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Abstract 

An operation of concatenation is introduced for graphs. Then strings are viewed 
as expressions denoting graphs, and string languages are interpreted as graph lan
guages. For a class K of string languages, Int(K) is the class of all graph languages 
that are interpretations of languages from K. For the class REG of regular languages, 
Int(REG) might be called the class of regular graph languages; it equals the class of 
graph languages generated by linear Hyperedge Replacement Systems. Two charac
terizations are given of the largest class K' such that Int(K') = Int(K). 

Context-free graph languages are generated by context-free graph grammars, which 
are graph replacement systems. One of the most popular types of context-free graph 
grammar is the Hyperedge Replacement System, or HR grammar (see, e.g., (9)). A com
pletely different way of generating graphs (introduced in [1]) is to select a number of 
graph operations, to generate a set of expressions (built from these operations), and to 
interpret the expressions as graphs. The set of expressions is generated by a classical 
context-free grammar generating strings (or a regular tree grammar). It is shown in [1] 
that, for a particular collection of graph operations, this new way of generating graphs is 
equivalent with the HR grammar. Other work on the generation of graphs through graph 
expressions is in, e.g., [2, 3, 4, 5, 11]. 

We introduce a new, natural operation on graphs (which is a simple variation of the 
graph operations in [1]). Due to its Similarity to concatenation of strings, it is called con
catenation of graphs. Together with the sum operation of graphs (as defined in [1]) and 
all constant graphs, a collection of graph operations is obtained that is simpler than the 
one in [1], but also has the power of the HR grammar (which is our first result). 

Let us be a bit more precise. We consider the multi-pointed graphs (or multi-pointed 
hypergraphs) of [9]. For simplicity we will restrict ourselves in this paper to graphs, 
but all arguments also hold for hypergraphs. A multi-pointed graph is a directed, edge
labeled graph g with a designated sequence begin (g) of "begin nodes" and a designated 
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sequence end(g) of "end nodes". Ifbegin(g) has length m and end(g) has length n (with 
m.n E ~ = {D.I.2 •... }). then 9 is said to be of type (m.n) and we write type(g) = 

(m. n). From now on we will drop the adjective "multi-pointed". As usual we consider 
both concrete and abstract graphs. where an abstract graph is an equivalence class of 
isomorphic concrete graphs. The isomorphisms between graphs 9 and h are the usual 
ones. which. additionally. should map begin(g) to begin(h). and end(g) to end(h). In 
particular. isomorphic graphs have the same type. Our operations are defined on ab
stract graphs. The set of abstract graphs will be denoted GR. A (typed) graph language 
is a subset L of GR such that all graphs in L have the same type (m. n). also called the 
type of L. and denoted by type(L) = (m. n). 

If 9 and h are graphs with type(g) = (k. m) and type(h) = (m. n). then their concate
nation 9 ° h is the graph obtained by first taking the disjoint union of 9 and h. and then 
identifying the ith end node of 9 with the ith begin node of h. for every i E {I .... • m}. 
Moreover. begin(g ° h) = begin(g) and end(g ° h) = end(h). and so type(g ° h) = (k. n). 
Note that the concatenation of 9 and h is defined only when end(g) and begin(h) have 
the same length. The sum 9 + h of arbitrary graphs 9 and h (as defined in [1]) is their dis
joint union. with begin(g + h) = begin(g) . begin(h) and end(g + h) = end(g) . end(h). 
where· denotes the usual concatenation of sequences. Intuitively. concatenation is se
quential composition of graphs. and sum is parallel composition of graphs. 

We investigate some simple properties of these graph operations: they lead to a strict 
monoidal category. The objects of this category are the natural numbers. and each (ab
stract) graph of type (m. n) is a morphism from m to n in this category. Concatenation 
is the composition of morphisms. For each n. the identity morphism from n to itself 
is the (abstract graph corresponding to the) discrete graph idn with nodes 1 ....• nand 
begin(idn ) = end(idn ) = (1 •.... n). The fact that the category is strict monoidal means 
that idm +n = idm + idn and (g + h) ° (g' + h') = (g 0 g') + (h ° h') (assuming that gog' 
and h ° h' are defined). 

Let 6. be the set of operators {o. +} U {cg I 9 E GRl. where ° and + are concatenation 
and sum of graphs. as discussed above. and cg is a constant standing for the graph g. A 
regular tree grammar over 6. is an ordinary context-free grammar G such that the right
hand side of each production of G is a (well-typed) expression over the operators from 
6. and the nonterminals of the grammar (which should be treated as constant operators. 
with a given type). Obviously. the language L(G) generated by G is a set of expressions 
over 6. (and it is called a regular tree language). But G can also be viewed as a (context
free) graph grammar. generating the graph language val(L(G» = {val(e) leE L(G»). 
where the graph val(e) is the value of the expression e. Let Val(REGT) = {val(L(G» I 
G is a regular tree grammar over 6.}. Intuitively. Val(REGT) is the class of "values ofreg
ular tree languages" over 6. (where values of expressions are graphs). 

As an example. consider the context-free grammar Gb that has one nonterminal A. 
with type(A) = (1. D). and two productions A - cg ° (A + A) and A - cg'. where 9 is 
the triangle of type (1.2) with set of nodes {x. Y. zl. set of edges {(x. y). (x. z). (Y. z) l. 
begin(g) = (x) and end (g) = (Y. z). and g' is the graph of type (1. D) with one node u. 
no edges. begin(g') = (u) and end(g') is the empty sequence. Then val(L(Gb)) is the 
set of all graphs of type (1. D) that are obtained from binary trees by connecting each 
pair of brothers by an additional edge; the sequence of begin nodes consists of the root 
of the binary tree. This graph language is therefore in VaI(REGT). 

Our first result is that generating graph languages in the above way is equivalent to 
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generating them with HR grammars. As observed above, this is a simple variant of the 
result of [1). Let HR denote the class of all graph languages generated by HR grammars. 

Theorem 1 Val(REGT) = HR. 

Since concatenation of graphs is associative, strings can be viewed as expressions that 
denote graphs. Thus, as an even simpler variation of the above approach, we can use 
ordinary string grammars to generate graph languages. More generally, every class K of 
string languages defines a class lnt(K) of graph languages (where lnt stands for "inter
pretation", which is similar to Val above). Formally, a mapping h : ~ - GR that associates 
a graph with each symbol from an alphabet ~, is extended to a (partial) function from ~* 
to GRby: 

h(alaZ' .. an) = head 0 h(az) 0 ••• 0 h(an) 

where aj E ~ for all i, and n '" 1. Note that the extended h is partial because the types 
of the h(aj) may not fit (and h is also undefined for the empty string). Thus, the only 
"technical trouble" is that the concatenation of graphs is typed whereas the concatena
tion of strings is always possible. For a string language L £: ~*, we define, as usual, the 
set of graphs hell = {g E GR I 9 = hew) for some w E L}; note that hell need not be a 
graph language (with our particular meaning of the term) because not all graphs need 
have the same type. Now we define lnt(K) = {hell I L E K, h : ~ - GR with L £: 

~*, hell is a graph language}. In other words, lnt(K) consists of all graph languages 
h(L), where L is any language inK and h is any mapping from the symbols of L to graphs. 
Intuitively, h determines the interpretation of the symbols, and the concatenation of sym
bols is interpreted as concatenation of graphs. 

To avoid trivialities we will, in what follows, and without always mentioning it, only 
consider classes K that are closed under (nondeterministic) sequential machine map
pings (whe,re a sequential machine is an ordinary finite automaton that, moreover, at each 
step outputs one symbol). Thus, in particular, K is closed under intersection with reg
ular languages and under finite substitutions. Note that every semi-AFL is closed under 
sequential machine mappings. 

The first class K of interest is the class REG of regular languages. An example of a 
graph language in lnt(REG), of type (1,0), is h(ab*) with heal = 9 and h(b) = g', 
where 9 and g' are as in the example grammar Gb, except that now 9 is of type (1,1) 
and has end(g) = (z). This graph language is the subset ofval(L(Gb}) consisting of all 
sequences of concatenated triangles, where two consecutive triangles have one node in 
common (and each node belongs to at most two triangles). 

Our second result says that the graph languages that are interpretations of a regular 
language are precisely those that can be generated by linear HR grammars, where "linear" 
means that there is at most one nonterminal in each right-hand side of a production of 
the HR grammar. This can be proved by comparing right-linear string grammars (which 
have productions of the form A - aB and A - a) with linear HR grammars (of which, 
roughly speaking, the productions can be written as A - heal 0 B and A - h(a) for an 
appropriate h). Let LIN-HR denote the class of graph languages generated by linear HR 
grammars. 

Theorem 2 lnt(REG) = LIN-HR. 
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Before continuing with other classes K, we first consider a third characterization of the 
class Int(REG) , corresponding to the characterization of REG by regular expressions. The 
operation of graph concatenation is extended to graph languages Land L' in the usual 
way: if type(L) ~ (k, m) and type(L') ~ (m, n), then their concatenation is defined by 
L 0 L' ~ {g 0 g' I g E L,g' E L'}. Then, in the obvious way, the (Kleene) star of a graph 
language is defined (by iterated concatenation): for a graph language L with type(L) ~ 
(k, k) for some k E ~, L * ~ UnEN L n where L n ~ L 0 ••• 0 L (n times) for n ;" 1, and 
LO ~ {idk}. Also, LID ~ L* - (idkl is the (Kleene) plus of L. Finally, the union L u L' 
of two graph languages Land L' is defined only when type(L) ~ type(L') (otherwise it 
would not be a graph language). Thus, the operations of union, concatenation, and star 
are also typed operations on graph languages (as opposed to the case of string languages 
for which they are always defined). Let REX(u, 0, *, SING) denote the smallest class of 
graph languages containing the empty graph language and all singleton graph languages, 
and closed under the operations union, concatenation, and star. Thus, it is the class of 
all graph languages that can be denoted by (the usual) regular expressions, where the 
symbols of the alphabet denote singleton graph languages. From this it should be clear 
that it equals the class Int (REG) of interpretations ofregular languages. In the proof one 
has to cope with the "technical trouble" of typing, in particular with the empty string. 
Note that, for a graph language L with type(L) ~ (k,k), L* ~ LID u {idk}; from this it 
should be clear that REX(u, 0, *, SING) ~ REX ( u, 0, Ell, SING), which solves the problem 
with the empty string. . 

Theorem 3 Int(REG) ~ REX(u, 0, *, SING). 

By Theorems 2 and 3, LIN-HR ~ REX(u, 0, *, SING). This suggests that the c1assLIN-HRof 
linear HR graph languages might be called the class of "regular" graph languages, because 
they can be denoted by regular expressions. The above characterization still holds after 
adding the sum operation (extended to graph languages in the usual way). This is because 
of the following simple reason. 

Lemma 4 If Int(K) is closed under concatenation, then it is closed under sum. 

Proof. We first show that if M is in Int(K) then so is M + (idkl for every k. Let M ~ h(L) 
for some L E K. Define h' (a) ~ h(a) + idk for every symbol a. Then h' (al ... an) ~ 

because of strict monoidality, and the last expression equals h(a, ... an) + idk. This 
implies that h'(L) ~ h(L) + {idd ~ M + (idd. Similarly it can be shown that {idk } + M 
is in Int(K). 

Now, for arbitrary graph languages M and M' with type(M) ~ (m, n) and type(M') ~ 
(m', n'), M + M' ~ (M 0 (idn}) + ({idm,} 0 M') ~ (M + (idm,}) 0 ({idn} + M') by strict 
monoidality. Now, by the above, and the fact that Int(K) is closed under 0, M + M' is in 
Int(K). D 

It turns out that, if we allow + in our regular expressions, then we do not need all single
ton graph languages to start With, but only a "small" number of them, with very simple 
graphs only. In fact, graphs can be decomposed into very simple graphs, using concate
nation and sum. Assume that the edge labels of our graphs are taken from a given set A. 
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For a E A let gr(a) be the graph of type (1,1) with two nodes x and y, an a-labeled edge 
from x to y, begin(gr(a» = (x), and end(gr(a» = (y). For m, n E ~, let Em .n be the 
graph of type (m, n) with one node x, no edges, begin(Em.n) = (x, ... , x) (m times), and 
end(Em.n) = (x, . .. , x) (n times). Finally, let X be the graph of type (2,2) with two nodes 
x and y, no edges, begin(X) = (x, y), and end (X) = (y, x). Note also that ido is the empty 
graph. Now define the set of graphs Co = (gr(a) I a E A} u (ido,X,Eo."E1,0,E1.2,E2.d, 
and let REX(u, 0, *, +, SING(Co» denote the smallest class of graph languages contain
ing the empty graph language and all singleton graph languages with a graph from Co as 
element, and closed under the operations union, concatenation, star, and sum. 

Theorem 5 REX(u, 0, *, SING) = REX(u, 0, *, +, SING(Co». 

From Theorem 2 we know that Int(REG) = LIN-HR. It is not difficult to prove that also 
Int(LIN) = LIN-HR, where LIN is the (usual) class of languages generated by linear context
free grammars. This suggests that for graph languages the notions "regular" and "linear" 
coincide, as opposed to the string case. Even Int(DB) = LIN-HR, where DB is the class of 
derivation bounded context-free languages. One now wonders how much larger the class 
K can be made without getting a larger class Int(K). 

It is easy to see that for every given class K there is always a largest class K' such that 
Int(K') = Int(K). We will call this the extension orK, denoted Ext(K). In fact, Ext(K) = 
(L I for every h : ~ - GR with L ~ P, if h(L) is a graph language, then h(L) E Int(K)}. 
In the next theorem we give a characterization of Ext(K). For a class G of graph lan
guages, let Str( G) denote the class of string languages L such that gr(L) is in G. Here, 
gr(L) = {gr(w) I w E L}, and, for a string w = a1 ... an, gr(w) is the graph of type 
(1,1) with nodes 1, ... , n + 1, an ai-labeled edge from i to i + 1 for every 1 :5 i :5 n, begin 
node 1, and end node n + 1. Thus, gr(w) encodes w in the obvious way: it is a path with 
the symbols of w as edge labels. Recall that we aSSUTI1e K to be closed under sequential 
machine mappings. 

Theorem 6 Ext(K) = Str(Int(K». 

In the proof of this theorem it has to be shown that Int(Str(Int(K») = Int(K), and that 
if Int(K') = Int(K) then K' ~ Str(Int(K». The first statement is the most involved one 
to show. The second statement is easy to see. In fact, gr(K') ~ Int(K'): just take h(a) = 

gr(a). Then we getK' ~ Str(gr(K'» ~ Str(Int(K'» = Str(Int(K». 
As a corollary of Theorem 6 we obtain that for arbitrary K and K', both closed under 

sequential machine mappings, Int(K) = Int(K') if and only if Str(Int(K» = Str(Int(K'». 
This means that the graph generating power of K is completely determined by its string 
generating power (with strings coded as graphs by the mapping gr). 

Next we will aim at another characterization of Ext (K). First we consider controlled 
linear HR grammars, in the obvious sense. Let G be a linear HR grammar with (finite) set 
of productions P, and let C be a string language over P (where P is viewed as an alphabet). 
The graph language generated by G under control C is the set of all graphs 9 for which 
there is a derivation go =>Pl g1 =>P2 g2 ... =>p" gn with gn = g, go is the axiom of G, 
and such that the string P1P2 ... Pn is in C. Of course, =>p denotes a derivation step of 
G that uses production pEP. Thus, the control language C specifies the sequences of 
productions that the grammar G is allowed to use in its derivations. 
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For a class K of string languages, we denote by LIN-HR(K) the class of graph languages 
generated by linear HR grammars under a control language from K. GeneraliZing Theo
rem 2 and its proof we obtain the next result. 

Theorem 7 Int(K) = LIN-HR(K). 

By 2DGSM(K) we denote the class of images of languages from K under 2dgsm map
pings, Le., 2DGSM (K) = {f (L) I f is a 2dgsm mapping and L E K}. A 2dgsm (Le., a two
way deterministic generalized sequential machine) is a deterministic finite automaton 
that can move in two directions on its input tape (with endmarkers), and outputs a (pos
sibly empty) string at each step. Generalizing the proof in [6] that Str(LIN-HR) equals the 
class of output languages of 2dgsm mappings, we prove the next result. 

Theorem 8 Str(LIN-HR(K)) = 2DGSM(K). 

Taking these (quite obvious) generalizations together, we obtain from Theorems 6, 7, and 
8 our second characterization of the class Ext(K). 

Theorem 9 Ext(K) = 2DGSM(K). 

This characterization allows us to use known formal language theoretic results regarding 
2DGSM(K) to investigate Int(K). In fact, quite a lot is known about the class 2DGSM(K) , 
see, e.g., [7]. As an example, it equals the class of languages generated by K-controlled 
ETOL systems of finite index. 

The other way around, we note that from Int(Str(Int(K))) = Int(K) follows that 
Str(Int(Str(Int(K)))) = Str(Int(K)), Le., the known result that 2DGSM(2DGSM(K)) = 

2DGSM(K). This shows that Ext(K) is closed under 2dgsm mappings. 
Thus, for K = REG, Ext(K) is the class 2DGSM(REG) of output languages of 2dgsm 

mappings. Since it is well known that the class DB of derivation-bounded context-free 
languages is contained in 2DGSM(REG) (see, e.g., [10]), this implies the previously men
tioned result that Int(LIN) = Int(DB) = Int(REG). Also, since there is a context-free lan
guage not in 2DGSM(REG), see [8, 7], Int(REG) is properly included in Int( CF), where CF 
is the class of context-free languages. We finally note that Int(CF) is properly included in 
HR, the class of graph languages generated by HR grammars. The inclusion follows from 
the fact that context-free grammars generating graph expressions built from concatena
tion and all constant graphs, can be simulated by HR grammars, by Theorem 1. Proper
ness of the inclusion follows from the more general fact that for any class K, Int(K) 
contains graph languages of bounded path-width only. Thus, the set of all binary trees 
(which is in HR) does not belong to any Int(K). 
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