

schema, Figure 6.10, already defined a downlink relation between the spacecraft and the

groundStation. As shown on Figure 6.15, a relation is correctly inferred only between

the SMOS spacecraft and the Kiruna station, with a S-band frequency value.

Figure 6.14: Example of a TypeQL rule

6.3.5 Background Summary

This Literature Review placed the Knowledge Graph in the landscape of information

modelling techniques. Knowledge Graphs are graph databases bearing formal seman-

tics. They therefore inherit the attributes of graph databases and are adapted to

relationship-heavy use cases with heterogeneous data. As KGs bear semantics they are

built either from RDF graphs or from property graphs defined with a schema. The
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Figure 6.15: Inference result visualised with the TypeDB Workbase

schema, similar to an ontology, structures the semantics of the graph, defining the

entities, attributes and relationships allowed in the KG. The ontology enables the rule-

based reasoning. Several KG modelling tools are available on the market. Following a

trade-off in between those tools, TypeDB from Vaticle is selected.
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6.4 Approach

As seen in Section 3.3, the EMs are structured according to a System Engineering

Information Model (SEIM) defined in the ECSS-E-TM-10-25A technical memorandum

and available as a UML model. This SEIM defines the allowed classes, properties, and

relationships. On the other hand, the previous section established that the preferred

database for storing the Engineering Models and inferring new insights from them

would be a Knowledge Graph (KG). Furthermore the trade-off between available KG

tools suggests the use of the Vaticle TypeDB database.

To migrate the EMs to a TypeDB KG, the structure of the EM first needs to be

mapped from the UML model to a TypeDB schema. Thus, the structure of the EMs will

be understandable by the KG. The UML model and TypeDB building blocks as well as

the mapping rules are presented in the following section. Then, automatic migration

pipelines export the content of the EMs to the KG. The mapping of the UML model

defines the so-called schema layer of the KG, while the population with the EMs forms

the KG’s data layer. The approach, summarised in Figure 6.16, is tailored to EMs

based on the ECSS-E-TM-10-25A SEIM.

Figure 6.16: Approach to migrate Engineering Models to a TypeDB Knowledge Graph
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6.5 Methodology: The Migration Building Blocks

This section introduces a novel methodology to map UML class diagram to TypeQL

concepts. The mapping is illustrated with the migration of the Person class. Metadata

extracted from the reports is added to the Knowledge Graph to enrich the models. The

mapping rules presented here are later applied to migrate the ECSS-E-TM-10-25A class

diagram to a TypeDB schema, and the ECSS-based Engineering Models to a TypeDB

data layer.

6.5.1 Mapping Rules

The following migration rules were defined with the support of Hans Peter de Koning

(ESA) and Sam Gerené (RHEA). UML classes, properties, and relations are respectively

mapped to TypeQL entities, attributes, and relation.

Data Types Equivalence

There are 5 data types available in TypeQL: long, double, string, boolean, and date-

time. The datetime type is a date or a date-time. The standard UML primitive types

include Boolean, Integer, String, Unlimited Natural and Real. Other types found in the

class diagrams are mapped to string by default. Table 6.4 summarises the data types

mapping from UML to TypeQL.

Enumeration types are additional data types in UML which can only take pre-

defined values. For instance, ClassKind is an enumeration datatype that lists all pos-

sible classes names. Each class has a ClassKind property, which can only take a value

that corresponds to a class from the enumeration list, such as ElementUsage or It-

eration. Since the migration is read-only, there is no need to store in TypeDB all

the values that the enumeration type could take. The enumeration types are simply

migrated as attributes of types string. For instance, the property classKind is mi-

grated as an attribute, and instantiated with the value found in the engineering model.

The enumeration types mapped from the ECSS UML model to a TypeQL attribute

of type string are: ClassKind, LogLevelKind, ParticipantAccessRightKind, PersonAc-
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Table 6.4: Mapping of UML Basic Data Types to TypeQL

UML TypeQL

Boolean boolean
Date datetime
DateTime datetime
Integer double
LongInteger long
Real double
String string
TimeOfDay datetime
FileContentType string
LanguageCode string
ParameterFormulaType string
ParameterValueType string
Sha1HashType string
Uri string
Uuid string

cessRightKind, ActualFiniteStateKind, BooleanOperatorKind, InterfaceEndKind, Pa-

rameterSwitchKind, RelationalOperatorKind, RulesVerificationStatusKind, Engineer-

ingModelKind, LogarithmBaseKind, NumberSetKind, StudyPhaseKind, VcardEmailAd-

dressKind, VcardTelephoneNumberKind, and RuleVerificationStatusKind.

From UML class to TypeQL entities

UML classes can be abstract, so can TypeQL entities. An abstract UML class maps to

an abstract TypeQL entity, and a concrete class maps to a concrete TypeQL class.

The ECSS-E-TM-10-25 user manual available on the OCDT community git8 in-

dicates that classes may also be “Mixin”, an OO programming concept. A Mixin is,

according to the manual, a class that can be “mixed-in” from the side during code gen-

eration. This type of class is similar to UML interfaces: they contains methods for

use by other classes without being the parent class. There is no equivalent to a Mixin

class in TypeQL. Instead, the features of the Mixin class become attributes or roles of

the entity interacting with the Mixin class. This solution is preferable to defining an

abstract class for the Mixin class as TypeQL allows only one inheritance. These rules

are summarised in Figure 6.17.

8https://ocdt.esa.int/
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For instance, in the ECSS UML model, the Person class is a subclass (child class)

of Thing, ShortNamedThing, NamedThing, and DeprecatableThing. While Person is a

concrete class, the other three classes (ShortNamedThing, NamedThing, and Depre-

cableThing) are actually abstract Mixin classes. In the TypeQL schema, the Person

entity will directly own the attributes and roles that were defined by these Mixin classes,

and only inherits, via the TypeQL “sub” keyword, from the Thing entity.

Figure 6.17: Migration of UML class to TypeQL entities

From UML Property to TypeQL Attribute or Role

A UML property can be an attribute (value type) or the end of a relation (reference

type). The property is either directly owned by the class or inherited from another class.

Since TypeDB allows inheritance, the migration of properties is rather straightforward:

• If the property is owned by the class and is an attribute, then it is defined as a

TypeDB attribute of the entity.

• If the property is owned and refers to the end of an association relation, then it

is mapped to a TypeDB role.

• If the property is inherited then no action is needed as it is defined in the parent

entity. One crucial caveat, however, is for properties inherited from Mixin classes.

These must be redefined as owned by the entity.
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The above rules are summarised in Figure 6.18. In UML, a property can also be derived.

The result of the derivation will be mapped to TypeQL but not the derivation capability

itself. For instance, if the age attribute is derived from the birthday attribute, then if

the birthday value is modified in the TypeQL schema, the age will not be derived again

and will retain its previous value. Since the intent of this migration is not to alter the

content of the EMs but extract new insights from them, this feature loss is deemed

acceptable.

Figure 6.18: Migration of UML properties, either attribute or references, to TypeDB
attributes or roles

From UML Relationships to TypeQL Relations

Although TypeDB allows the definition of n-ary relations (being an hypergraph) and

the assignment of attributes to relations, it does not match the richness of relationships

found in UML. As shown on Figure 6.19, most of the UML relationships are mapped

as binary or n-ary TypeQL relations. The Inheritance or Generalisation relationship

can be mapped with the inheritance keyword of sub in TypeQL.

However, a naming convention is implemented in the migration to differentiate from

the two most common relationships found in the ECSS model: containment (composi-

tion) and reference (directed association). As can be seen in Figure 6.20, the relations

between the classes are either a directed association denoted as “refers” or a composi-

tion denoted as “contains”. The differentiation is superficially represented by a different
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naming convention in the TypeDB schema. Containment relations are named Contain-

ment parameterName and reference relations, Reference parameterName. A contain-

ment relationship and a reference relationship between entity1 and entity2 would thus

respectively be defined as:

e n t i t y 1 sub ent i ty , p lays Containment {parameterName } : c onta in s ;

e n t i t y 1 sub ent i ty , p lays Containment {parameterName } : i sConta ined ;

Containment {parameterName} sub r e l a t i o n ,

r e l a t e s conta ins ,

r e l a t e s i sConta ined ;

e n t i t y 1 sub ent i ty , p lays Re f e r ence {parameterName } : r e f e r sTo ;

e n t i t y 1 sub ent i ty , p lays Re f e r ence {parameterName } : i sRe fer redBy ;

Re f e r ence {parameterName} sub r e l a t i o n ,

r e l a t e s re fe r sTo ,

r e l a t e s i sRe fer redBy ;

Note on multiplicity: In UML, class attributes may take more than one value or

a class might be associated to more than one class. For instance, a Person class may

contain more than one email address. The multiplicity is not mapped to the TypeQL

schema. A Person entity will simply be related to one email address entity, and the

multiplicity information is lost in the migrated conceptual model. This is not a show-

stopper as the multiplicity is only relevant for the data layer, when the entities are

instantiated. Then there will be as many attributes and relationships inserted as was

found in the EM. But the multiplicity information will be lost in the migration and

cannot be mapped back from TypeQL to UML.
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Figure 6.19: Migration of UML relationships to TypeDB relations

TypeDB Schema Generation

The migration is done with the version 0.9.1 of xmi verter, available on the ESA git-

lab9, and with the version 2.0.1 of TypeDB downloaded from the Vaticle webpage10.

The xmi verter package was developed by ESA, it reads an XMI file of the ECSS UML

model and generates several implementation technology representations, for instance

in C# and SQL. A new script, xmi2typeql.py, is written in Python to generate a rep-

resentation in TypeQL, based on the mapping rules. The xmi verter.py script verifies

the compliance with the ECSS-E-TM-10-25 data modelling rules. The TypeDB schema

generated with the xmi verter.py and xmi2typeql.py scripts can then be defined in a

TypeDB database.

TypeDB Data Layer Generation

The Engineering Models are exported as .JSON files from the CDP4. Entity templates

are developed in Python for each of the 126 UML (non-mixin) classes found in the

9https://gitlab.esa.int/
10https://vaticle.com/
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exported models. These templates generate the TypeQL insert queries, from the .JSON

files, to populate the TypeDB database, inserting all attributes, roles, and relations.

The migration templates are available at github.com/strath-ace/smart-nlp.

6.5.2 Migration Validation

The 126 different class kinds found in the UML data model are all mapped to a TypeDB

entity. A verification is manually done by a human annotator. To demonstrate the

validity of the migration, the example of the Person class is taken. This class represents

a physical person that can participate to a concurrent engineering activity. Figure 6.20

displays an extract of the UML class diagram focusing on the Person class. For clarity,

an extract of the ECSS-E-TM-10-25A User Manual is also provided in Figure 6.21.

Figure 6.20: Extract of the UML class model, focused on the Person class

Based on Figure 6.20 and Figure 6.21, the following information on the Person class

is deduced:

• Inheritance: The Person inherits from the Thing, ShortNamedThing, NamedThing,

and DeprecableThing classes. Since the three last classes are mixin, their prop-
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Figure 6.21: Extract of the ECSS-E-TM-10-25 User Manual

erties are re-defined as owned parameters in the Person class. The Person class

should only inherit from the Thing class.

• Attributes: The attributes of value type owned by the Person are shown in

Table 6.5. Those should be defined as attributes of the Person entity in TypeQL.

The attributes inherited by the Thing class (iid, revisionNumber and classKind)

should not be re-defined in the Person TypeQL entity.

• Relations: According to the User Manual, the relations that should be re-defined

in the Person entity are summarised in Table 6.6. When a property is the end of

the relationship, a role is also created in the other entity involved in the relation.

Table 6.5: Attributes owned and inherited from Mixin by the Person class

Attribute Type Inheritance

shortName String[1..1] ShortNamedThing
isDeprecated Boolean[1..1] DeprecatedThing
givenName String[1..1] owned

surname String[1..1] owned
organisationalUnit String[0..1] owned

isActive Boolean[1..1] owned
password String[0..1] owned

212



Chapter 6. From Engineering Models to Knowledge Graph

Table 6.6: Relations owned and inherited from Mixin by the Person class

Relation Type Relation Name Class Type Inheritance

Containment
emailAddress EmailAddress [0..*] owned

telephoneNumber TelephoneNumber [0..*] owned
userPreference UserPreference [0..*] owned

Reference

organisation Organisation [0..1] owned
defaultDomain DomainOfExpertise [0..1] owned

role PersonRole [0..1] owned
defaultEmailAddress EmailAddress [0..1] owned

defaultTelephoneNumber TelephoneNumber [0..1] owned

As can be seen on Figure 6.22, the inheritance, attributes and relationships are

correctly mapped from the Person UML class to the TypeDB Person entity. The at-

tributes types are defined based on the data type equivalence presented in Section 6.5.1.

Relations and the roles played by the other entities are generated simultaneously as

show in Figure 6.23.

Figure 6.22: Person entity as defined in the TypeQL schema. The Thing entity is
provided as information for the inheritance.
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Figure 6.23: Sample of rules related to Person entity

6.5.3 Integration of Additional Metadata

The CDF team is currently deploying a study portal where past feasibility reports

are identified by a set of metadata. These parameters cover the main characteristics

of a mission, including, for instance, the system requirements, the mission objectives

and target system. They also encompass main design information such as the orbit,

payload and propulsion types, and information on the design sessions, for instance, the

participants.

The metadata is not necessarily integrated to the EMs yet. As this study was done

in collaboration with ESA, and although no CDF EMs were migrated, the TypeDB

schema is slightly modified to accommodate the metadata set. The integration of the

metadata to the schema is meant to be the less disruptive as possible, thus relying on

concepts already defined in the ECSS-E-TM-10-25A technical memorandum to avoid

modifying the Engineering Models themselves.

The suggested approach is the equivalent of defining a parameter group containing

the metadata at the root of the iteration product tree, as shown in Figure 6.24. The set

of parameters is an instantiation of the ParameterGroup entity. Parameters from the

group are stored as instantiation of the Parameter class, and linked to a ParameterType

and a ParameterValueSet. For instance lifetime is a ParameterType and 5 the published

ParameterValueSet. The Team Composition metadata is already represented by the

Participant entity, as well as the System Requirements by the Requirement entity.

Rules are thus defined to link the Metadata entity to those two pre-existing entities.

To avoid modifying the EMs, the metadata to be inserted are manually stored in Python

dictionaries and inserted into the graph already populated with EMs. The methodology
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is summarised in Figure 6.25.

Figure 6.24: Adding a Metadata parameter group to the NEACORE CubeSat Engi-
neering Model in CDP4.

The only necessary alteration to the original schema is the re-definition of the

ParameterGroup entity to allow it to play two new roles, relating it to the Participant

and Requirement entities. Two TypeQL rules are defined to link a ParameterGroup

named “Metadata” to all Participant and Requirement entities instances.
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Figure 6.25: Methodology to add the metadata content on top of the ECSS schema
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6.6 Applications

The migration is applied to the two EMs belonging to the University of Strathclyde

and introduced in Section 3.3.2, the NEACORE and STRATHcube missions. One it-

eration from each mission is thus migrated to a same TypeDB Knowledge Graph. The

STRATHcube iteration contains three design options, based either on a CubeSat 2U

or 3U platform, and with or without a propulsion system. The propulsion system can

only be accommodated on a 3U platform. The NEACORE iteration contains two de-

sign options, depending on which payloads were flown, either a LIDAR and a camera,

or a spectrometer and a camera. The population of the KG is done automatically from

the EM’s exports via Python pipelines. It takes around 15 minutes to insert the data

from each EM into the TypeDB database. The NEACORE iteration contains 22,183

nodes and edges (18% entities, 40% attributes, and 42% relations). The STRATHcube

iteration contains 24,039 nodes and edges (18% entities, 41% attributes, and 41% rela-

tions).

6.6.1 Rule-Based Inference: Automatic Mass Budget Generation

As introduced in Section 6.2, the computation of the mass budget is usually done

manually, often by means of excel spreadsheets, by the system engineers. The total

spacecraft mass is a crucial parameter influencing the launcher selection and mission

cost. In this case study, a mass budget is automatically inferred for each design options

found in an EM iteration. Generating the budget automatically alleviates the experts’

workload and avoids human mistakes. New insights could also be derived from the

evolution of mass and power budgets across the different iterations of an EM.

Approach

There is no relationship to express that an element is contained within the mass budget

of a design option in the ECSS-E-TM-10-25A standard. However, this relationship can

be inferred. The inference is done in four steps: (i) a design iteration is found in the

KG, (ii) the mass parameters of equipment found in the iteration’s product tree are
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extracted, (iii) the design option(s) the parameter belong to is/are identified, and (iv) a

new relation is created to include the parameter into the relevant design options’ mass

budget.

Methodology

A new relationship, includedInMassBudget, is defined in the TypeDB schema to relate

a design option to a parameter value. To ensure that only parameters identified as

a mass are retained, the Parameter entity must refer to a SimpleQuantityKind entity

with an attribute name “mass”. A Parameter entity does not contain a value attribute,

instead it relates to a ParameterValueSet entity which indicates the parameter type.

Since the parameter value may change depending on the design option, the relationship

includedInMassBudget is created between the Option entity and the ParameterValueSet

entity rather than at the parameter level.

The Parameter entity does contain a Boolean attribute isOptionDependent indicat-

ing whether or not the parameter varies per design option. When a parameter is option-

dependent, it is usually linked to the option it depends on by a refers actualOption

relation. When a parameter is option-independent, it does not necessarily mean that

it should be linked to all options’ mass budgets. The parameter might indirectly be

excluded from a design option by a refers excludeOption relation. This logic is sum-

marised by a decision tree shown in Figure 6.26, and is illustrated in Figures 6.27

and 6.28. Eventually, two TypeQL rules, simplified in Table 6.7, are applied to the KG

to infer the includedInMassBudget relationship.

Inference Outputs:

Two inference examples are respectively visualised in Figure 6.29 and Figure 6.31

through the TypeDB Interface for the STRATHcube mission. For clarity, only the

relevant nodes and edges are shown.

In Figure 6.29, three new relationships, appearing in purple, have successfully been

inferred between each option-dependent parameter and the corresponding option they

referred to. The mass parameter with id V467104 refers to deployable solar cells. The
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Figure 6.26: Decision tree to infer an includedInMassBudget relationship between a
Parameter and an Option

Figure 6.27: Inferring an includedInMassBudget relationship for an option dependent
parameter. The entities are rectangles, the relationship diamonds and the attributes
circles. Dotted shapes are inferred.

parameter is option dependent, meaning its values vary depending on the design option,

and it indeed has two different values, either 57g or 107g. The definition of the solar

cells element as input in the CDP4 is shown on Figure 6.30. As shown on Figure 6.29,

the parameter values with ids V41381960 and V995504 were respectively linked to the

second and third options by a refers actualOption relation. The parameter value with

id V 438320 is linked by a similar relation to the first design option. This case, with

an option-dependent parameter, corresponds to the first inference rule. As can be seen
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Figure 6.28: Inferring an includedInMassBudget relationship when the parameter is
option independent. The entities are rectangles, the relationship diamonds and the
attributes circles. Dotted shapes are inferred.

on the figure, the reasoner successfully links each parameter value set to the design

options it refers to.

Figure 6.29: Inference outcomes from Rule 1 visualised with the TypeDB Workbase.
The three inferred edges are denoted by purple circles and framed in manually added
boxes.
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Table 6.7: Pseudo-code of Rules

Rule 1: The Parameter is option dependent
when:
1. There is a ParameterValueSet, contained by an option dependent Parameter,
2. The same Parameter refers to a SimpleQuantityKind with name “mass”,
3. There is an element of class Option which the element of ParameterValueSet
refers to as ActualOption.,
then:
The element of class ParameterValueSet is included in the Option’s mass budget.

Rule 2: The Parameter is option independent
when:
1. There is a ParameterValueSet, contained by an option independent Parameter,
2. The same Parameter Type refers to a SimpleQuantityKind with name “mass”,
3. The ElementUsage associated with the same Parameter through an
ElementDefinition does not exclude the Option.,
then:
The element of class ParameterValueSet is included in the Option’s mass budget.

Figure 6.30: Definition of the solar cell mass parameters in CDP4

Figure 6.31 addresses the second inference rule. An element corresponding to a 3U

CubeSat structure is not defined as option-dependent. However, it should obviously

only be included in the budgets of the first and second design options, both based on

3U platforms. The model does indicate that the element is excluded from the third

design option via a refers excludeOption relationship. As can be seen on the figure,
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relationships were successfully inferred and created between the parameter’s mass value

and the first and second options.

Figure 6.31: Inference outcomes from Rule 2 visualised with the TypeDB Workbase,
the two inferred edges are denoted by purple circles and framed in manually added
boxes.

Mass budgets:

The inference of these new relationships dramatically decreases the complexity of ex-

tracting the mass budget from the EMs. Via the TypeDB Python API, the values

related to an option by an includedInMassBudget relationship are queried. The num-

ber of elements, scale, and mass margins associated with each value are also extracted

from the graph with the TypeDB Python API.

Table 6.8 compares the mass budgets of STRATHcube and NEACORE manually

computed at the time of the studies, with the budgets inferred from the KG. The slight

dissimilarities observed mostly originate from missing mass margins in the original mod-

els. Following the ESA CE margin philosophy [16], a mass margin of 20% is assumed by

default. However, during manual computation, discussions with the study participants

often revealed that the actual mass margin was lower. This analysis also disclosed

that the mass parameter of one equipment from STRATHcube’s first design option

was missing, contributing to the delta mass observed. In the case of the NEACORE’s

second design option, the comparison exposed an error in the manual computation, as

some equipment had been wrongly incorporated into the option’s budget. Removing
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these items from the manual computation decreased the mass delta to 0.3%.

Table 6.8: Comparison of mass budgets manually computed and inferred from the KG,
per design option.

Satellite
Design
Option

Manual Computation
[kg]

Inferred from
Graph [kg]

∆
[%]

STRATHcube
1 3.78 3.76 0.53
2 5.03 5.06 -0.60
3 3.17 3.20 -0.95

NEACORE
1 22.65 22.44 0.93
2 21.27 20.65 2.91

6.6.2 Combination of NLP and KG: Heritage Analysis

Heritage analysis is one of the first tasks performed by system engineers during the

pre-study phase. The goal is to identify past similar missions to help kick-off the new

study, and support the initial parameters estimation. The application presented here

combines KG and NLP.

Each of the iterations found in the KG is manually enriched with a metadata set

as defined in Section 6.5.3. Since the metadata is defined at iteration level, the various

design options do not impact the comparison. By extracting and analysing the meta-

data sets, a similarity score can be computed between each iteration. Iterations with a

similarity score above a set threshold are deemed similar. This application is similar to

the method presented in Section 5.3 where CDF feasibility study reports are compared

with a doc2Vec model and a cosine similarity. The same approach will be used here to

compare the metadata expressed as text.

Approach

The approach, summarised in Figure 6.32, can be decomposed in 4 steps: (i) the meta-

data sets of N iterations are extracted from the populated KG, (ii) each metadata set is

compared to the remaining metadata sets either through a term matching or using the

doc2vec model and cosine similarity, (iii) (N ∗(N−1))/2 similarity factors are computed

from each iteration pair, (iv) (N ∗ (N − 1))/2 new relationships are inserted in the KG,

linking the iterations. This new type of relation is named Reference SimilarityFactor,
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and has an attribute simFactor corresponding to the similarity factor’s value. The

metadada sets are extracted via the TypeDB Python API. An iteration is not com-

pared to itself.

Figure 6.32: Approach to retrieve similar missions from the Knowledge Graph

Methodology

The global similarity factor is computed based on the metadata sets presented in Sec-

tion 6.5.3. The metadata sets are assigned different weights to balance their contribu-

tion based on their relevance to the heritage analysis. For instance, similar Mission

Objectives, a core parameter, should have a higher impact than similar Launch Year. A

preliminary hierarchy of the metadata divided in 3 categories (High, Medium, Low) is

suggested in Table 6.9. The global similarity score is the combination of each parameter

comparison. These scores are combined in a weighted sum based on Equation 6.1.

Fi,j =

∑3
l=1(

∑Np

p=1 fp(i,j) ∗ wl)∑3
l=1Np ∗ wl

(6.1)

Where Fi,j the similarity factor between mission i and mission j, wl the weight

assigned to category l, Np the number of metadata parameters in category l, and fp(i,j)

the similarity of parameter p between mission i and j.
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Table 6.9: Metadata Weights Distribution

Weight Metadata Type and examples

High
Core information on the mission:
scientific objectives, requirements,

background, target system.

Medium
Information on mission design:

orbit type, payloads,
propulsion type, volume envelope

Low
Programmatics information:

launch year, lifetime

Most of the metadata parameter is free text, and will therefore be compared with

a doc2vec model and a cosine similarity as previously seen in Section 5.3. The same

doc2vec model, trained with the ECSS requirements, is used to generate the represen-

tation vectors of the metadata textual parameters. The value of the similarity fp(i,j)

will then correspond to the cosine similarity value between parameters’ representation

vectors. Metadata parameter with inputs limited to a set list, such as the orbit type,

are compared with a simple term matching. If the two inputs are identical, then fp(i,j)

is set to 1.

Results

The KG populated with the STRATHcube and NEACORE iterations is used again.

However, a shallow iteration of a third CubeSat, QARMAN, is also migrated to the KG.

QARMAN is a mission from the Von Karman Institute, its metadata set is populated

with information found online in [237,238]. The final graph contains 123,896 nodes and

edges (9.2% entities, 9.5% attributes, and 81.3% relations).

The QARMAN mission is selected due to its similarities with the STRATHcube

mission. QARMAN is a 3U CubeSat deployed from the ISS in February 2020, and is

the first CubeSat designed to survive atmospheric reentry. STRATHcube is also a 3U

CubeSat, to be deployed from the ISS, with a 3D phased array antenna for space de-

bris detection as primary payload. Its secondary objective is to perform measurements

during re-entry using several heat flux/pressure sensors and UV/visual spectrometers.

Neither mission has a propulsion system. On the other hand, NEACORE is a radically
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different mission. It is an interplanetary mission involving up to six 12U CubeSats.

NEACORE studies Near-Earth Objects (NEOs) accommodating a camera and either a

LIDAR or a spectrometer. The mission is expected to last between 3 and 6 years, with a

low-thrust propulsion system. It is thus expected that the value of the similarity factor

between STRATHcube and QARMAN is higher than between STRATHcube/NEA-

CORE or QARMAN/NEACORE.

The metadata weights for the High, Medium and Low parameters are respectively

set to 0.5, 0.35, and 0.15 after a grid search. As shown on Figure 6.33, three new

Reference SimilarityFactor relationships are instantiated with the similarity factors

as attributes. The similarity factor between STRATHcube and QARMAN of 0.62 is

significantly higher than the similarities between NEACORE and STRATHcube or

NEACORE and QARMAN, respectively of 0.21 and 0.23.

Figure 6.33: Visualisation of the similarity relations with the iterations in TypeDB
Workbase
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6.7 Discussion

The two applications implemented here gave only a glimpse of the potential for Knowl-

edge Graph and text mining to support the concurrent engineering process. Automation

of calculation and information retrieval tasks are the way to go to relieve the experts’

workload. A future Concurrent Engineering tool, COMET, mentioned in Section 3.3,

will automate budgets generation and allow basic rule-based inference. This tool, nor

any other, does however not implement a NLP layer, which is key to analyse the un-

structured text found in the models. These tools are also not yet capable of comparing

models. On the other hand, merging the models into a Knowledge Graph gives a com-

plete flexibility to perform inter and intra-models querying and inferring. In future

work, additional rules could be defined to furthermore use the inference potential of

the KG reasoner and extract additional insights from the models.

Only a global similarity score is computed in the second application. In future

work, more refined scores, for certain parameters of interest or per subsystem, could

be computed to provide a more detailed heritage analysis. A similar approach was

implemented in Section 5.3, with a heritage analysis based on chapters from feasibility

studies and the doc2vec model. An ideal solution would be to eventually merge all data

sources related to a mission, including the reports, the models and online content, into

a single Knowledge Graph to provide a complete profil of a mission design.

Merging heterogeneous data however first requires achieving semantic interoperabil-

ity via a space systems ontology. Even merging only the feasibility reports with their

respective Engineering Models semi-automatically is not straightforward. As was seen

in Section 5.3, the reports do not necessarily follow the template and chapters’ names

vary as does the naming of equipment in the Engineering Models. For instance, a bat-

tery equipment could be named “bat XYZ” or “XYZ battery”. Text mining methods

could be once again the key to match similar concepts, by means of Topic Modelling

or doc2vec embedding.
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6.8 Chapter Summary

This chapter presented the building blocks to merge Engineering Models of space mis-

sions into a first Knowledge Graph of EMs. Two applications, an automatic mass

budget generation and a heritage analysis, gave a glimpse into the potential of such

data structure to support the early design process of space missions. A new migration

pipeline was developed to migrate a UML class diagram to a TypeDB database. This

chapter has successfully demonstrated the potential of combining KG technology and

NLP to enhance the data linkage, reusability, and interpretability of EMs.

In the absence of a space systems ontology to structure the DEA’s KG, this chapter

explored a first application relying on the EM’s conceptual model. The comparison of

off-the-shelf KG tools as well as the first rule-based inference applications pave the way

for the development of the DEA’s KG and reasoner.
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Conclusions

This final chapter reviews the findings and contributions of this thesis, assessing how

they address the aims and objectives. Current limitations of the methods applied are

discussed. The chapter ends with recommendations for future work and a suggested

architecture for a future Design Engineering Assistant.

7.1 Evaluation of Findings and Contributions

This thesis developed several building blocks for a DEA, while exploring how NLP and

text mining methods could be tailored to the field of space systems to facilitate knowl-

edge management and reuse at the early stages of space mission design. This work

focused on the unstructured and semi-structured data used or generated during feasi-

bility studies applying the Concurrent Engineering approach. Several core objectives

were defined in Section 1.2, this section underlines how each of them were fulfilled by

the work presented in this thesis.

Objective 1: Review the latest design methodologies and understand the

needs of the experts involved in Concurrent Engineering design sessions.

The Literature Review of current design processes confirmed that the Concurrent En-

gineering approach is, nowadays, one of the most efficient design methods, enhancing

the collaboration between subsystem experts and accelerating the convergence towards
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a sound system solution. 47 ESA experts were interviewed to compare the theory with

the practice. The outputs of this survey largely contributed to quantifying, for the

first time, the knowledge bottleneck faced by engineers at the early stages of design,

and identifying the tasks that could be alleviated by applying NLP and text mining

methods.

Objective 2: Build a first collection of unstructured and semi-structured

data dedicated to space systems engineering.

A 15GB collection of texts including journal publications, books, reports and Wikipedia

pages was collected. A novel NLP pipeline tailored to space systems by adhering to

the European standards was developed with the NLTK Python library. The processed

documents, with the exception of the ESA reports, constitute a first open-source col-

lection of documents related to space systems. Two CubeSat Engineering Models were

generated during internal design challenges led at the University of Strathclyde’s Con-

current and Collaborative Design Studio. These two models, each including several

design iterations and design options, form the semi-structured data set. This collection

of texts form the foundations of the DEA Knowledge Base.

To fulfill objectives 3 and 4, several methods were adapted and trained, from Ontol-

ogy Learning, Topic Modelling, word and document global embedding to contextualised

embedding. Five new domain-specific models were trained on the corpus of unstruc-

tured data: (i) the Topic Modelling spaceLDA model, (ii) a word embedding word2vec

model, and (iii) the SpaceTransformers family including SpaceBERT, SpaceRoBERTa,

and SpaceSciBERT.

Objective 3: Develop statistical, embedding and contextualised methods

adapted to space systems to semi-automatically generate the initials layers

of a space systems ontology.

The Terms, Synonyms and Concepts layers of the Ontology Learning Layer Cake were,

for the first time, semi-automatically extracted from a collection of texts related to
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space systems using statistical and word embedding methods. The potential of using

the Layer Cake to lay the basis of a space systems engineering ontology, required to

structure the DEA’s KG, and enrich pre-existing domain-specific lexica was demon-

strated. Novel domain-specific representation vectors for terms related to space sys-

tems were produced with the word2vec model. The SpaceBERT, SpaceRoBERTa and

SpaceSciBERT models were further pre-trained from BERT, RoBERTa, and SciBERT

on the unstructured corpus excluding the ESA reports. A thorough comparison of the

performance of these domain-specific models with respect to their baseline models on

a classification task was provided. The SpaceRoBERTa model considerably improved

the results on the downstream Concept Recognition task for domain-specific language

models.

Objective 4: Develop probabilistic and embedding methods adapted to

space systems, and understand their scope of applicability within the Con-

current Engineering design process.

Regarding the automation of tasks usually manually done by systems engineers, two

text mining methods were adapted to space systems, demonstrating the positive impact

of these methods on the design process. A spaceLDA model was enriched with curated

lexical priors and an optimised Weighted Sum. This new approach outperformed the

unsupervised LDA model and a literature method for aggregating per-topic word dis-

tributions. The Topic Modelling model was successfully applied to a Requirements

Management case study, identifying the topics of unseen design requirements. An ex-

tension of the word embedding approach, a doc2vec model, was trained to produce

document representations of feasibility reports. The comparison of these representa-

tion vectors proved to be a new efficient way to perform instantaneous heritage analysis

and recall past similar missions

231



Chapter 7. Conclusions

Objective 5: Investigate methods to extract new insights from semi-structured

data generated during Concurrent Engineering studies.

To exploit and compare design information stored in Engineering Models (EMs), the

models were merged in a single database. Following a database trade-off, a Knowledge

Graph (KG) was selected to host the models. A KG is defined as a graph database

bearing semantics, and thus enabling reasoning and the inference of hidden knowledge.

Novel migration pipelines were developed to enable the mapping of the UML-based

models to the selected KG tool. Finally, the potential for enhancing feasibility studies

with a KG was demonstrated through two case studies: (i) a mass budget, a task usu-

ally manually done by systems engineers, was automatically inferred for each design

option, (ii) relying again on the document embedding approach, similar missions were

identified based on a set of metadata. The latter case study showed the potential for

building a NLP layer on top of a KG.

The work presented in this thesis has fulfilled the initial core objectives. It is one

of the first attempt to bridge the gap between the worlds of space systems engineering

and text mining, a bridge seldom crossed by previous research. Furthermore, the

methodologies presented here could be applied to various engineering fields.
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7.2 Limitations

The lexica semi-automatically generated and the topics discovered with spaceLDA are

restricted by the size and content of the training corpus. Although various heteroge-

neous text sources were sought, it is complex to ensure that the resulting corpus does

provide a complete overview of space systems. On the other hand, text collection can

quickly turn into a never-ending task. The text collection in this thesis is broad enough

to cover the fundamentals of space systems and includes the most common sources

of information mentioned by experts. Access to data was one of the main challenges

faced at the start of this thesis, data silos and the confidential nature of some design

information restricted the amount of data that could be collected. Solutions were found

to avoid some of these issues, using for instance a NDA and a remote ESA server to

access the feasibility reports. The current Transfer Learning trend however gives hope

that future models will not require large corpus of documents to be trained.

Access to Engineering Models was even more restricted. Furthermore they had

to be based on the ECSS-E-TM-10-25A technical memorandum, meaning they had

to be either generated with ESA’s OCDT or RHEA’s CDP4. Only two models, for

the NEACORE and STRATHcube CubeSats, were available following internal Con-

current Engineering studies. It may be argued that this is a small library of models,

but the generation of each model required substantial effort. The NEACORE and

STRATHcube studies respectively involved teams of 17 and 29 participants, master

and PhD students from the University of Strathclyde, who designed each mission over

the span of two full week design challenges. Each model contains several iterations and

design options which still enable intra-model inference. For the heritage analysis case

study, a shallow model for the QARMAN CubeSat was manually created. The purpose

of this study was, nevertheless, to showcase a new methodology for EMs comparison

rather than performing a through analysis between models. In future work, additional

models could be derived from feasibility studies reports.

Limitation in computational power did not allow to train the SpaceTransformer

models from scratch. Doing so could have enabled the comparison of the further pre-
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trained models with not only their baseline but also with pre-trained versions. This

approach was however not considered the wisest, as the baseline models are trained on

very large corpus with extensive computational power. The size of the text collection

used as training corpus, 15GB, represents 10% of the dataset used to train RoBERTa.

The text collection size is similar to BERT’s (16GB), but the latter model was trained

over 4 days on 4 cloud TPUs. As mentioned in the above paragraph, while access to

very large text datasets or computational power is limited, the sensible approach is to

capitalise on the baseline models rather than reproduce their training.

The different text sources were treated with the same level of confidence for the

syntactical and embedding approaches. In both cases, the reliability of the texts content

was not crucial as the training goals were to learn the structure of the domain-specific

language and extract frequent words. For other applications, for instance, Question

Answering or Document Summarisation, coefficients such as Certainty Factors [5] could

be introduced to reduce the influence of less reliable sources. Such coefficients could

have been used for the heritage analysis case studies, to reflect for instance, the impact

of technology obsolescence and diminish the similarities with outdated missions.
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7.3 Future Research Directions

A first step would be to merge the unstructured and semi-structured data which were

examined separately in this thesis. This task is challenging as the conceptual model of

the semi-structured data has to be mapped to the semantics of the texts. To implement

semantic interoperability, an ontology of space systems is essential. The development of

a standardised European ontology is currently ongoing under the supervision of ESA.

Its release will enable the restructuring of all data with respect to a single conceptual

model, allowing to merge various data sources and types.

The NLP community is still evaluating the impacts of the recent Transfer Learning

and Transformers revolution. This thesis only studied one downstream application,

Concept Recognition, fine-tuning the domain-specific models. Additional downstream

tasks, such as Relation Extraction, Question Answering or text similarity analysis could

be examined in future work. The spaceTransformer models will considerably facilitate

future domain-specific fine-tuning. Most available language models are trained on En-

glish text. Several research teams have attempted to develop models in other languages

such as CamemBERT (French) [239] or AlBERTo (Italian) [240]. A durable solution

could come from so-called multilingual models. These models can transfer knowledge

across languages as, for instance, Google AI’s MUM, standing for Multitask Unified

Model, trained across 75 different languages [241]. This could help increase the diver-

sity of text sources, steering towards an international perspective on space systems. To

furthermore increase the diversity of knowledge sources, additional data types could

be integrated to the models. For instance, a multimodal model combining computer

vision and text mining could retrieve information from figures found in the documents.

Speech To Text methods could transcribe discussions recorded during feasibility stud-

ies, and thus provide additional insights on trade-off arguments which are not always

mentioned in the study report.

As underlined by the survey results presented in Section 2.2, experts expressed their

reservation with respect to these new methods. AI is often seen as a black box, where

the inputs and outputs are known but the calculation process itself remains obscure.
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Interacting with an incomprehensible system can create discomfort and distrust, which

is problematic for AI systems involved in decision making. The implementation of

Explainable AI, XAI, in future work should contribute to easing this defiance. XAI

increases the transparency of results provided by Machine Learning algorithms, so that

they can be interpreted by humans [242].
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7.4 Notes on the suggested DEA architecture

The architecture presented in Figure 1.1 does not explicitly integrate the means to

quantify and mitigate the uncertainties related to the knowledge extraction. These

uncertainties may arise from the reliability of the data sources, the incompleteness or

conflict of data stored in the Knowledge Base, the vagueness of the user query, or the

ambiguities of natural language itself. Methods such as Certainty Factors should be

investigated to diminish the impact of these uncertainties.

This thesis focused on explicit knowledge stored as unstructured and semi-structured

data. However, the experience and instincts built by experts during their career con-

stitute precious know-hows that would be worth integrating in the DEA’s Knowledge

Base. It is thus recommended to build a feedback loop, allowing the virtual assistant

to continuously evolve and learn. For example, a user might want to update the launch

date of a spacecraft or the specifications of an equipment. A basic feedback could be

based on a grading system where the user would rate the quality of an output. With

an NLP layer, the user could also add a written comment to complete or append the

information provided by the DEA. For instance, both Wolfram Alpha 1 and Google

allow their users to comment on a query output. The design of the feedback loop

must however be done with great care as it might trigger the injection of additional

uncertainties and subjective inputs.

Last but not least, an additional recommendation collected during this thesis and

through discussions with experts, would be to ensure that the tool remains easy to

use. The DEA should not increase the workload of the experts and remain as low-

maintenance as possible, with interactions done in natural language.

***

1https://www.wolframalpha.com/
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Chapter 8

Appendices

8.1 Appendix 1: Survey Templates

Table 8.1: Survey with ESA expert: questions submitted to experts during the round-
table

Section Question Format Objective

Intro
When we say AI for Space
Mission Design, you think:

Word
Cloud

Understand bias
or preconceived

ideas on the topic,
take pulse of audience

Part I:
Work
habits

Compared to a study length
how long to you spend researching
through available information?

Single
answer

Estimate the time
spent by experts

in information retrieval tasks
Where do you find the most

useful information for your studies?
Ranking

Identify the experts’
main sources of information

Would you rely on an AI
to mine information for you?

Single
answer

Estimate level of thrust
into AI systems

Part II:
Human
Machine

Interaction

Rate the most useful outputs Rank
Understand which outputs content

the Users are the most
interested in.

Pick your preferred output format Rank
Orientate how the results

will be displayed
via the User interface.

Pick your favourite interface
Multiple
answers

Discuss the integration of the tool
as a plug-in

into a modelling environment
or a knowledge-sharing platform.

If you could provide
feedback on an output,

which format would you prefer?

Single
answer

Understand how to
build a feedback loop

Which documents and/or
database would you like to see

included in a Knowledge Graph?

Open
answer

Inquire about
other data sources
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Figure 8.1: Interview template

240



Chapter 8. Appendices

8.2 Appendix 2: Supplementary Background

8.2.1 Artificial Intelligence

Defining AI

AI is not easily restricted to a single definition. In the fundamental textbook of Russel

and Norvig [55], several definitions are organised based on four different goals: (i)

Thinking Humanly (ii) Acting Humanly (iii) Thinking Rationally, and (iv) Acting

Rationally. The Thinking Humanly approach is linked to cognitive modeling where an

AI system is not based on executing a program but achieving goals. The Thinking

Rationally approach is on the contrary based on rule and inference from facts. The

Acting Humanly approach is associated with an AI system capable of mimicking Human

interactions and thinking. Finally, the Acting Rationally is based on a more logical

approach, a “sense-plan-act” execution through logic. A satisfying short definition is

perhaps provided by American futurist Raymond Kurzweil in [243] defining AI as

The art of creating machines that perform functions that require intelligence

when performed by people.

A fundamental distinction is usually made between strong (general) and weak

(narrow) AI. Strong AI refers to AI exhibiting human-level intelligence, able to au-

tonomously reason, continuously learn and act as a human [3]. Weak AI can only

handle one task at a time, and only act as if it is intelligent [55]. At the time of writing,

we have not yet achieved Artificial General Intelligence (AGI).

A brief history of AI

The field of Artificial Intelligence research was founded during a 1956 summer con-

ference at Dartmouth University hosted by John McCarthy and Marvin Minsky. By

gathering ten researchers for a two-month workshop, they hoped to initiate a collabora-

tive effort and significantly advance the development of AI. During the event, McCarthy

is said to have coined the term of Artificial Intelligence. Ideas behind AI were not new

but the workshop provided a strong common foundation for future research. Already in
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the 1940s, the Canadian psychologist Donald Hebb replicated the process of neurons in

the human brain, his research paving the way for Artificial Neural Networks (ANNs).

However at the time, computers did not have the sufficient processing power to sustain

these networks [3]. In 1950, Alan Turing presented a test to identify intelligence in a

system [244]. In his test, a human questions two terminals, one operated by a machine

and another by a human. If the human cannot distinguish the answers provided by the

machine from the human’s, then the machine has passed the test. The Turing test is

still today a reference for evaluating algorithms.

Following the 1956 conference, interest for AI research increased. Early models

could prove mathematical theorems, solve calculus problems or even impersonate a psy-

chotherapist [245] [246]. The performances of these early programs, partly restricted

by hardware limitations in terms of memory capacity and processor speed, failed to

meet the expectations and led to a first winter of AI lasting from 1974 to 1980 [3]. This

so-called “AI-winter” corresponds to a period of decrease in funding and slower devel-

opment. In the 1980s, Japan massively invested in AI and several countries followed

their lead [246]. Expert systems became the symbol of the AI renewal. These systems

mimic experts reasoning based on rules formalising human thinking as set of “if-then”

statements [3]. Unfortunately the growth of these systems once again hit a hardware

limit, and a second AI winter descended on the AI community from 1987 to 1994. By

the mid-1990s, the growth of computer processing with, notably, the introduction of

the first GPUs, along with the development of the internet and the web allowing large

data collections, “Big Data”, gave another chance to AI. De Mauro et al. in [4] provide

one of the first formal definition of “Big Data”:

Big Data is the Information asset characterized by such a High Volume,

Velocity and Variety to require specific Technology and Analytical Methods

for its transformation into Value.

The growth of AI has since been continuous. Iconic milestones were reached in 1997

when a chess grand master was defeated by IBM’s Deep Blue [247], in 2011 when IBM’s

Watson won the quiz game “Jeopardy” [248], and in 2015 when Google’s AlphaGo beat

the Chinese Go champion Ke Jie [249].
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AI Classification and branches

Methods of AI can be classified in two categories: symbolic and statistical approaches.

Symbolic approaches are based on rules and inference. The early history of AI was dom-

inated by symbolic approaches, expert systems being an example of symbolic models.

Statistical approaches such as Machine Learning are data-based. The development of

statistical approaches was made possible with the development of Big Data and growth

in processing power. Today the field of AI is divided in several branches.

Natural Language Processing, the field most relevant to this thesis, is extensively

introduced in Section 2.3. This thesis will also leverage several Machine Learning (ML)

methods. The latter approaches build a statistical model based on a data set. The

learning can be supervised, semi-supervised, unsupervised or reinforced [250]. In su-

pervised learning, the data set is a collection of labelled examples. Supervised training

is usually applied to classification and regression problems. With unsupervised learn-

ing, the data set is a collection of unlabelled examples. Clustering is a well-known

application of unsupervised training where unlabelled data with similar features are

clustered. When the data contains both labelled and unlabelled examples, then the

training is call semi-supervised. Finally, in reinforcement learning, the models learns

to achieve a certain goal based on rewards earned when the optimization is correct. If

an algorithm was tasked with the identification of cats in a picture, with supervised

learning, the algorithm is given a data set of cat pictures and learns the features of a

cat. With unsupervised learning the algorithm is given a data set of animal pictures,

and has to learn on its own the different features of each animal. With reinforcement

learning the algorithm guesses the features of a cat, when it is right it is rewarded, and

fine-tunes its features.

Speech to text and text to speech are the main applications of the Speech recogni-

tion field. Speech recognition is a key enabler for digital assistants as Apple’s Siri or

Amazon’s Alexa, able to understand voice command and synthesise vocal answers [251].

The computer vision field focuses on image recognition and machine vision. The de-

velopment of the latter has been a key enabler to the fields of robotics increasing the

autonomy of systems. Matthies et al., [252], summarises how progress in computer vi-
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sion algorithms increased the performances of the NASA/JPL Mars Exploration Rover

(MER). Rule-based experts corresponds to expert systems previously introduced.

8.2.2 Word embedding

The concept of word embedding appeared in the 1950s based on the idea that context

plays a significant role in the meaning of a term. One of the founding figure of this

school of thoughts, J.R. Firth, is known for declaring that, “You shall know a word

by the company it keeps” [253]. There are several approaches to word embedding.

The most basic method is One-Hot Encoding (OHE), where each word is represented

by a sparse vector of 0s and 1 as shown on Figure 8.2. OHE however contains poor

information and only support equality testing. Previous classic approaches such as the

Hyperspace Analogue to Language (HAL) method and Latent Semantic Analysis (LSA)

are based on counting co-occurring words. The HAL model, presented in [254], captures

the statistical dependencies between words by counting their co-occurrence in a context

window. LSA is the precursor of topic models and LDA addressed in a later section.

These set of methods were outperformed in the mid-2000s by neural network-based

methods, which “predicted” rather than “counted”. As underlined in [255] and [256],

these neural network-based methods outperformed the previous co-occurrence-based

approaches.

Figure 8.2: Example of One-Hot Encoding

A first major contribution to the predictive methods is the work of Bengio et al.,

in [124], where the authors refer to word embedding as distributed representations of

words. The authors present a feed-forward neural network language model (FNNLM),

with a linear projection layer and a non-linear hidden layer to train a statistical lan-
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guage model. A language model learns the probability of a sequence of words in a

language. The model of Bergio et al. laid the foundation of future word embedding

models. Its general building blocks are (i) an embedding layer, also called projection

layer, which generates a word embedding by multiplying an index vector with a word

embedding matrix, (ii) a hidden layer producing an intermediate representation of the

input, and (iii) a softmax layer which produces the output probability distribution.

This architecture is summarised in Figure 8.3.

Figure 8.3: Simplified view of a neural network language model where C(wi) is the i-th
word feature vector and P (wj = wi) is the output probability of target word wi being
the term wj based on the previous words. Derived from [124].

While the word embedding in Bengio et al. was a by-product of the language model

training, Collobert and Weston in [257] focused on the word representations and demon-

strated how the embedding themselves could significantly improve NLP downstream

applications such as synonyms predictions, NER or POS tagging. Both approaches from

Bengio et al. and Collobert and Weston are however limited by the high computational

cost of their hidden and softmax layers. Word embedding really took off when in 2013,

Mikolov and his team from Google introduced two novel model architectures, known as

word2vec, for generating continuous vector representations of word [123]. With these

new architectures, the authors intended to reduce the computational complexity by

removing the hidden layer and optimising the softmax layer.

A year after the release of word2vec, a team of researchers from Stanford presented

GloVE [258]. The GloVE method follows the count-based rather than predictive ap-
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proach by factorising a large co-occurence matrix to achieve lower-dimension repre-

sentation, addressing a pitfall of previous counting methods. A couple of years later,

a team from Facebook (including Mikolov) developed fastText [259]. FastText rein-

terprets the word2vec approach by using sub-words and character levels embedding

rather than words. The lower-level embeddings are then combined to form the word

embeddings. Word2vec, GloVe and fastText are currently the main embedding meth-

ods. The authors of [260] and [127] respectively compare word2vec and GloVE on

the generation of word embeddings for the Italian language and for legal Polish terms.

The authors agree that word2vec outperforms GloVe for their applications. In more

recent work, Sutton and Cristianini compare word2vec, GloVe, and fastText [261] on a

concept identification task. Their comparison demonstrates that fastText then GloVe

achieve the highest ranking on their training sets. However the authors admit to using

different general corpora for the training of the different methods which might have

impacted the results. Finally, Yeganova et al [262] also compare these three main em-

bedding methods on a synonym extraction task in the biomedical field. The authors

concluded that word2vec model had the highest results for the discovery of synonyms

based on the same stem, for instance, launch/launcher, while fastText showed better

results with different stems synonyms, for instance, astronaut/cosmonaut. Predictive

approaches such as word2vec and fastText currently seem to have more momentum

than counting approaches such as GloVe.

8.2.3 Language Models

The key takeaways presented in the background section are:

1. Attention amplifies the signal from relevant parts of the input sequence, allowing

the model to focus on different components of an input sequence to build a word

embedding.

2. A Transformer is a stack of encoders followed by a stack of decoders including

attention mechanisms.

3. Contextualised embedding is a product of the encoding layer.
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4. The BERT architecture is based on the encoder part of the Transformer.

5. Transfer Learning, pre-training followed by fine-tuning, achieves high results on

supervised downstream tasks trained with small data set.

Precursor models

The Embeddings from Language Models (ELMo) model proposed by Peters et al.

in [263] is seen as the first breakthrough in the generation of contextualised embed-

ding. The vector representations are derived from a bi-directional Long-Short Term

Memory (LSTM) neural network model trained on a language modeling task. The bi-

directional characteristic of the model ensures that it takes into account both previous

and future words. The LSTM is a type of Recurrent Neural Network (RNN). The latter

uses an internal state memory to process sequences of inputs. The LSTM can handle

longer sequences than RNN. However the computation in a LSTM is linear, unlike

the Transformer approach which enables parallelisation and thus a significant decrease

in computational time as will be seen in the next section. As underlined by Liu et

al. [264], ELMo concatenate the forward and backward LSTMs outputs, independently

trained, thus disregarding the interaction between the left and right contexts. On the

other hand, BERT is truly bi-directional as its representations take into considera-

tion both sides of the context. Howard and Ruder proposed the Universal Language

Model Fine-turning (ULMFit) in [138], unlocking the keys to Transfer Learning for

NLP applications. The UMLFit architecture is based on a bi-directional LSTM as

ELMo. Contextualised embedding and Transfer Learning however really took off with

the adoption of the Transformer architecture and the release of the BERT model in

2018.

Attention mechanism and Transformer architecture

The Transformer architecture was first introduced by Vaswani et al. in the paper “At-

tention Is All You Need” [134]. In this fundamental work, the authors suggested a

new architecture for machine translation, an application of sequence-to-sequence mod-

els, solely based on attention. Sequence-to-sequence (Seq2Seq) models map an input
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sequence to an output sequence, and are generally based on an encoder and a decoder

combination. Machine translation, speech recognition, and text summarisation are

common applications of Seq2Seq models. The Transformer model of Vaswani et al.

outperformed classic approaches based on RNNs, LSTMs, and Convolutional Neural

Networks (CNNs), establishing new SOTA results on machine translation tasks.

The Transformer architecture as defined by Vaswani et al. is shown on Figure 8.4.

The encoder blocks (on the left) each include a multi-head attention sub-layer followed

by a Feed-Forward Neural Network. This background focuses on the encoder archi-

tecture as it is the backbone of the BERT model. The initial input is a list of word

embeddings from the input sequence. Each word embedding flows through the en-

coders independently and in parallel, the output of an encoder block being the input of

the next encoder block. Layer by layer, the encoder stacks build unique contextualised

representation of the input tokens. The original Transformer architecture includes 6 en-

coders and 6 decoders layers, with a hidden dimension of 512. The positional encoding

applied to the input embedding enables the model to learn the words order.

248



Chapter 8. Appendices

Figure 8.4: The Transformer Architecture as seen in [134]. N indicates the number of
encoding and decoding stacks.

Attention is the key to the Transformer architecture success. Bahdanau et al. [265]

and Luong et al. [266] pioneered the use of attention for Neural Machine Translation

(NMT). Attention amplifies the signal from relevant parts of the input sequence, allow-

ing the model to focus on different components of an input sequence. An attention head

will capture a particular type of relationship between words, for instance neighbour-

ing words or subject-object relationships. With several attention heads, it is possible

to track several features simultaneously, and influence the embedding of a word. Vig

introduced in [267] an open-source tool to visualise attention. Figure 8.5 displays the

outputs obtained with this tool for different attention heads and encoding blocks in a
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BERT model. The basic BERT architecture stacks 12 encoder blocks with 12 attention

heads each. Two sentences are encoded: “The spacecraft was launched last month. It

is now orbiting the moon”. The [CLS] and [SEP] are special tokens added by the

BERT tokenizer. The attention is represented as lines connecting the tokens, with the

line thickness reflecting the value of the attention score. Each head is identified by a

different colour. Sub-figure (a) displays all the attention scores of the first encoding

layer. Sub-figure (b) illustrates how for the token launched the attention head in the

first layer focuses on the neighbouring words. On the other hand, in sub-figure (c)

and (d), two attention heads of layer 2 respectively seem to focus on a subject-verb

relationship and on a noun-pronoun relationship.

The above paragraph provides a conceptual definition of attention. Vaswani et

al. [134] define the output of the attention head as function of a scaled dot-product as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (8.1)

Where Q, K, and V are respectively the Query, Key and Values, and dk is the

dimension of the Key matrix. Each row of these matrices, learned during training,

contains the query vector q, a key vector k and to a value vector v of an input word

embedding. The query/key/value combination is comparable to a retrieval system.

The query corresponds to the input embedding to be enhanced with attention and the

keys map to the embeddings of all other words in the context window. As explained by

Vaswani et al. [134], the output is then computed as the weighted sum of the values,

where the values are paired with the keys and the weights are a combination of the

query and keys.
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Figure 8.5: Examples of attention visualisation generated with the open-source tool
from [267]
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Figure 8.6 simplifies the attention score calculation for a word w. First, the attention

scores are computed between the query vector of the target word and the key vectors of

the remaining words. Dividing by the square root of the Key matrix dimension increases

the gradient stability [268]. The softmax function normalises the score and ensure that

they sum to 1. Then, the Value vector is multiplied by the attention score. Words with

high attention scores are thus emphasised. The Value vectors are then summed in a

weighted sum, producing the output of the attention layer for the embedding x1. This

type of attention is called “self-attention” as the attention is calculated with respect to

one input.

Figure 8.6: Illustration of the attention score calculation for an input embedding w1,
derived from [268]

Vaswani et al. use several attention heads in parallel, hence the name of “Multi-head

Attention”, in each encoder sub-layer. More precisely, they use 8 attention heads, and

thus obtain 8 output vectors z for each input embedding. These are concatenated into
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a single output as the feed-forward sub-layer accepts a single input. The parallelisation

in the Transformer significantly decreases the training time.

Pre-trained Language Models

In 2018, Delvin et al. from Google AI Language released the BERT model [77], a multi-

layer bidirectional Transformer encoder based on the work of Vaswani et al. [134].

BERT comes in two flavours, BERT-Base and BERT-Large. The configuration of

BERT-Base is based on a transformer architecture with 12 encoder layers, each using 12

self-attention heads and hidden dimension of 768. BERT-Large uses 24 encoder blocks,

each with 16 attention heads and hidden dimension of 1024. The models respectively

have 110 and 340 million parameters.

BERT was trained on two pre-training objectives, Masked Language Model (MLM)

and Next Sentence Prediction (NSP), and on a general corpus of 3.3B words. With

the MLM language modeling training task, 15% of the input sequence are randomly

selected. 80% of these chosen token are replaced by a < MASK > token, 10% by a

random token, and 10% are unchanged. The model is then trained to correctly predict

the hidden token. The 15% threshold is suggested by Delvin et al. The approach

is, broadly speaking, comparable to the target word prediction in word2vec. In the

NSP task, the model is trained to predict if two sentences are related, meaning if one

sentence is likely to come after the other. The model chooses two sentences A and B,

50% of the time, the sentence B actually follows A, and 50% of the time it is a sentence

randomly selected. This training task is notably useful for Question Answering (QA)

applications. The training set for these two tasks are directly generated from the

unlabelled corpus. When the model randomly masks a token or chooses a sentence,

it does not require a labelled corpus, it independently generates a labelled data set to

train on. Yann Le Cun, a major figure in the field of Deep Learning, named this type

of training self-supervised learning (SSL). In [269], Le Cun and Misra assert that SSL

could be the key to bringing AI closer to human-level intelligence as it removes the

obstacle of labelled data set and is more similar to human-like learning.
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According to Delangue, CEO of the HuggingFace library1, speaking at 2020 NLP

Summit2, the advent of BERT is a conjuncture of three trends: increased computational

power, large available text data set, and Transfer Learning, all allowing Deep Learning

for NLP to work. The release of BERT inspired several other models based on a similar

architecture or further pre-trained from BERT. Liu et al. from Facebook AI released

RoBERTa standing for a Robusty Optimised BERT Pretraining Approach in 2019 [135].

RoBERTa is based on the configurations of BERT-Base and BERT-Large. However it

outperformed BERT with a larger corpus of 160 GB, a longer training, a pre-training

solely based on MLM, and larger batch sizes of 8k. SciBERT [136] was trained with

the same configuration and size as BERT-Base on a scientific corpus of 1.14M papers,

mostly focused on the biomedical field. Several variants of the SciBERT model were

trained, either further pre-trained or trained from scratch. The SciBERT models were

found to outperform BERT-Base on domain-specific tasks.

Finally, the Generative Pre-trained Transformer (GPT) models of OpenAI [78,270,

271] are based on the decoder stacks of the Transformer architecture. The GPT-3 model

has 96 layers with 96 attention heads, with an embedding size of 12,888 resuling in 175

billion parameters. This model is trained on a general corpus with 499 billion tokens on

a cluster of V100 GPUs. GPT-3 achieved strong performance in several NLP tasks such

as text summarisation and generation, with little to no supervised fine-tuning (zero-

shot, one-shot and few-shot settings). The high performances of the model actually led

OpenAI to not release the GPT open-source to prevent malicious usage. GPT-3 is still

commercially available while BERT is open-source and has thus acquired more momen-

tum in the academic community. Table 8.2 summarises the training configuration for

the BERT, RoBERTa, and GTP-3 largest model.

1https://huggingface.co/
2https://www.nlpsummit.org/
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Table 8.2: Transformer-based Models Parameters Summary

Model
BERT
Base

BERT
Large

RoBERTa
Base

RoBERTa
Large

GPT-3

Hidden
units

768 1,024 768 1,024 12,888

Number of
layers

12 24 12 24 96

Attention heads
per layer

12 16 12 16 96

Number of
parameters

110M 340M 125M 355M 175B

Corpus
Size

16 GB 160 GB
499B

tokens

To compare models with a similar configuration and size, the BERT-Base, RoBERTa-

Base and SciBERT models are selected as foundations to further pre-train the domain-

specific models presented in this thesis.

Subwords tokenization

Word-level tokenization has, so far, been the only type of tokenization discussed in

this thesis. As was hinted to in Section 4.4.1 with the fastText model, character and

subword tokenizers have been raising some interest in the NLP field. Word-level tok-

enizers usually assign a unique id to each terms found in a corpus vocabulary. Rare

words that are not part of the tokenizer’s vocabulary are thus mapped to an OOV

(Out-Of-Vocabulary) id. Large training corpus yield high vocabulary sizes increasing

the computational cost. Character level tokenization attempts to by-pass this issue by

splitting terms into characters, thus dramatically reducing the tokenizer vocabulary,

and being able to reproduce any words. However, character level tokenization signifi-

cantly increases the length of input sequences, and does not record semantics as single

characters carry few to no meaning. Subword tokenization is the compromise between

these two approaches. With this method infrequent words are split into smaller com-

mon subwords. For instance, the word highest would be divided into two subwords,
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high and est. The tokenization of the word higher would then involve the same first

subword entity high and a new entity er. Thus the number of OOV is dramatically

reduced, as the subwords allow several word combinations.

Both BERT and RoBERTa rely on subword tokenization. As described by Delvin

et al., BERT implements the WordPiece embeddings by Wu et al. [137] with a 30K

subwords dictionary. As shown in Table 8.3, the WordPiece tokenizer adds two special

tokens to a sequence, [CLS] and [SEP ]. The first special token is a classification token

for the NSP training task. The [SEP ] token separates sentences. In the example, two

words, redefined and proportionally are divided into subwords. The “##” indicates

that a subword should be attached to the previous token.

The RoBERTa model from Liu et al. uses a byte-level Byte-Pair Encoding (BPE)

tokenizer proposed by Radford et al. [271], based on the work from Sennrich et al.

in [272]. Instead of using “##” to indicate that two subwords follow each other, BPE

relies on a special character, Ġ, to indicated the start of a new word. As shown in

Table 8.3, the BPE tokenizer does not have a classification token, as RoBERTa is only

trained on a MLM objective. Instead, the tokenizer use a special symbole, < s >, to

mark the start and the end of a sentence. The BPE tokenize has a larger vocabulary

than BERT, around 50K subword units. According to Liu et al. [76], early work did

not reveal any significant differences between these two approaches.

Table 8.3: Example of tokenization outputs at word and subword levels

Input
The solar panel area is redefined proportionally

to the incident angle.

Word
Tokenization

‘the’, ‘solar’, ‘panel’, ‘area’, ‘is’, ‘redefined’,
‘proportionally’, ‘to’, ‘the’, ‘incidence’, ‘angle’, ‘.’

WordPiece
‘[CLS]’, ‘the’, ‘solar’, ‘panel’, ‘area’, ‘is’, ’red’, ’##efined’,

‘proportional’, ‘##ly’, ‘to’, ‘the’, ‘incidence’, ‘angle’, ‘.’, ’[SEP]’

BPE
‘< s >’, ‘The’, ‘Ġsolar’, ‘Ġpanel’, ‘Ġarea’, ‘Ġis’, ‘Ġred’, ’efined’,

‘Ġproportion’, ‘ally’, ‘Ġto’, ‘Ġthe’, ‘Ġincidence’, ‘Ġangle’, ‘.’, ‘< /s >’
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8.2.4 Topic Modelling

Topic Modelling (TM) is a statistical approach for discovering the hidden (latent)

topics in a collection of documents. If TM was for instance applied to Jules Verne’s

“Twenty Thousand Leagues Under the Sea” novel, some of the discovered topics could

include Submarine, Travel, or Ocean. TM has been previously suggested as a preferred

method for building text representations by Al-Salemi et al. in [273] and Yun and

Geum in [274]. Sriurai [275] also demonstrated that TM was a more efficient method for

building feature representations of texts than the Bag-of-Words (BOWs) approach. The

latter method was first mentioned by Harris in [276]. With this approach, a document

is mapped to a vector of length n, corresponding to its vocabulary size. Each vector

element of index i corresponds to the frequency of a word w in the document.

An early method, Latent Semantic Analysis (LSA), also referred to as Latent Se-

mantic Indexing (LSI), was proposed by Deerwester et al. in [277]. Their approach is

based on a large term-by-document matrix, where each line corresponds to a document

and each column to a term frequency. They reduce this matrix to a representation in

a so-called latent semantic space using a Singular-Value Decomposition (SVD). Their

assumptions is that similar documents will have similar representations in the latent

semantic space. The authors developed this method for automatic indexing and infor-

mation retrieval applications. Rather than relying on classic term-matching methods,

their method compares the latent semantic structure, or topics, of documents.

LSA was however outperformed by a probabilistic approach proposed by Hofmann

in [167]. The Probabilistic Latent Semantic Analysis (pLSA), sometimes called Prob-

abilistic Latent Semantic Indexing (pLSI), learns a probability model over documents

and words. Each document is expressed as a probability distribution over topics, and

each topic as a probability distribution over words. A simple example is shown in Fig-

ure 8.7. According to [166], the model is however prone to over-fitting and is not a well

defined generative model for new documents.
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Figure 8.7: Example for the probabilistic Topic Modelling approach, where a document
d has follows a topic distribution p(zn|d), and each topic z has a word distribution
p(w|z).

The Latent Dirichlet Allocation (LDA) first introduced by Blei et al. [166] does

however generalise well to new (unseen) documents, and was thus selected as baseline

in this thesis.
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K. Kumar, “Towards an Artificial Intelligence based Design Engineering Assistant

for the Early Design of Space Missions,” Proceedings of the 69th International

Astronautical Congress (IAC 2018), 2018.

[9] ——, “Artificial Intelligence for the Early Design Phases of Space Missions,” in

2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2019, pp. 1–20.

[10] A. Berquand, I. McDonald, A. Riccardi, and Y. Moshfeghi, “The automatic cate-

gorisation of space mission requirements for the Design Engineering Assistant,” in

Proceedings of the 70th International Astronautical Congress (IAC 2019), 2019,

pp. 1–12.

[11] A. Berquand, Y. Moshfeghi, and A. Riccardi, “Space mission design ontology:

extraction of domain-specific entities and concepts similarity analysis,” in AIAA

Scitech 2020 Forum, no. January, Orlando, Florida, USA, 2020.

[12] A. Berquand and A. Riccardi, “From Engineering Models to Knowledge Graph :

Delivering New Insights Into Model,” in Proceedings of the 9th International Con-

ference on Systems & Concurrent Engineering for Space Applications (SECESA),

2020.

[13] A. Berquand, Y. Moshfeghi, and A. Riccardi, “SpaceLDA: Topic distributions

aggregation from a heterogeneous corpus for space systems,” Engineering

Applications of Artificial Intelligence, vol. 102, no. April 2021, p. 104273, 2021.

[Online]. Available: https://doi.org/10.1016/j.engappai.2021.104273

[14] A. Berquand, P. Darm, and A. Riccardi, “SpaceTransformers : language

modeling for space systems,” IEEE Access, vol. 9, pp. 133 111–133 122, 2021.

[Online]. Available: 10.1109/ACCESS.2021.3115659

[15] M. A. Aguirre, Introduction to Space Systems: Design and Synthesis. Springer,

2013.

261

https://doi.org/10.1016/j.engappai.2021.104273
10.1109/ACCESS.2021.3115659


Bibliography

[16] A. R. L. Tatnall, J. B. Farrow, M. Bandecchi, and C. R. Francis, “Spacecraft

System Engineering,” in Spacecraft Systems Engineering, 4th ed., P. Fortescue,

G. Swinerd, and J. Stark, Eds. John Wiley & Sons, Ltd., 2011, ch. 20, pp.

643–678.

[17] G. Richardson, K. Schmitt, M. Covert, and C. Rogers, “Small Satellite

Trends 2009-2013,” in Proceedings of the AIAA/USU Conference on Small

Satellites, Technical Session VII: Opportunities, Trends and Initiatives,

SSC15-VII-3, Utah State University, UT, USA, 2015. [Online]. Available:

https://digitalcommons.usu.edu/smallsat/2015/all2015/48/

[18] ECSS, “ECSS Abbreviated Terms,” Tech. Rep., 2017. [Online]. Available:

https://ecss.nl/home/ecss-glossary-abbreviations/

[19] W. Kriedte, “ECSS - A Single Set of European Space Standards,” in Space-

craft Structures, Materials and Mechanical Testing, W. Burke, Ed., Noordwijk,

Netherlands, 1996, pp. 321–327.

[20] M. Blythe, M. Saunders, D. Pye, L. Voss, R. Moreland, K. Symons, and

L. Bromley, NASA Space Flight Program and Project Management Handbook,

2014. [Online]. Available: https://ntrs.nasa.gov/api/citations/20150000400/

downloads/20150000400.pdf

[21] ECSS Secretariat, “ECSS-M-ST-10C Rev. 1 - Space project management -

Project planning and implementation,” Tech. Rep. March, 2009. [Online].

Available: https://ecss.nl/standard/ecss-m-st-10c-rev-1-project-planning-and-

implementation/

[22] ESA, “European Code of Conduct for Space Debris Mitigation,” Tech. Rep. 1,

2004. [Online]. Available: http://www.unoosa.org/documents/pdf/spacelaw/sd/

2004-B5-10.pdf

[23] I. M. L. Ferreira, “Enhancing the conceptual design phase of complex engineering

systems with an integrated methodology and support tools,” Ph.D. dissertation,
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Parameter Optimization,” in NIPS’11: Proceedings of the 24th International

Conference on Neural Information Processing Systems, 2011.

[182] J. Bergstra, D. Yamins, and D. D. Cox, “Making a Science of Model Search :

Hyperparameter Optimization in Hundreds of Dimensions for Vision Architec-

tures,” in 30th International Conference on Machine Learning, Atlanta, Georgia,

USA, 2013.

[183] N. Craswell, “Mean Reciprocal Rank,” in LIU L., ÖZSU M.T. (eds) Encyclopedia
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