71 research outputs found

    Concatenation of graphs

    Get PDF

    On the unimodality of independence polynomials of some graphs

    Full text link
    In this paper we study unimodality problems for the independence polynomial of a graph, including unimodality, log-concavity and reality of zeros. We establish recurrence relations and give factorizations of independence polynomials for certain classes of graphs. As applications we settle some unimodality conjectures and problems.Comment: 17 pages, to appear in European Journal of Combinatoric

    k-Colorability is Graph Automaton Recognizable

    Full text link
    Automata operating on general graphs have been introduced by virtue of graphoids. In this paper we construct a graph automaton that recognizes kk-colorable graphs

    On Some Closure Properties of nc-eNCE Graph Grammars

    Full text link
    In the study of automata and grammars, closure properties of the associated languages have been studied extensively. In particular, closure properties of various types of graph grammars have been examined in (Rozenberg and Welzl, Inf. and Control,1986) and (Rozenberg and Welzl, Acta Informatica,1986). In this paper we examine some critical closure properties of the nc-eNCE graph grammars discussed in (Jayakrishna and Mathew, Symmetry 2023) and (Jayakrishna and Mathew, ICMICDS 2022).Comment: 14 pages,9 figures, to be submitted to Theory of Computin

    Forbidden Subgraphs in Connected Graphs

    Get PDF
    Given a set ξ={H1,H2,...}\xi=\{H_1,H_2,...\} of connected non acyclic graphs, a ξ\xi-free graph is one which does not contain any member of % \xi as copy. Define the excess of a graph as the difference between its number of edges and its number of vertices. Let {\gr{W}}_{k,\xi} be theexponential generating function (EGF for brief) of connected ξ\xi-free graphs of excess equal to kk (k≥1k \geq 1). For each fixed ξ\xi, a fundamental differential recurrence satisfied by the EGFs {\gr{W}}_{k,\xi} is derived. We give methods on how to solve this nonlinear recurrence for the first few values of kk by means of graph surgery. We also show that for any finite collection ξ\xi of non-acyclic graphs, the EGFs {\gr{W}}_{k,\xi} are always rational functions of the generating function, TT, of Cayley's rooted (non-planar) labelled trees. From this, we prove that almost all connected graphs with nn nodes and n+kn+k edges are ξ\xi-free, whenever k=o(n1/3)k=o(n^{1/3}) and ∣ξ∣<∞|\xi| < \infty by means of Wright's inequalities and saddle point method. Limiting distributions are derived for sparse connected ξ\xi-free components that are present when a random graph on nn nodes has approximately n2\frac{n}{2} edges. In particular, the probability distribution that it consists of trees, unicyclic components, ......, (q+1)(q+1)-cyclic components all ξ\xi-free is derived. Similar results are also obtained for multigraphs, which are graphs where self-loops and multiple-edges are allowed

    Commutative combinatorial Hopf algebras

    Full text link
    We propose several constructions of commutative or cocommutative Hopf algebras based on various combinatorial structures, and investigate the relations between them. A commutative Hopf algebra of permutations is obtained by a general construction based on graphs, and its non-commutative dual is realized in three different ways, in particular as the Grossman-Larson algebra of heap ordered trees. Extensions to endofunctions, parking functions, set compositions, set partitions, planar binary trees and rooted forests are discussed. Finally, we introduce one-parameter families interpolating between different structures constructed on the same combinatorial objects.Comment: 29 pages, LaTEX; expanded and updated version of math.CO/050245
    • …
    corecore