

Concatenation of graphs

Citation for published version (APA):
Engelfriet, J., & Vereijken, J. J. (1994). Concatenation of graphs. (Computing science reports; Vol. 9442).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/8cd50a5a-17c1-4b95-874b-4ab250d6f809

Eindhoven University of Technology

Department of Mathematics and Computing Science

ISSN 0926-4515

All rights reserved
editors: prof.dr. J.C.M. Baeten

prof.dr. M. Rem

Concatenation of Graphs

by

I. Engelfriet and I.I. Vereijken

94{42

Computing Science Report 94/42
Eindhoven, September 1994

Concatenation of Graphs

Joost Engelfriet

Department of Computer Science, Leiden University,
P.O. Box 9512, NL-2300 RA Leiden, The Netherlands

email: engelfr;et@rulw;nw.le;denun;v.nl

Jan Joris Vereijken

Department of Computing Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

email: j anj 0 r; s@acm. 0 rg

September 27, 1994

Abstract

An operation of concatenation is introduced for graphs. Then strings are viewed
as expressions denoting graphs, and string languages are interpreted as graph lan
guages. For a class K of string languages, Int(K) is the class of all graph languages
that are interpretations of languages from K. For the class REG of regular languages,
Int(REG) might be called the class of regular graph languages; it equals the class of
graph languages generated by linear Hyperedge Replacement Systems. Two charac
terizations are given of the largest class K' such that Int(K') = Int(K).

Context-free graph languages are generated by context-free graph grammars, which
are graph replacement systems. One of the most popular types of context-free graph
grammar is the Hyperedge Replacement System, or HR grammar (see, e.g., (9)). A com
pletely different way of generating graphs (introduced in [1]) is to select a number of
graph operations, to generate a set of expressions (built from these operations), and to
interpret the expressions as graphs. The set of expressions is generated by a classical
context-free grammar generating strings (or a regular tree grammar). It is shown in [1]
that, for a particular collection of graph operations, this new way of generating graphs is
equivalent with the HR grammar. Other work on the generation of graphs through graph
expressions is in, e.g., [2, 3, 4, 5, 11].

We introduce a new, natural operation on graphs (which is a simple variation of the
graph operations in [1]). Due to its Similarity to concatenation of strings, it is called con
catenation of graphs. Together with the sum operation of graphs (as defined in [1]) and
all constant graphs, a collection of graph operations is obtained that is simpler than the
one in [1], but also has the power of the HR grammar (which is our first result).

Let us be a bit more precise. We consider the multi-pointed graphs (or multi-pointed
hypergraphs) of [9]. For simplicity we will restrict ourselves in this paper to graphs,
but all arguments also hold for hypergraphs. A multi-pointed graph is a directed, edge
labeled graph g with a designated sequence begin (g) of "begin nodes" and a designated

1

sequence end(g) of "end nodes". Ifbegin(g) has length m and end(g) has length n (with
m.n E ~ = {D.I.2 •... }). then 9 is said to be of type (m.n) and we write type(g) =

(m. n). From now on we will drop the adjective "multi-pointed". As usual we consider
both concrete and abstract graphs. where an abstract graph is an equivalence class of
isomorphic concrete graphs. The isomorphisms between graphs 9 and h are the usual
ones. which. additionally. should map begin(g) to begin(h). and end(g) to end(h). In
particular. isomorphic graphs have the same type. Our operations are defined on ab
stract graphs. The set of abstract graphs will be denoted GR. A (typed) graph language
is a subset L of GR such that all graphs in L have the same type (m. n). also called the
type of L. and denoted by type(L) = (m. n).

If 9 and h are graphs with type(g) = (k. m) and type(h) = (m. n). then their concate
nation 9 ° h is the graph obtained by first taking the disjoint union of 9 and h. and then
identifying the ith end node of 9 with the ith begin node of h. for every i E {I • m}.
Moreover. begin(g ° h) = begin(g) and end(g ° h) = end(h). and so type(g ° h) = (k. n).
Note that the concatenation of 9 and h is defined only when end(g) and begin(h) have
the same length. The sum 9 + h of arbitrary graphs 9 and h (as defined in [1]) is their dis
joint union. with begin(g + h) = begin(g) . begin(h) and end(g + h) = end(g) . end(h).
where· denotes the usual concatenation of sequences. Intuitively. concatenation is se
quential composition of graphs. and sum is parallel composition of graphs.

We investigate some simple properties of these graph operations: they lead to a strict
monoidal category. The objects of this category are the natural numbers. and each (ab
stract) graph of type (m. n) is a morphism from m to n in this category. Concatenation
is the composition of morphisms. For each n. the identity morphism from n to itself
is the (abstract graph corresponding to the) discrete graph idn with nodes 1• nand
begin(idn) = end(idn) = (1 •.... n). The fact that the category is strict monoidal means
that idm +n = idm + idn and (g + h) ° (g' + h') = (g 0 g') + (h ° h') (assuming that gog'
and h ° h' are defined).

Let 6. be the set of operators {o. +} U {cg I 9 E GRl. where ° and + are concatenation
and sum of graphs. as discussed above. and cg is a constant standing for the graph g. A
regular tree grammar over 6. is an ordinary context-free grammar G such that the right
hand side of each production of G is a (well-typed) expression over the operators from
6. and the nonterminals of the grammar (which should be treated as constant operators.
with a given type). Obviously. the language L(G) generated by G is a set of expressions
over 6. (and it is called a regular tree language). But G can also be viewed as a (context
free) graph grammar. generating the graph language val(L(G» = {val(e) leE L(G»).
where the graph val(e) is the value of the expression e. Let Val(REGT) = {val(L(G» I
G is a regular tree grammar over 6.}. Intuitively. Val(REGT) is the class of "values ofreg
ular tree languages" over 6. (where values of expressions are graphs).

As an example. consider the context-free grammar Gb that has one nonterminal A.
with type(A) = (1. D). and two productions A - cg ° (A + A) and A - cg'. where 9 is
the triangle of type (1.2) with set of nodes {x. Y. zl. set of edges {(x. y). (x. z). (Y. z) l.
begin(g) = (x) and end (g) = (Y. z). and g' is the graph of type (1. D) with one node u.
no edges. begin(g') = (u) and end(g') is the empty sequence. Then val(L(Gb)) is the
set of all graphs of type (1. D) that are obtained from binary trees by connecting each
pair of brothers by an additional edge; the sequence of begin nodes consists of the root
of the binary tree. This graph language is therefore in VaI(REGT).

Our first result is that generating graph languages in the above way is equivalent to

2

generating them with HR grammars. As observed above, this is a simple variant of the
result of [1). Let HR denote the class of all graph languages generated by HR grammars.

Theorem 1 Val(REGT) = HR.

Since concatenation of graphs is associative, strings can be viewed as expressions that
denote graphs. Thus, as an even simpler variation of the above approach, we can use
ordinary string grammars to generate graph languages. More generally, every class K of
string languages defines a class lnt(K) of graph languages (where lnt stands for "inter
pretation", which is similar to Val above). Formally, a mapping h : ~ - GR that associates
a graph with each symbol from an alphabet ~, is extended to a (partial) function from ~*
to GRby:

h(alaZ' .. an) = head 0 h(az) 0 ••• 0 h(an)

where aj E ~ for all i, and n '" 1. Note that the extended h is partial because the types
of the h(aj) may not fit (and h is also undefined for the empty string). Thus, the only
"technical trouble" is that the concatenation of graphs is typed whereas the concatena
tion of strings is always possible. For a string language L £: ~*, we define, as usual, the
set of graphs hell = {g E GR I 9 = hew) for some w E L}; note that hell need not be a
graph language (with our particular meaning of the term) because not all graphs need
have the same type. Now we define lnt(K) = {hell I L E K, h : ~ - GR with L £:

~*, hell is a graph language}. In other words, lnt(K) consists of all graph languages
h(L), where L is any language inK and h is any mapping from the symbols of L to graphs.
Intuitively, h determines the interpretation of the symbols, and the concatenation of sym
bols is interpreted as concatenation of graphs.

To avoid trivialities we will, in what follows, and without always mentioning it, only
consider classes K that are closed under (nondeterministic) sequential machine map
pings (whe,re a sequential machine is an ordinary finite automaton that, moreover, at each
step outputs one symbol). Thus, in particular, K is closed under intersection with reg
ular languages and under finite substitutions. Note that every semi-AFL is closed under
sequential machine mappings.

The first class K of interest is the class REG of regular languages. An example of a
graph language in lnt(REG), of type (1,0), is h(ab*) with heal = 9 and h(b) = g',
where 9 and g' are as in the example grammar Gb, except that now 9 is of type (1,1)
and has end(g) = (z). This graph language is the subset ofval(L(Gb}) consisting of all
sequences of concatenated triangles, where two consecutive triangles have one node in
common (and each node belongs to at most two triangles).

Our second result says that the graph languages that are interpretations of a regular
language are precisely those that can be generated by linear HR grammars, where "linear"
means that there is at most one nonterminal in each right-hand side of a production of
the HR grammar. This can be proved by comparing right-linear string grammars (which
have productions of the form A - aB and A - a) with linear HR grammars (of which,
roughly speaking, the productions can be written as A - heal 0 B and A - h(a) for an
appropriate h). Let LIN-HR denote the class of graph languages generated by linear HR
grammars.

Theorem 2 lnt(REG) = LIN-HR.

3

Before continuing with other classes K, we first consider a third characterization of the
class Int(REG) , corresponding to the characterization of REG by regular expressions. The
operation of graph concatenation is extended to graph languages Land L' in the usual
way: if type(L) ~ (k, m) and type(L') ~ (m, n), then their concatenation is defined by
L 0 L' ~ {g 0 g' I g E L,g' E L'}. Then, in the obvious way, the (Kleene) star of a graph
language is defined (by iterated concatenation): for a graph language L with type(L) ~
(k, k) for some k E ~, L * ~ UnEN L n where L n ~ L 0 ••• 0 L (n times) for n ;" 1, and
LO ~ {idk}. Also, LID ~ L* - (idkl is the (Kleene) plus of L. Finally, the union L u L'
of two graph languages Land L' is defined only when type(L) ~ type(L') (otherwise it
would not be a graph language). Thus, the operations of union, concatenation, and star
are also typed operations on graph languages (as opposed to the case of string languages
for which they are always defined). Let REX(u, 0, *, SING) denote the smallest class of
graph languages containing the empty graph language and all singleton graph languages,
and closed under the operations union, concatenation, and star. Thus, it is the class of
all graph languages that can be denoted by (the usual) regular expressions, where the
symbols of the alphabet denote singleton graph languages. From this it should be clear
that it equals the class Int (REG) of interpretations ofregular languages. In the proof one
has to cope with the "technical trouble" of typing, in particular with the empty string.
Note that, for a graph language L with type(L) ~ (k,k), L* ~ LID u {idk}; from this it
should be clear that REX(u, 0, *, SING) ~ REX (u, 0, Ell, SING), which solves the problem
with the empty string. .

Theorem 3 Int(REG) ~ REX(u, 0, *, SING).

By Theorems 2 and 3, LIN-HR ~ REX(u, 0, *, SING). This suggests that the c1assLIN-HRof
linear HR graph languages might be called the class of "regular" graph languages, because
they can be denoted by regular expressions. The above characterization still holds after
adding the sum operation (extended to graph languages in the usual way). This is because
of the following simple reason.

Lemma 4 If Int(K) is closed under concatenation, then it is closed under sum.

Proof. We first show that if M is in Int(K) then so is M + (idkl for every k. Let M ~ h(L)
for some L E K. Define h' (a) ~ h(a) + idk for every symbol a. Then h' (al ... an) ~

because of strict monoidality, and the last expression equals h(a, ... an) + idk. This
implies that h'(L) ~ h(L) + {idd ~ M + (idd. Similarly it can be shown that {idk } + M
is in Int(K).

Now, for arbitrary graph languages M and M' with type(M) ~ (m, n) and type(M') ~
(m', n'), M + M' ~ (M 0 (idn}) + ({idm,} 0 M') ~ (M + (idm,}) 0 ({idn} + M') by strict
monoidality. Now, by the above, and the fact that Int(K) is closed under 0, M + M' is in
Int(K). D

It turns out that, if we allow + in our regular expressions, then we do not need all single
ton graph languages to start With, but only a "small" number of them, with very simple
graphs only. In fact, graphs can be decomposed into very simple graphs, using concate
nation and sum. Assume that the edge labels of our graphs are taken from a given set A.

4

For a E A let gr(a) be the graph of type (1,1) with two nodes x and y, an a-labeled edge
from x to y, begin(gr(a» = (x), and end(gr(a» = (y). For m, n E ~, let Em .n be the
graph of type (m, n) with one node x, no edges, begin(Em.n) = (x, ... , x) (m times), and
end(Em.n) = (x, . .. , x) (n times). Finally, let X be the graph of type (2,2) with two nodes
x and y, no edges, begin(X) = (x, y), and end (X) = (y, x). Note also that ido is the empty
graph. Now define the set of graphs Co = (gr(a) I a E A} u (ido,X,Eo."E1,0,E1.2,E2.d,
and let REX(u, 0, *, +, SING(Co» denote the smallest class of graph languages contain
ing the empty graph language and all singleton graph languages with a graph from Co as
element, and closed under the operations union, concatenation, star, and sum.

Theorem 5 REX(u, 0, *, SING) = REX(u, 0, *, +, SING(Co».

From Theorem 2 we know that Int(REG) = LIN-HR. It is not difficult to prove that also
Int(LIN) = LIN-HR, where LIN is the (usual) class of languages generated by linear context
free grammars. This suggests that for graph languages the notions "regular" and "linear"
coincide, as opposed to the string case. Even Int(DB) = LIN-HR, where DB is the class of
derivation bounded context-free languages. One now wonders how much larger the class
K can be made without getting a larger class Int(K).

It is easy to see that for every given class K there is always a largest class K' such that
Int(K') = Int(K). We will call this the extension orK, denoted Ext(K). In fact, Ext(K) =
(L I for every h : ~ - GR with L ~ P, if h(L) is a graph language, then h(L) E Int(K)}.
In the next theorem we give a characterization of Ext(K). For a class G of graph lan
guages, let Str(G) denote the class of string languages L such that gr(L) is in G. Here,
gr(L) = {gr(w) I w E L}, and, for a string w = a1 ... an, gr(w) is the graph of type
(1,1) with nodes 1, ... , n + 1, an ai-labeled edge from i to i + 1 for every 1 :5 i :5 n, begin
node 1, and end node n + 1. Thus, gr(w) encodes w in the obvious way: it is a path with
the symbols of w as edge labels. Recall that we aSSUTI1e K to be closed under sequential
machine mappings.

Theorem 6 Ext(K) = Str(Int(K».

In the proof of this theorem it has to be shown that Int(Str(Int(K») = Int(K), and that
if Int(K') = Int(K) then K' ~ Str(Int(K». The first statement is the most involved one
to show. The second statement is easy to see. In fact, gr(K') ~ Int(K'): just take h(a) =

gr(a). Then we getK' ~ Str(gr(K'» ~ Str(Int(K'» = Str(Int(K».
As a corollary of Theorem 6 we obtain that for arbitrary K and K', both closed under

sequential machine mappings, Int(K) = Int(K') if and only if Str(Int(K» = Str(Int(K'».
This means that the graph generating power of K is completely determined by its string
generating power (with strings coded as graphs by the mapping gr).

Next we will aim at another characterization of Ext (K). First we consider controlled
linear HR grammars, in the obvious sense. Let G be a linear HR grammar with (finite) set
of productions P, and let C be a string language over P (where P is viewed as an alphabet).
The graph language generated by G under control C is the set of all graphs 9 for which
there is a derivation go =>Pl g1 =>P2 g2 ... =>p" gn with gn = g, go is the axiom of G,
and such that the string P1P2 ... Pn is in C. Of course, =>p denotes a derivation step of
G that uses production pEP. Thus, the control language C specifies the sequences of
productions that the grammar G is allowed to use in its derivations.

5

For a class K of string languages, we denote by LIN-HR(K) the class of graph languages
generated by linear HR grammars under a control language from K. GeneraliZing Theo
rem 2 and its proof we obtain the next result.

Theorem 7 Int(K) = LIN-HR(K).

By 2DGSM(K) we denote the class of images of languages from K under 2dgsm map
pings, Le., 2DGSM (K) = {f (L) I f is a 2dgsm mapping and L E K}. A 2dgsm (Le., a two
way deterministic generalized sequential machine) is a deterministic finite automaton
that can move in two directions on its input tape (with endmarkers), and outputs a (pos
sibly empty) string at each step. Generalizing the proof in [6] that Str(LIN-HR) equals the
class of output languages of 2dgsm mappings, we prove the next result.

Theorem 8 Str(LIN-HR(K)) = 2DGSM(K).

Taking these (quite obvious) generalizations together, we obtain from Theorems 6, 7, and
8 our second characterization of the class Ext(K).

Theorem 9 Ext(K) = 2DGSM(K).

This characterization allows us to use known formal language theoretic results regarding
2DGSM(K) to investigate Int(K). In fact, quite a lot is known about the class 2DGSM(K) ,
see, e.g., [7]. As an example, it equals the class of languages generated by K-controlled
ETOL systems of finite index.

The other way around, we note that from Int(Str(Int(K))) = Int(K) follows that
Str(Int(Str(Int(K)))) = Str(Int(K)), Le., the known result that 2DGSM(2DGSM(K)) =

2DGSM(K). This shows that Ext(K) is closed under 2dgsm mappings.
Thus, for K = REG, Ext(K) is the class 2DGSM(REG) of output languages of 2dgsm

mappings. Since it is well known that the class DB of derivation-bounded context-free
languages is contained in 2DGSM(REG) (see, e.g., [10]), this implies the previously men
tioned result that Int(LIN) = Int(DB) = Int(REG). Also, since there is a context-free lan
guage not in 2DGSM(REG), see [8, 7], Int(REG) is properly included in Int(CF), where CF
is the class of context-free languages. We finally note that Int(CF) is properly included in
HR, the class of graph languages generated by HR grammars. The inclusion follows from
the fact that context-free grammars generating graph expressions built from concatena
tion and all constant graphs, can be simulated by HR grammars, by Theorem 1. Proper
ness of the inclusion follows from the more general fact that for any class K, Int(K)
contains graph languages of bounded path-width only. Thus, the set of all binary trees
(which is in HR) does not belong to any Int(K).

References

[1] M. Bauderon, B. Courcelle; Graph expressions and graph rewritings, Math. Syst. The
ory 20 (1987), 83-127.

[2] B. Courcelle; Graph rewriting: an algebraic and logic approach, in Handbook of The
oretical Computer Science, Vol. B 0. van Leeuwen, ed.), Elsevier, 1990, pp. 193-242.

[3] B. Courcelle, J. Engelfriet, G. Rozenberg; Handle-rewriting hypergraph languages,
lCSS 46 (1993), 218-270.

6

[4] F. Drewes; Transducibility - symbolic computation by tree-transductions, University
of Bremen, Bericht Nr. 2/93, 1993.

[5] l Engelfriet; Graph grammars and tree transducers, Proc. CAAP'94 (S. Tison, ed.),
Lecture Notes in Computer Science 787, Springer-Verlag, Berlin, 1994, pp. 15-36.

[6] l Engelfriet, L.M. Heyker; The string generating power of context-free hypergraph
grammars, lCSS 43 (1991), 328-360.

[7] l Engelfriet, G. Rozenberg, G. Slutzki; Tree transducers, L systems, and two-way ma
chines, lCSS 20 (1980), 150-202.

[8] S. Greibach; One-way finite visit automata, Theor. Comput. Sci. 6 (1978), 175-22l.

[9] A. Habel; Hyperedge replacement: grammars and languages, Lecture Notes in Com
puter Science 643, Springer-Verlag, Berlin, 1992.

[10] V. Rajlich; Absolutely parallel grammars and two-way finite state transducers, lCSS
6 (1972), 324-342.

[ll] II Vereijken; Graph Grammars and Operations on Graphs, Master's Thesis, Leiden
University, 1993.

7

Computing Science Reports

In this series appeared:

91/01 D. Alstein

91/02 R.P. NederpeJt
H.C.M. de Swart

91/03 I.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.I. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E.Voermans
I. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.I.I.M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
RV. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. IS.

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H. W. v .d.Eijnde

92/05 J.P.H. W. v .d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 RP. Nederpelt

92/08 RP. Nederpelt
F. Kamareddine

92/09 RC. Backhouse

92/10 P.M.P. Rambags

92/11 R.C. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. SeJjee

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 J.C.M.Baeten
J.A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Aoyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

/0

92/21 F.Kamareddine

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E. H.L. Aarts
I.H.M. Korst
P.I. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 1. Verhoosel

93/09 KM. van Hee

93/10 K.M. van Hee

93/11 KM. van Hee

93/12 KM. van Hee

93/13 KM. van Hee

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bonum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. IS.

A modelling method using MOVIE and SimCon/ExSpect,
p. IS.

A taxonomy of keyword pattern matching algorithms,
p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach

II

93/14 J.C.M. Baeten
J.A. Bergstra

93/15 J.C.M. Baeten
J .A. Bergstra
R.N. Bol

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-J. Houben

93120 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93125 H. Schepers and R. Gerth

93126 W.M.P. van der Aalst

93127 T. Kloks and D. Kratsch

93/28 F. Kamareddine and
R. Nederpelt

93129 R. Post and P. De Bra

93/30 J. Deogun
T. Kloks
D. Kratsch
H. Milller

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Geldrop

Part V: Specification Language, p. 89.
On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDaS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program
ming, p. IS.

Freeness Analysis for Logic Programs - And Correct
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. II.

A Semantics for a fine A-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Pennutation and Other Graphs,
p. II.

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

Ix

93/33 L. Loyens and J. Moonen

93/34 J.C.M. Baeten and
J.A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 J.C.M. Baeten and
J.A. Bergstra

93/37 J. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

93/38 C. Verhoef

93/39 W.P.M. Nuijten
E. H.L. Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

93/40 P.D.V. van der Stok
M.M.M.P.J. Claessen
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.J. Luit
J.M.M. Martin

93/46 T. Kloks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
G.1. Houben
Y. Komatzky

93/48 R. Gerth

ILIAS, a sequential language for parallel matrix
computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process
algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. II.

Automatic Verification of Regular Protocols in PIT Nets,
p.23.

A taxomomy of finite automata construction algorithms,
p. 87.

A taxonomy of finite automata minimization algorithms,
p.23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the 'Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

94/01 P. America
M. van der Kammen
R.P. Nederpelt
O.S. van Roosmalen
H.C.M. de Swart

94/02 F. Kamareddine
R.P. Nederpelt

94/03 L. B. Hartman
K.M. van Hee

94/04 J.C.M. Baeten
J.A. Bergstra

94/05 P. Zhou
J. Hooman

94/06 T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

94/07 K.R Apt
R. Bol

94/08 O.S. van Roosmalen

94/09 J.C.M. Baeten
J.A. Bergstra

94/10 T. verhoeff

94/11 J. Peleska
C. Huizing
C. Petersohn

94/12 T. Kloks
D. Kratsch
H. Miiller

94/13 R Seljee

94/14 W. Peremans

94/15 RJ.M. Vaessens
E.H.L. Aarts
J.K. Lenstra

94/16 R.C. Backhouse
H. Doornbos

94/17 S. Mauw
M.A. Reniers

The object-oriented paradigm, p. 28.

Canonical typing and n-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class
Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network Structure.
p. 31.

A Comparison of Ward & Mellor's Transformation
Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in
Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

94/18 F. Kamareddine
R. Nedetpelt

94/19 B.W. Watson

94/20 R Bloo
F. Kamareddine
R Nedetpelt

94/21 B.W. Watson

Refining Reduction in the Lambda Calculus, p. 15.

The performance of single-keyword and multiple
keyword pattern matching algorithms, p. 46.

Beyond ~-Reduction in Church's A~, p. 22.

An introduction to the Fire engine: A C++ toolkit for
Finite automata and Regular Expressions.

94/22 B.W. Watson The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressi
ons.

94/23 S. Mauw and M.A. Reniers An algebraic semantics of Message Sequence Charts, p.
43.

94/24 D. Dams
O. Grumberg
R. Gerth

94/25 T. Kloks

94/26 R.R Hoogerwoord

94/27 S. Mauw and H. Mulder

94/28 C.W.A.M. van Overveld
M. Verhoeven

94/29 J. Hooman

94/30 J.C.M. Baeten
J.A. Bergstra
Gh. ~tefanescu

94/31 B.W. Watson
RE. Watson

94/32 J .J. Vereijken

94/33 T. Laan

94/34 R. Bloo
F. Kamareddine
R Nedetpelt

94/35 J.C.M. Baeten
S. Mauw

94/36 F. Kamareddine
R. Nedetpelt

Abstract Intetpretation of Reactive Systems:
Abstractions Preserving 'lfCTL*, 3CTL* and CTL*, p. 28.

K,,-free and W4-free graphs, p. 10.

On the foundations of functional programming: a
programmer's point of view, p. 54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite teChniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matChing, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A formalization of the Ramified Type Theory, p.40.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. IS.

Canonical typing and IT -conversion in the Barendregt
Cube, p. 19.

1:3

94/37 T. Basten
R. Bol
M. Voorhoeve

94/38 A. Bijlsma
C.S. Scholten

94/39 A. Biokhuis
T. Kloks

94/40 D. Alstein

94/41 T. Kloks
D. Kratsch

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10.

On the equivalence covering number of splitgraphs, p. 4.

Distributed Consensus and Hard Real-Time Systems,
p. 34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph, p. 6.

	Abstract
	References

