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Abstract. The widespread use of ontologies raises the need to integrate distinct 

conceptualisations. Whereas the symbolic approach of established representation standards – 

based on first-order logic (FOL) and syllogistic reasoning – does not implicitly represent 

semantic similarities, ontology mapping addresses this problem by aiming at establishing 

formal relations between a set of knowledge entities which represent the same or a similar 

meaning in distinct ontologies. However, manually or semi-automatically identifying similarity 

relationships is costly. Hence, we argue, that representational facilities are required which 

enable to implicitly represent similarities. Whereas Conceptual Spaces (CS) address similarity 

computation through the representation of concepts as vector spaces, CS provide neither an 

implicit representational mechanism nor a means to represent arbitrary relations between 

concepts or instances. In order to overcome these issues, we propose a hybrid knowledge 

representation approach which extends FOL-based ontologies with a conceptual grounding 

through a set of CS-based representations. Consequently, semantic similarity between instances 

– represented as members in CS – is indicated by means of distance metrics. Hence, automatic 

similarity detection across distinct ontologies is supported in order to facilitate ontology 

integration. 

Keywords: Semantic Web, Conceptual Spaces, Ontology, Interoperability.  

1 Introduction 

The widespread use of ontologies [17] together with the increasing availability of 

representations of overlapping domains of interest, raises the need to integrate distinct 

ontologies. This becomes particularly apparent when considering the exploitation of 

formally specified knowledge on the Semantic Web (SW) which by its distributed 

nature consists of heterogeneous representations. Following the symbolic 

representational approach based on first-order logic (FOL) and syllogistic reasoning 

[15] – as applied by established representation standards such as OWL1 or RDF-S2 – 

requires that heterogeneities across distinct formalisations are resolved through 

mappings [20][25]. With respect to [2][31], ontology mapping is defined as the 

process of establishing formal relations between knowledge entities which represent 

the same or a similar semantic meaning in distinct ontologies [8][9][35]. In that, the 

ontology mapping task strongly relies on identifying similarities [1] between entities 

across different ontologies, what appears to be a necessary requirement to support 
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interoperability between multiple heterogeneous ontologies. However, with respect to 

this goal, several issues have to be taken into account. The symbolic approach leads to 

ambiguity issues and does not entail meaningfulness, since meaning requires both the 

definition of a terminology in terms of a logical structure (using symbols) and 

grounding of symbols to a conceptual level [3][27]. Therefore, concept 

representations across distinct ontologies – even those representing the same real-

world entities – hardly equal another, and hence, similarity is not an implicit notion 

carried within ontological representations. But manual or semi-automatic 

identification of similarity relationships – based on linguistic or structural similarities 

across ontologies [7][24][10][16] – is costly. Consequently, representational facilities 

which enable to implicitly describe similarities across ontologies are required to fully 

facilitate ontology interoperability.  

Conceptual Spaces (CS) [14][15] follow a theory of describing entities at the 

conceptual level in terms of their natural characteristics to avoid the symbol 

grounding issue [3][27]. In that, CS consider the representation of concepts as vector 

spaces which are defined through a set of quality dimensions. Describing instances as 

vectors enables the automatic calculation of their semantic similarity by means of 

spatial distance metrics. However, several issues still have to be considered when 

applying CS. For instance, CS provide no means to represent arbitrary relations 

between concepts or instances, such as part-of relations. The fact that the particular 

scope of each dimension can not be restricted poses further issues when attempting to 

base entire knowledge models on CS.   

In order to overcome the issues introduced above, we propose a two-fold 

knowledge representation approach which extends FOL-based ontologies with a 

conceptual grounding by refining individual symbolic concept representations as 

particular CS. The resulting set of CS is formally represented as part of the ontology 

itself. Consequently, semantic similarity between instances, represented as CS 

members, i.e. vectors, is indicated by means of distance metrics such as the Euclidean 

distance whereas additional knowledge represented within the ontology, e.g. through 

relations and axioms, is still maintained. In that, similarity becomes an implicit notion 

of the representation itself by overcoming the need for ontology mapping.  

The remaining paper is organised as follows. The following Section 2 introduces 

current approaches to ontology integration and discusses CS as a possible solution. 

We propose our hybrid representation approach in Section 3 and discuss its 

application to ontology integration in Section 4. A prototypical implementation and 

evaluation of our approach is introduced in Section 5. Section 6 concludes the paper.   

2 Ontology Interoperability  

In order to illustrate our motivation, here, we define key terminology and introduce 

the ontology interoperability problem. 

2.1. A formal approach to Ontologies 

An ontology is described as the explicit, formal specification of a shared 

conceptualisation [17]. Such formal conceptualisations aim at representing a certain 

domain of interest by defining semantics through stating necessary and sufficient 

conditions for something to be an instance of a class. Individuals (instances) and 



classes (concepts) of formal ontologies are processed by syllogistic reasoning [15]. 

Following [8][9], we define a populated ontology as a tuple: 

  ( ){ }ARPICO ,,,,=  

With C being a set of n concepts where each concept Ci is described through l(i) 

concept properties pc, i.e.: 

{ }
iixiliii CpcpcpcpcPC ∈= ),...,,( )(21

. 

I represents all m instances where each instance Iij represents a particular instance of a 

concept Cj and consists of l(i) instantiated properties pi instantiating the concept 

properties of Cj: 

{ }
ijijxilijijij IpipipipiPI ∈= ),...,,( )(21

. 

Hence, the properties P of an ontology O represent the union of all concept properties 

PC and instantiated properties PI of O: 

( ) ( ){ }mn PIPIPIPCPCPCP ,...,,,...,, 2121 ∪=  

Given these definitions, we would like to point out, that properties here exclusively 

refer to so-called data type properties. Hence, opposed to [9], we define properties as 

being distinctive to relations R. The latter describe relations between concepts and 

instances. In addition, A represents a set of axioms which define constraints on the 

other introduced notions. 

2.2. Ontology Integration based on Ontology Mapping 

The widespread use of ontologies together with the increasing availability of distinct 

ontologies representing overlapping domains of interest, raises the need to resolve 

heterogeneities between distinct conceptualisations [20], i.e. to integrate different 

ontologies by partially mapping these. With respect to [2] and [31], we define 

ontology mapping as the creation of structure-preserving relations between multiple 

ontologies. I.e. the goal is, to establish formal relations between a set of knowledge 

entities E1 from an ontology O1 with entities E2 which represent the same or a similar 

semantic meaning in a distinct ontology O2 [8][9][35]. The term set of entities here 

refers to the union of all concepts C, instances I, relations R and axioms A defined in a 

particular ontology. In that, the ontology mapping task strongly relies on identifying 

semantic similarities [1] between entities across different ontologies. Hence, the 

identification of similarities is a necessary requirement to solve the mapping problem 

for multiple heterogeneous ontologies [29]. However, with respect to this goal, the 

following issues have to be taken into account. 

I1. Symbolic representations lack grounding at the conceptual level: the symbolic 

approach, i.e. describing symbols by using other symbols, without a grounding in 

the real world, of established SW representation standards, leads to ambiguity 

issues and does not entail meaningfulness, since meaning requires both the 

definition of a terminology in terms of a logical structure (using symbols) and 

grounding of symbols to a conceptual level [3][27]. 

I2. Lack of implicit similarity representation: Due to I1, describing the complex 

notion of any specific concept in all its facets is a costly task and may never reach 

semantic completeness. While concept representations across distinct ontologies – 

even those representing the same real-world entities – hardly equal another, 



semantic similarity is not an implicit notion within ontological representations. 

But manually or semi-automatically defining similarity relationships is costly. 

Moreover, such relationships are hard to maintain in the longer term. 

 

In order to overcome these issues, recent research approaches address semi-automatic 

similarity detection across ontologies, mostly based on identifying linguistic 

commonalities and/or structural similarities between entities of distinct ontologies 

[28][2]. Work following a combination of such approaches in the field of ontology 

mapping is reported in [24][10][16][20]. The PROMPT suite [28] exploits the content 

of concept and instance labels together with structural information in order to support 

ontology merging. GLUE, proposed in [7], follows a similar approach to enable 

ontology mapping, but also incorporates machine learning techniques to enable 

similarity detection. The work proposed in [21] follows a pure linguistic approach to 

ontology mapping. Moreover, similar related work had been carried out to facilitate 

database schema matching [22][23]. However, it can be stated that the approaches 

reported above rely on the idea of (semi-)automating the similarity detection process 

which in all the above cases requires manual intervention and hence, is a costly and 

error-prone process. In that, we argue that representational facilities for implicit 

representation of similarities are required to overcome the need for explicit ontology 

mappings.  

2.3. Conceptual Spaces - A viable Alternative? 

Conceptual Spaces (CS), introduced by Gärdenfors [14][15], follow a theory of 

describing entities at the conceptual level in terms of their natural characteristics 

similar to natural human cognition in order to avoid the symbol grounding issue. CS 

consider the representation of concepts as multidimensional geometrical spaces which 

are defined through a set of quality dimensions. Instances are supposed to be 

represented as vectors, i.e. particular points in a CS. For instance, a particular color 

may be defined as point described by vectors measuring the quality dimensions hue, 

saturation, and brightness. Describing instances as points within vector spaces where 

each vector follows a specific metric enables the automatic calculation of their 

semantic similarity by means of distance metrics such as the Euclidean, Taxicab or 

Manhattan distance [19] or the Minkowsky Metric [34]. Hence, in contrast to the 

costly formalisation of such knowledge through symbolic representations, semantic 

similarity is implicit information carried within a CS representation what is perceived 

the major contribution of the CS theory. However, although CS aim at solving SW-

related issues such as the symbol grounding problem, several issues still have to be 

taken into account: 

I3. Lack of representational facilities to base knowledge models on CS; 

I4. Lack of expressiveness to represent arbitrary relations;     

I5. Undefinable scope of particular dimensions; 

I6. Reliance on quantifiable measurements, even for qualitative characteristics.  

CS do not provide any representational mechanism enabling the application of CS for 

knowledge representation (I3) in order to solve the aforementioned issues I1 and I2 

(Section 2.2). Moreover, the CS theory does not provide any notion to represent any 



arbitrary relations (I4) [33], such as part-of relations which usually are represented 

within FOL-based knowledge models. In this regard, it is even more obstructive that 

the scope of a dimension is not definable (I5), i.e. a dimension always applies to the 

entire CS [33]. Nevertheless, similarity computation as major contribution of CS 

particularly requires the description of concepts through quantifiable metrics (I6), 

even in cases of rather qualitative characteristics.  

3 Conceptual Groundings for Ontological Concepts 

With respect to issues I1-I6 (Section 2), we claim that basing knowledge models on 

just one theory is not sufficient, and hence, a combination of both representation 

approaches appears to be better suited. Moreover, it can be argued, that representing 

an entire knowledge model through a coherent CS might not be feasible, particularly 

when attempting to maintain the meaningfulness of the spatial distance as a similarity 

measure. Hence, we claim that CS represent a particularly promising model when 

being applied to individual concepts instead of representing an entire ontology in a 

single CS.  

3.1. Conceptual Groundings for Ontological Concepts  

We propose a two-fold representational approach – combining FOL ontologies with 

corresponding representations based on CS – to enable similarity computation across 

ontologies. In that, we consider the representation of a set of n concepts C of an 

ontology O through a set of n Conceptual Spaces CS. Instances of concepts are 

represented as members in the respective CS. The following Figure 1 depicts this 

vision: 

 

Instance I1j Instance I1i 

Concept C1x 
is-a 

refined-as-cs 

refined-as-member refined-as-member 
d1 

d2 
d3 

is-a 

Ontology O1 

Conceptual Space CS1x  

Fig. 1. Representing FOL-based concepts through Conceptual Spaces. 

While still benefiting from implicit similarity information within a CS, our hybrid 

approach allows overcoming CS-related issues (Section 2.3) by maintaining the 

advantages of FOL-based knowledge representations. In order to be able to refine and 

represent ontological concepts within a CS, we formalised the CS model into an 

ontology, currently being represented through OCML [26]. Hence, a CS can simply 

be instantiated in order to represent a particular concept.   

Referring to [15][32], we formalise a CS as a vector space defined through quality 

dimensions di of CS. Each dimension is associated with a certain metric scale, e.g. 



ratio, interval or ordinal scale. To reflect the impact of a specific quality dimension on 

the entire CS, we consider a prominence value p for each dimension [15]. Therefore, a 

CS is defined by  

( ){ }PpCSddpdpdpCS iinn

n
∈∈= ,,...,, 2211

 

where P is the set of real numbers. However, the usage context, purpose and domain 

of a particular CS strongly influence the ranking of its quality dimensions. This 

clearly supports our position of describing distinct CS explicitly for individual 

concepts. Please note that we do not distinguish between dimensions and domains 

[15] but enable dimensions to be detailed further in terms of subspaces. Hence, a 

dimension within one space may be defined through another CS by using further 

dimensions [32]. In this way, a CS may be composed of several subspaces and 

consequently, the description granularity can be refined gradually. Dimensions may 

be correlated. For instance, when describing an apple the quality dimension 

describing its sugar content may be correlated with the taste dimension. Information 

about correlation is expressed through axioms related to a specific quality dimension 

instance. 

A particular member M – representing a particular instance – in the CS is described 

through valued dimension vectors vi:  

( ){ }MvvvvM in

n
∈= ,...,, 21

 

With respect to [32], we define the semantic similarity between two members of a 

space as a function of the Euclidean distance between the points representing each of 

the members. Hence, with respect to [32], given a CS definition CS and two members 

V and U, defined by vectors v0, v1, …,vn and u1, u2,…,un within CS, the distance 

between V and U can be calculated as: 

∑
=

−
−

−
=

n
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s

uu
pvudist

1
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where u  is the mean of a dataset U and 
us is the standard deviation from U. The 

formula above already considers the so-called Z-transformation or standardization [4] 

which facilitates the standardization of distinct measurement scales utilised by 

different quality dimensions in order to enable the calculation of distances in a multi-

dimensional and multi-metric space.  

3.2. Representing Ontological Concepts through Conceptual Spaces  

The derivation of an appropriate space CSi to represent a particular concept Ci of a 

given ontology O is understood a non-trivial task which aims at the creation of a CS 

instance which most appropriately represents the real-world entity represented by Ci. 

We particularly foresee a transformation procedure consisting of the following steps: 

S1. Representing concept properties pcij of Ci as dimensions dij of CSi. 

S2. Assignment of metrics to each quality dimension dij. 

S3. Assignment of prominence values pij to each quality dimension dij. 

S4. Representing instances Iik of Ci as members in CSi. 



Given the formal ontological representation of the CS model (Section 3.1), we are 

able to simply instantiate a specific CS by applying a transformation function  

ii CSCtrans ⇒:  

which is aimed at instantiating all elements of a CS, such as dimensions and 

prominence values (S1 – S3). S1 aims at representing each concept property pcij of Ci 

as a particular dimension instance dij together with a corresponding prominence pij of 

a resulting space CSi:  

( ){ } ( ){ }PpCSddpdpdpPCpcpcpcpctrans ijiijininiiiiiijinii ∈∈⇒∈ ,,...,,,...,,: 221121
 

Please note that we particularly distinguish between data type properties and relations. 

While the latter represent relations between concepts, these are not represented as 

dimensions since such dimensions would refer to a range of concepts (instances) 

instead of quantified metrics, as required by S2. Therefore, in the case of relations, we 

propose to maintain the relationships represented within the original ontology O 

without representing these within the resulting CSi. In that, the complexity of CSi is 

reduced to enable the maintainability of the spatial distance as appropriate similarity 

measure. The assignment of metric scales to dimensions (S2) which naturally are 

described using quantitative measurements, such as size or weight, is rather 

straightforward. In such cases, interval scale or ratio scale, could be used, whereas 

otherwise, a nominal scale might be required. S3 is aimed at assigning a prominence 

value pij – chosen from a predefined value range – to each dimension dij. Since the 

assignment of prominences to quality dimensions is of major importance for the 

expressiveness of the similarity measure within a CS, most probably this step requires 

incremental ex-post re-adjustments until a sufficient definition of a CS is achieved.  

 With respect to S4, one has to represent all instances Iki of a concept Ci as member 

instances in the created space CSi:  

ikik MItrans ⇒:  

This is achieved by transforming all instantiated properties piikl of Iik as valued vectors 

in CSi. 

( ){ } ( ){ }
ikikliknikikikikliknikik MvvvvPIpipipipitrans ∈⇒∈ ,...,,,...,,: 2121

 

Hence, given a particular CS, representing instances as members becomes just a 

matter of assigning specific measurements to the dimensions of the CS. In order to 

represent all concepts Ci of a given ontology O, the transformation function consisting 

of the steps S1-S4 has to be repeated iteratively for all Ci which are element of O. The 

accomplishment of the proposed procedure results in a set of CS instances which each 

refine a particular concept together with a set of member instances which each refine 

a particular instance. Please note that applying the procedure proposed here requires 

additional effort which needs to be further investigated within future work.  

4 Enabling Ontology Interoperability 

In order to illustrate the actual contribution of our hybrid representation method with 

respect to ontology integration and interoperability, we define a simplified scenario. 

Please note, the following simplifications are not requirements for the utilisation of 

our approach in general but just aim at describing an environment to formalise and 

compare our contribution.  



i. Two ontologies O1 and O2 represent the same domain of interest. 

ii. Each concept of O1 can be mapped, i.e. is similar, to one of the concepts of O2 and 

vice versa. 

iii. Each instance of O1 can be mapped to one of the instances of O2 and vice versa. 

iv. All relations R and axioms A constraining concepts of O1 apply to the similar 

concepts C2 of O2  and vice versa. 

v. Spatial distance in a CS is perceived to be a valid similarity measure. 

With respect to i-v and [8], we define the ontology integration problem as a problem 

of (a) identifying the most similar concept C2j for a given concept C1i and (b) 

identifying the most similar instance I2j for a given instance I1i. Please note, that 

ontologies in many cases are not completely heterogeneous. While, on the one hand, 

the increasing use of upper-level ontologies such as DOLCE [13], SUMO [30] or 

OpenCyc3 supports a certain degree of commonality between distinct ontologies, on 

the other hand, ontologies are often used in rather closed environments, for instance, 

virtual organisations, where a common agreement to a certain extent is ensured. 

Therefore, we distinguish between three cases with respect to the extent of common 

agreement required from the involved parties.    

4.1. Case 1 – Shared Ontology at the Concept Level 

This case considers two parties (“agents” in Figure 2), which share an ontology at the 

conceptual level, but not at the instance level.  

 

Instance I1j Instance I1i 

Conceptual Space CS1x 

Concept C1x 
is-a 

refined-as-cs 

refined-as-member refined-as-member 
d1 

d2 

d3 

is-a 

Ontology O1 

Agent 1 Agent 2 

 

Fig. 2.  Two parties sharing a common ontology at the concept level. 

This occurs, for instance, in cases where two parties subscribe to a common schema, 

e.g. database or ontology schema, to represent institutional knowledge, which is then 

instantiated independently. As described above, we assume this to be a common case. 

Whereas no mappings at the concept level need to be defined in this case, similarity-

detection at the instance level is obsolete, since it is indicated by means of Euclidean 

distances within the respective CS (Section 3). Hence, even though the ontological 

commitment of both parties just applies to the concept-level, similarity at the instance 

level becomes an implicit notion when following the proposed representation 
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approach. In contrast, without our representational model, all instances I1ki of a 

concept C1k in O1 would have to be compared with all instances I2lj of a similar 

concept C2l in O2. Generally speaking, assuming n being the number of similar 

concepts Ci in O1 and O2 ,where each concept has mj instances Ik, leads to the 

following number x of required similarity comparisons:  

∑
=

=
n

j

jmOIOIx
1

2

21 )())(),((  

Even though such similarity comparisons could be semi-automated, we assume that 

manual involvement is required in any case.  

4.2. Case 2 – Distinct Ontologies, shared Conceptual Spaces 

The case of distinct ontologies which still subscribe to a common set of CS (Figure 3) 

is likely, in cases where two parties created distinct ontologies O1 and O2 and decide 

ex-post to represent concepts following the procedure described in Section 3.2 in 

order to take advantage of implicit similarity computation.  

 

d2 

Instance I2i Instance I1i 

  CS12x          

Concept C1x 

is-a 
refined-as-cs 

refined-as-member refined-as-member 

Concept C2x 

refined-as-cs 

d1 

d3 

Ontology O1 Ontology O2 

is-a 

Agent 1 Agent 2 

 

Fig. 3.  Two parties with distinct ontologies sharing equivalent sets of Conceptual Spaces. 

Given such a scenario, concept similarity is implicitly defined through concept 

refinement in the equivalent CS, i.e. two concepts agreeing on the same CS 

representation necessarily are similar, if not equivalent. Instance similarity is 

computable by means of the spatial distance. In case a CS-based representation as 

shown in Figure 3 is not provided already, beforehand the ontological concepts have 

to be mapped in order to be able to agree on a common CS for each concept. Hence, 

creating the requirements for this case from a set of distinct ontologies, would require 

n
2
 similarity comparisons, with n being the number of concepts within each O1 and 

O2. In contrast, following traditional ontology mapping approaches would require 

additional comparisons to map instances (Section 4.1), in order to fully enable 

mapping between both ontologies:   
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4.3. Case 3 – Distinct Ontologies, (partially) heterogeneous Conceptual Spaces 

Case 3 introduces another degree of heterogeneity by assuming distinct ontologies 

together with partially overlapping (Figure 4.i) or even completely heterogeneous CS 

(Figure 4.ii). Such a case is particularly likely either where two agents independently 

create ontologies and corresponding CS representations or in cases where two initially 

equivalent sets of CS evolve through time, and consequently, develop heterogeneities.  

 

d2 

Instance I2i Instance I1i 

  CS1x              CS2x 

Concept C1x 

is-a 
refined-as-cs 

refined-as-member refined-as-member 

Concept C2x 

refined-as-cs 

d1 d1 

d2 

d3 d4 

Ontology O1 Ontology O2 

is-a 

Agent 1 Agent 2 

 (i) 

 

 

d2 

Instance I2i Instance I1i 

  CS1x               

Concept C1x 

is-a 

refined-as-cs 

refined-as-member refined-as-member 

Concept C2x 

refined-as-cs 

d1 d4 

d5 

d3 d6 

Ontology O1 Ontology O2 

is-a 

Agent 1 Agent 2 

  CS2x               

 (ii) 

Fig. 4. Two parties with distinct ontologies sharing (i) partially overlapping and (ii) completely 

distinct Conceptual Spaces. 

In the cases shown in Figure 4, certain restrictions regarding the CS-based similarity-

detection between instances would apply. First, traditional ontology mapping methods 

(Section 2.2), could be applied in order to identify similar dimensions between 

heterogeneous spaces to increase the amount of overlapping dimensions. 

Subsequently, similarities, i.e. distances, could be computed between members in two 

partially overlapping CS by just considering the overlapping dimensions. Let us 

assume a member U in CS1 with n dimensions dn and a member V in a partially 

overlapping CS2 with m dimensions dm. The assumption that both CS partially overlap 



implies the existence of a set of l dimensions in CS3 with CS3 ⊂  CS1 and CS3 ⊂  CS2. 

Hence, by disregarding the non-overlapping dimensions, similarity could still be 

computed utilizing the overlapping dimensions as follows:  
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In contrast, following traditional approaches to ontology mapping between two 

completely independent ontologies would require the same amount of similarity-

comparisons as proposed in Section 4.2. 

5 Evaluation 

To evaluate the applicability of our approach, initial proof-of-concept prototype 

applications were provided [5][6] which apply the hybrid representational approach 

proposed in this paper to enable similarity-based matchmaking between distinct 

representations of Semantic Web Service (SWS) [12] capabilities. There, an 

environment as described in Section 4.2 (case 2) was established by enabling a SWS 

provider (agent 1) to refine symbolic SWS capability descriptions through CS. In that, 

by following the approach proposed here, concept instances as part of SWS capability 

descriptions had been individually represented within CS-based representations. On 

the other hand, heterogeneous user data (agent 2) is dynamically represented as 

members in the same CS. Instead of (semi-automatically) mapping distinct ontologies 

utilized by both agents, similarities are computed as proposed in Section 3 by 

automatically calculating Euclidean distances between a set of CS members. Due to 

space restrictions here, we would like to refer the reader to [5] and [6] for further 

details.  

In order to further evaluate the contribution of our approach, in the following, we 

provide an attempt to compare the required number of similarity computations, 

following our approach on the one hand, and following traditional FOL-based 

ontological representations on the other. However, please note that the authors are 

aware that providing representations following our two-fold approach requires 

additional effort to provide the representations enabling to benefit from the 

contributions discussed here. In the following, we distinguish between cases 1-3 

(Section 4) and define a set of additional simplifications which further detail a 

concrete ontology interoperability scenario: 

vi. Ontologies O1 and O2 each consist of n concepts Cj (Ck) with mj instances Ij (Ik) 

each. 

vii. Distinct degrees of heterogeneity between O1 and O2 are considered with respect to 

the case differentiation proposed in Section 4.  

Following i-vii and with respect to the elaborations in Section 4 we assume efforts for 

similarity-detection as follows (summarised in Table 1). As described in Sections 4.1 

and 4.2, following our hybrid representational approach (b in Table 1) would require 

an additional representational effort (Section 3.2) but no additional alignment tasks, 

respectively similarity comparisons in cases 1 and 2. In contrast, following the current 

symbolic approach (a) requires to semi-automatically identify instance similarities 

(case 1) and to additionally detect concept similarities in case 2. The same applies to 



case 3 when following approach (a). With respect to approach (b), congruent CS have 

to be provided in case 3. Even though similarities can be computed partially (Section 

4.3), we consider the worst case scenario for both cases, i.e. the need to manually 

align distinct spaces. Hence, we take into account the formal alignment of both 

ontologies at the concept level leading to n
2
 necessary similarity comparisons.  

Table. 1. Formalisation of required similarity comparisons to align heterogeneous ontologies.   

 

(a) First-order logic 

representation:

(b) Two-fold 

representation:

Case 1 Case 2 Case 3
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( or effort to align CS)
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For instance, assuming the likely case 3, we can apply the formalisations (Table 1) 

and assume 2 ontologies O1 and O2 each consisting of n concepts Cj and Ck with mj 

instances Ijl of each concept, to calculate the number of required similarity 

comparisons under the assumptions i-vii. Figure 5 depicts the expected number of 

similarity comparisons for the traditional approach (a) in case 3. Since in the case of 

our proposed solution (b) instance similarity is an implicit notion, the first row (mj=0) 

of the table also indicates the respective number of similarity comparisons following 

approach (b). 

0 (b) 10 20 30 40 50
0

75
0

50000

100000

150000

200000

250000

300000

 mj

n

 

Fig. 5. Required similarity comparisons to map between two ontologies O1 and O2 in case 3 

dependent on number of concepts n and number of instances mj. 

As shown in Figure 5, solution (b) significantly reduces the amount of required 

similarity comparisons, which increase with a growing number of instances mj when 

following solution (a). Even though an additional effort is required to apply our 

representational model (Section 3.2) this reduction is perceived to be the major 

contribution of solution (b). Whereas the majority of assumptions i-vii just aims at 

describing a formal and comparable environment one might particularly doubt the 

validity of v. However, within previous work [5][6], the authors already proved the 

appropriateness of distance metrics in a CS as similarity measure.  

Consequently, adopting our approach enabled similarity detection across 

heterogeneous ontologies instead of manually aligning individual instances. It is 

apparent that an initial effort has to be made to represent heterogeneous concepts in 

common CS and to represent instances as corresponding vectors. However, once these 
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representations are available, similarity becomes an implicit notion and does not 

require manual or (semi-)automatic alignments.  

6 Conclusions 

In order to facilitate ontology integration we proposed a hybrid representation 

approach based on a combination of FOL-based ontologies and multiple concept 

representations in individual CS. Representing concepts following the CS theory 

enables representation of instances as vectors in a respective CS and consequently, the 

automatic computation of similarities by means of spatial distances between distinct 

vectors. The CS-based representation is supported through a dedicated CS 

formalisation, i.e. a CS ontology which enables the instantiation of a corresponding 

CS (member) for each individual concept (instance) as described in Section 3. 

Following our two-fold representational approach supports implicit representation of 

similarities between instances across heterogeneous ontologies, and consequently, 

provides a means to facilitate ontology interoperability. Moreover, by maintaining the 

knowledge represented within FOL-based ontologies but additionally applying the CS 

approach to individual concepts of each ontology, our approach overcomes the 

individual issues posed by each of the two approaches (Sections 2 and 2.3). For 

instance, it allows representing arbitrary relationships between distinct concepts and 

instances, and consequently, between distinct CS while still taking advantage of the 

implicit similarity information inherent in a CS representation. In order to facilitate 

our approach, we furthermore proposed a formal method on how to derive CS 

representations for individual concepts (Section 3). Within proof-of-concept prototype 

applications [5][6], an OCML [26] representation of the proposed hybrid 

representational model was utilized to validate the applicability of the approach. 

As shown in Section 5 and in previous applications of this approach, applying our 

proposed representational approach significantly reduces the effort required to align 

distinct heterogeneous ontologies and the extent to which two distinct parties have to 

share their conceptualisations. Whereas traditional ontology mapping methodologies 

rely on mechanisms to semi-automatically detect similarities at the concept and the 

instance level, our approach just requires a common agreement at the concept level 

since similarity information at the instance level is implicitly defined.  

However, the authors are aware that our approach requires a considerable amount 

of additional effort to establish CS-based representations. Future work has to 

investigate this effort in order to further evaluate the potential contribution of our 

approach proposed here. Moreover, while overcoming issues I1 – I6 (Sections 2 and 

2.3), further issues related with CS-based knowledge representation still remain. For 

instance, whereas defining instances, i.e. vectors, within a given CS appears to be a 

straightforward process of assigning specific quantitative values to quality 

dimensions, the definition of the CS itself is not trivial at all and dependent on 

individual perspectives and subjective appraisals. Whereas semantics of instances are 

grounded to metrics within a CS, the quality dimensions themselves are subject to 

ones interpretation what might lead to ambiguity issues. With regard to this, CS do 

not fully solve the symbol grounding issue but to shift it from the process of 

describing instances to the definition of a CS. Furthermore, whereas the size and 

resolution of a CS is indefinite, defining a reasonable CS may become a challenging 



task. Nevertheless, distance calculation not only relies on the fact that quantitative 

metrics are established but also that resources are described in equivalent geometrical 

spaces. However, particularly with respect to the latter, traditional ontology and 

schema matching methods could be applied to align heterogeneous spaces. Moreover, 

we would like to point out that the increasing usage of upper level ontologies, such as 

DOLCE or SUMO, and the progressive reuse of ontologies, particularly in loosely 

coupled organisational environments, leads to an increased sharing of ontologies at 

the concept level. As a result, our proposed hybrid representational model becomes 

increasingly applicable by further enabling similarity-computation at the instance-

level towards the vision of interoperable ontologies.  
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