25,049 research outputs found

    The omega-inequality problem for concatenation hierarchies of star-free languages

    Get PDF
    The problem considered in this paper is whether an inequality of omega-terms is valid in a given level of a concatenation hierarchy of star-free languages. The main result shows that this problem is decidable for all (integer and half) levels of the Straubing-Th\'erien hierarchy

    Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages

    Get PDF
    A language LL over an alphabet Σ\Sigma is suffix-convex if, for any words x,y,z∈Σ∗x,y,z\in\Sigma^*, whenever zz and xyzxyz are in LL, then so is yzyz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their syntactic semigroups, and the quotient complexity of their atoms.Comment: 20 pages, 11 figures, 1 table. arXiv admin note: text overlap with arXiv:1605.0669

    Higher-Order Operator Precedence Languages

    Get PDF
    Floyd's Operator Precedence (OP) languages are a deterministic context-free family having many desirable properties. They are locally and parallely parsable, and languages having a compatible structure are closed under Boolean operations, concatenation and star; they properly include the family of Visibly Pushdown (or Input Driven) languages. OP languages are based on three relations between any two consecutive terminal symbols, which assign syntax structure to words. We extend such relations to k-tuples of consecutive terminal symbols, by using the model of strictly locally testable regular languages of order k at least 3. The new corresponding class of Higher-order Operator Precedence languages (HOP) properly includes the OP languages, and it is still included in the deterministic (also in reverse) context free family. We prove Boolean closure for each subfamily of structurally compatible HOP languages. In each subfamily, the top language is called max-language. We show that such languages are defined by a simple cancellation rule and we prove several properties, in particular that max-languages make an infinite hierarchy ordered by parameter k. HOP languages are a candidate for replacing OP languages in the various applications where they have have been successful though sometimes too restrictive.Comment: In Proceedings AFL 2017, arXiv:1708.0622

    On All Things Star-Free

    Get PDF
    We investigate the star-free closure, which associates to a class of languages its closure under Boolean operations and marked concatenation. We prove that the star-free closure of any finite class and of any class of groups languages with decidable separation (plus mild additional properties) has decidable separation. We actually show decidability of a stronger property, called covering. This generalizes many results on the subject in a unified framework. A key ingredient is that star-free closure coincides with another closure operator where Kleene stars are also allowed in restricted contexts

    Separation for dot-depth two

    Get PDF
    The dot-depth hierarchy of Brzozowski and Cohen classifies the star-free languages of finite words. By a theorem of McNaughton and Papert, these are also the first-order definable languages. The dot-depth rose to prominence following the work of Thomas, who proved an exact correspondence with the quantifier alternation hierarchy of first-order logic: each level in the dot-depth hierarchy consists of all languages that can be defined with a prescribed number of quantifier blocks. One of the most famous open problems in automata theory is to settle whether the membership problem is decidable for each level: is it possible to decide whether an input regular language belongs to this level? Despite a significant research effort, membership by itself has only been solved for low levels. A recent breakthrough was achieved by replacing membership with a more general problem: separation. Given two input languages, one has to decide whether there exists a third language in the investigated level containing the first language and disjoint from the second. The motivation is that: (1) while more difficult, separation is more rewarding (2) it provides a more convenient framework (3) all recent membership algorithms are reductions to separation for lower levels. We present a separation algorithm for dot-depth two. While this is our most prominent application, our result is more general. We consider a family of hierarchies that includes the dot-depth: concatenation hierarchies. They are built via a generic construction process. One first chooses an initial class, the basis, which is the lowest level in the hierarchy. Further levels are built by applying generic operations. Our main theorem states that for any concatenation hierarchy whose basis is finite, separation is decidable for level one. In the special case of the dot-depth, this can be lifted to level two using previously known results
    • …
    corecore