50,751 research outputs found

    Exploiting conceptual spaces for ontology integration

    Get PDF
    The widespread use of ontologies raises the need to integrate distinct conceptualisations. Whereas the symbolic approach of established representation standards – based on first-order logic (FOL) and syllogistic reasoning – does not implicitly represent semantic similarities, ontology mapping addresses this problem by aiming at establishing formal relations between a set of knowledge entities which represent the same or a similar meaning in distinct ontologies. However, manually or semi-automatically identifying similarity relationships is costly. Hence, we argue, that representational facilities are required which enable to implicitly represent similarities. Whereas Conceptual Spaces (CS) address similarity computation through the representation of concepts as vector spaces, CS rovide neither an implicit representational mechanism nor a means to represent arbitrary relations between concepts or instances. In order to overcome these issues, we propose a hybrid knowledge representation approach which extends FOL-based ontologies with a conceptual grounding through a set of CS-based representations. Consequently, semantic similarity between instances – represented as members in CS – is indicated by means of distance metrics. Hence, automatic similarity detection across distinct ontologies is supported in order to facilitate ontology integration

    Towards ontology interoperability through conceptual groundings

    Get PDF
    Abstract. The widespread use of ontologies raises the need to resolve heterogeneities between distinct conceptualisations in order to support interoperability. The aim of ontology mapping is, to establish formal relations between a set of knowledge entities which represent the same or a similar meaning in distinct ontologies. Whereas the symbolic approach of established SW representation standards – based on first-order logic and syllogistic reasoning – does not implicitly represent similarity relationships, the ontology mapping task strongly relies on identifying semantic similarities. However, while concept representations across distinct ontologies hardly equal another, manually or even semi-automatically identifying similarity relationships is costly. Conceptual Spaces (CS) enable the representation of concepts as vector spaces which implicitly carry similarity information. But CS provide neither an implicit representational mechanism nor a means to represent arbitrary relations between concepts or instances. In order to overcome these issues, we propose a hybrid knowledge representation approach which extends first-order logic ontologies with a conceptual grounding through a set of CS-based representations. Consequently, semantic similarity between instances – represented as members in CS – is indicated by means of distance metrics. Hence, automatic similarity-detection between instances across distinct ontologies is supported in order to facilitate ontology mapping

    Ontologies, Mental Disorders and Prototypes

    Get PDF
    As it emerged from philosophical analyses and cognitive research, most concepts exhibit typicality effects, and resist to the efforts of defining them in terms of necessary and sufficient conditions. This holds also in the case of many medical concepts. This is a problem for the design of computer science ontologies, since knowledge representation formalisms commonly adopted in this field do not allow for the representation of concepts in terms of typical traits. However, the need of representing concepts in terms of typical traits concerns almost every domain of real world knowledge, including medical domains. In particular, in this article we take into account the domain of mental disorders, starting from the DSM-5 descriptions of some specific mental disorders. On this respect, we favor a hybrid approach to the representation of psychiatric concepts, in which ontology oriented formalisms are combined to a geometric representation of knowledge based on conceptual spaces

    Spatial Ontology for the Production Domain of Petroleum Geology

    Get PDF
    ABSTRACT The availability of useful information for research strongly depends on well structured relationships between consistently defined concepts (terms) in that domain. This can be achieved through ontologies. Ontologies are models of the knowledge of specific domain such as petroleum geology, in a computer understandable format. Knowledge is a collection of facts. Facts are represented by RDF triples (subject-predicate-object). A domain ontology is therefore a collection of many RDF triples, which represent facts of that domain. The SWEET ontologies are upper or top-level ontologies (foundation ontologies) consisting of thousands of very general concepts. These concepts are obtained from of Earth System science and include other related concepts. The work in this thesis deals with scientific knowledge representation in which the SWEET ontologies are extended to include wider, more specific and specialized concepts used in Petroleum Geology. Thus Petroleum Geology knowledge modeling is presented in this thesis

    Semantic mappings: out of ontology world limits

    Get PDF
    Mappings usually relate two similar knowledge representations. Thus, we can find many examples of mappings amid thesauri, databases, ontologies (domain ontologies, top-level and domain ontologies, PSM (Problem Solving Method) and domain ontologies, linguistic and domain ontologies); additionally, we can frequently find systems with mappings that relate two different knowledge representations, for instance, databases and ontologies. All these mappings are operationally different ,and are also named differently (mappings, correspondences, semantic bridges, transformations, semantic relations, functions, conversions, domain-PSM relations), but is there a single definition for these concepts? Can we find common characteristics? This paper analyzes the existing definitions and representation of the term “mapping” (and related terms) in the ontology world and its semantic neighborhood and proposes a new definition and representation of “mapping” for the Semantic Web field

    Enriching ontological user profiles with tagging history for multi-domain recommendations

    Get PDF
    Many advanced recommendation frameworks employ ontologies of various complexities to model individuals and items, providing a mechanism for the expression of user interests and the representation of item attributes. As a result, complex matching techniques can be applied to support individuals in the discovery of items according to explicit and implicit user preferences. Recently, the rapid adoption of Web2.0, and the proliferation of social networking sites, has resulted in more and more users providing an increasing amount of information about themselves that could be exploited for recommendation purposes. However, the unification of personal information with ontologies using the contemporary knowledge representation methods often associated with Web2.0 applications, such as community tagging, is a non-trivial task. In this paper, we propose a method for the unification of tags with ontologies by grounding tags to a shared representation in the form of Wordnet and Wikipedia. We incorporate individuals' tagging history into their ontological profiles by matching tags with ontology concepts. This approach is preliminary evaluated by extending an existing news recommendation system with user tagging histories harvested from popular social networking sites

    Lightweight Ontologies

    Get PDF
    Ontologies are explicit specifications of conceptualizations. They are often thought of as directed graphs whose nodes represent concepts and whose edges represent relations between concepts. The notion of concept is understood as defined in Knowledge Representation, i.e., as a set of objects or individuals. This set is called the concept extension or the concept interpretation. Concepts are often lexically defined, i.e., they have natural language names which are used to describe the concept extensions (e.g., concept mother denotes the set of all female parents). Therefore, when ontologies are visualized, their nodes are often shown with corresponding natural language concept names. The backbone structure of the ontology graph is a taxonomy in which the relations are “is-a”, whereas the remaining structure of the graph supplies auxiliary information about the modeled domain and may include relations like “part-of”, “located-in”, “is-parent-of”, and many others

    KNIT: Ontology reusability through knowledge graph exploration

    Get PDF
    Ontologies have become a standard for knowledge representation across several domains. In Life Sciences, numerous ontologies have been introduced to represent human knowledge, often providing overlapping or conflicting perspectives. These ontologies are usually published as OWL or OBO, and are often registered in open repositories, e.g., BioPortal. However, the task of finding the concepts (classes and their properties) defined in the existing ontologies and the relationships between these concepts across different ontologies – for example, for developing a new ontology aligned with the existing ones – requires a great deal of manual effort in searching through the public repositories for candidate ontologies and their entities. In this work, we develop a new tool, KNIT, to automatically explore open repositories to help users fetch the previously designed concepts using keywords. User-specified keywords are then used to retrieve matching names of classes or properties. KNIT then creates a draft knowledge graph populated with the concepts and relationships retrieved from the existing ontologies. Furthermore, following the process of ontology learning, our tool refines this first draft of an ontology. We present three BioPortal-specific use cases for our tool. These use cases outline the development of new knowledge graphs and ontologies in the sub-domains of biology: genes and diseases, virome and drugs.This work has been funded by grant PID2020-112540RB-C4121, AETHER-UMA (A smart data holistic approach for context-aware data analytics: semantics and context exploitation). Funding for open access charge: Universidad de Málaga / CBUA

    An Analysis of Service Ontologies

    Get PDF
    Services are increasingly shaping the world’s economic activity. Service provision and consumption have been profiting from advances in ICT, but the decentralization and heterogeneity of the involved service entities still pose engineering challenges. One of these challenges is to achieve semantic interoperability among these autonomous entities. Semantic web technology aims at addressing this challenge on a large scale, and has matured over the last years. This is evident from the various efforts reported in the literature in which service knowledge is represented in terms of ontologies developed either in individual research projects or in standardization bodies. This paper aims at analyzing the most relevant service ontologies available today for their suitability to cope with the service semantic interoperability challenge. We take the vision of the Internet of Services (IoS) as our motivation to identify the requirements for service ontologies. We adopt a formal approach to ontology design and evaluation in our analysis. We start by defining informal competency questions derived from a motivating scenario, and we identify relevant concepts and properties in service ontologies that match the formal ontological representation of these questions. We analyze the service ontologies with our concepts and questions, so that each ontology is positioned and evaluated according to its utility. The gaps we identify as the result of our analysis provide an indication of open challenges and future work
    • …
    corecore