120,195 research outputs found

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Web-based support for managing large collections of software artefacts

    Get PDF
    There has been a long history of CASE tool development, with an underlying software repository at the heart of most systems. Usually such tools, even the more recently web-based systems, are focused on supporting individual projects within an enterprise or across a number of distributed sites. Little support for maintaining large heterogeneous collections of software artefacts across a number of projects has been developed. Within the GENESIS project, this has been a key consideration in the development of the Open Source Component Artefact Repository (OSCAR). Its most recent extensions are explicitly addressing the provision of cross project global views of large software collections as well as historical views of individual artefacts within a collection. The long-term benefits of such support can only be realised if OSCAR is widely adopted and various steps to facilitate this are described

    Generating collaborative systems for digital libraries: A model-driven approach

    Get PDF
    This is an open access article shared under a Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0/). Copyright @ 2010 The Authors.The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework

    Support for collaborative component-based software engineering

    Get PDF
    Collaborative system composition during design has been poorly supported by traditional CASE tools (which have usually concentrated on supporting individual projects) and almost exclusively focused on static composition. Little support for maintaining large distributed collections of heterogeneous software components across a number of projects has been developed. The CoDEEDS project addresses the collaborative determination, elaboration, and evolution of design spaces that describe both static and dynamic compositions of software components from sources such as component libraries, software service directories, and reuse repositories. The GENESIS project has focussed, in the development of OSCAR, on the creation and maintenance of large software artefact repositories. The most recent extensions are explicitly addressing the provision of cross-project global views of large software collections and historical views of individual artefacts within a collection. The long-term benefits of such support can only be realised if OSCAR and CoDEEDS are widely adopted and steps to facilitate this are described. This book continues to provide a forum, which a recent book, Software Evolution with UML and XML, started, where expert insights are presented on the subject. In that book, initial efforts were made to link together three current phenomena: software evolution, UML, and XML. In this book, focus will be on the practical side of linking them, that is, how UML and XML and their related methods/tools can assist software evolution in practice. Considering that nowadays software starts evolving before it is delivered, an apparent feature for software evolution is that it happens over all stages and over all aspects. Therefore, all possible techniques should be explored. This book explores techniques based on UML/XML and a combination of them with other techniques (i.e., over all techniques from theory to tools). Software evolution happens at all stages. Chapters in this book describe that software evolution issues present at stages of software architecturing, modeling/specifying, assessing, coding, validating, design recovering, program understanding, and reusing. Software evolution happens in all aspects. Chapters in this book illustrate that software evolution issues are involved in Web application, embedded system, software repository, component-based development, object model, development environment, software metrics, UML use case diagram, system model, Legacy system, safety critical system, user interface, software reuse, evolution management, and variability modeling. Software evolution needs to be facilitated with all possible techniques. Chapters in this book demonstrate techniques, such as formal methods, program transformation, empirical study, tool development, standardisation, visualisation, to control system changes to meet organisational and business objectives in a cost-effective way. On the journey of the grand challenge posed by software evolution, the journey that we have to make, the contributory authors of this book have already made further advances

    Supporting collaborative grid application development within the escience community

    Get PDF
    The systemic representation and organisation of software artefacts, e.g. specifications, designs, interfaces, and implementations, resulting from the development of large distributed systems from software components have been addressed by our research within the Practitioner and AMES projects [1,2,3,4]. Without appropriate representations and organisations, large collections of existing software are not amenable to the activities of software reuse and software maintenance, as these activities are likely to be severely hindered by the difficulties of understanding the software applications and their associated components. In both of these projects, static analysis of source code and other development artefacts, where available, and subsequent application of reverse engineering techniques were successfully used to develop a more comprehensive understanding of the software applications under study [5,6]. Later research addressed the maintenance of a component library in the context of component-based software product line development and maintenance [7]. The classic software decompositions, horizontal and vertical, proposed by Goguen [8] influenced all of this research. While they are adequate for static composition, they fail to address the dynamic aspects of composing large distributed software applications from components especially where these include software services. The separation of component co-ordination concerns from component functionality proposed in [9] offers a partial solution

    Supporting collaboration within the eScience community

    Get PDF
    Collaboration is a core activity at the heart of large-scale co- operative scientific experimentation. In order to support the emergence of Grid-based scientific collaboration, new models of e-Science working methods are needed. Scientific collaboration involves production and manipulation of various artefacts. Based on work done in the software engineering field, this paper proposes models and tools which will support the representation and production of such artefacts. It is necessary to provide facilities to classify, organise, acquire, process, share, and reuse artefacts generated during collaborative working. The concept of a "design space" will be used to organise scientific design and the composition of experiments, and methods such as self-organising maps will be used to support the reuse of existing artefacts. It is proposed that this work can be carried out and evaluated in the UK e-Science community, using an "industry as laboratory" approach to the research, building on the knowledge, expertise, and experience of those directly involved in e-Science

    Design Ltd.: Renovated Myths for the Development of Socially Embedded Technologies

    Full text link
    This paper argues that traditional and mainstream mythologies, which have been continually told within the Information Technology domain among designers and advocators of conceptual modelling since the 1960s in different fields of computing sciences, could now be renovated or substituted in the mould of more recent discourses about performativity, complexity and end-user creativity that have been constructed across different fields in the meanwhile. In the paper, it is submitted that these discourses could motivate IT professionals in undertaking alternative approaches toward the co-construction of socio-technical systems, i.e., social settings where humans cooperate to reach common goals by means of mediating computational tools. The authors advocate further discussion about and consolidation of some concepts in design research, design practice and more generally Information Technology (IT) development, like those of: task-artifact entanglement, universatility (sic) of End-User Development (EUD) environments, bricolant/bricoleur end-user, logic of bricolage, maieuta-designers (sic), and laissez-faire method to socio-technical construction. Points backing these and similar concepts are made to promote further discussion on the need to rethink the main assumptions underlying IT design and development some fifty years later the coming of age of software and modern IT in the organizational domain.Comment: This is the peer-unreviewed of a manuscript that is to appear in D. Randall, K. Schmidt, & V. Wulf (Eds.), Designing Socially Embedded Technologies: A European Challenge (2013, forthcoming) with the title "Building Socially Embedded Technologies: Implications on Design" within an EUSSET editorial initiative (www.eusset.eu/

    Analysis and design of multiagent systems using MAS-CommonKADS

    Get PDF
    This article proposes an agent-oriented methodology called MAS-CommonKADS and develops a case study. This methodology extends the knowledge engineering methodology CommonKADSwith techniquesfrom objectoriented and protocol engineering methodologies. The methodology consists of the development of seven models: Agent Model, that describes the characteristics of each agent; Task Model, that describes the tasks that the agents carry out; Expertise Model, that describes the knowledge needed by the agents to achieve their goals; Organisation Model, that describes the structural relationships between agents (software agents and/or human agents); Coordination Model, that describes the dynamic relationships between software agents; Communication Model, that describes the dynamic relationships between human agents and their respective personal assistant software agents; and Design Model, that refines the previous models and determines the most suitable agent architecture for each agent, and the requirements of the agent network

    Collaborative design : managing task interdependencies and multiple perspectives

    Get PDF
    This paper focuses on two characteristics of collaborative design with respect to cooperative work: the importance of work interdependencies linked to the nature of design problems; and the fundamental function of design cooperative work arrangement which is the confrontation and combination of perspectives. These two intrinsic characteristics of the design work stress specific cooperative processes: coordination processes in order to manage task interdependencies, establishment of common ground and negotiation mechanisms in order to manage the integration of multiple perspectives in design
    corecore