2,651 research outputs found

    The rational SPDE approach for Gaussian random fields with general smoothness

    Get PDF
    A popular approach for modeling and inference in spatial statistics is to represent Gaussian random fields as solutions to stochastic partial differential equations (SPDEs) of the form Lβu=WL^{\beta}u = \mathcal{W}, where W\mathcal{W} is Gaussian white noise, LL is a second-order differential operator, and β>0\beta>0 is a parameter that determines the smoothness of uu. However, this approach has been limited to the case 2β∈N2\beta\in\mathbb{N}, which excludes several important models and makes it necessary to keep β\beta fixed during inference. We propose a new method, the rational SPDE approach, which in spatial dimension d∈Nd\in\mathbb{N} is applicable for any β>d/4\beta>d/4, and thus remedies the mentioned limitation. The presented scheme combines a finite element discretization with a rational approximation of the function x−βx^{-\beta} to approximate uu. For the resulting approximation, an explicit rate of convergence to uu in mean-square sense is derived. Furthermore, we show that our method has the same computational benefits as in the restricted case 2β∈N2\beta\in\mathbb{N}. Several numerical experiments and a statistical application are used to illustrate the accuracy of the method, and to show that it facilitates likelihood-based inference for all model parameters including β\beta.Comment: 28 pages, 4 figure

    Separable Concave Optimization Approximately Equals Piecewise-Linear Optimization

    Get PDF
    We study the problem of minimizing a nonnegative separable concave function over a compact feasible set. We approximate this problem to within a factor of 1+epsilon by a piecewise-linear minimization problem over the same feasible set. Our main result is that when the feasible set is a polyhedron, the number of resulting pieces is polynomial in the input size of the polyhedron and linear in 1/epsilon. For many practical concave cost problems, the resulting piecewise-linear cost problem can be formulated as a well-studied discrete optimization problem. As a result, a variety of polynomial-time exact algorithms, approximation algorithms, and polynomial-time heuristics for discrete optimization problems immediately yield fully polynomial-time approximation schemes, approximation algorithms, and polynomial-time heuristics for the corresponding concave cost problems. We illustrate our approach on two problems. For the concave cost multicommodity flow problem, we devise a new heuristic and study its performance using computational experiments. We are able to approximately solve significantly larger test instances than previously possible, and obtain solutions on average within 4.27% of optimality. For the concave cost facility location problem, we obtain a new 1.4991+epsilon approximation algorithm.Comment: Full pape

    Discontinuities in numerical radiative transfer

    Full text link
    Observations and magnetohydrodynamic simulations of solar and stellar atmospheres reveal an intermittent behavior or steep gradients in physical parameters, such as magnetic field, temperature, and bulk velocities. The numerical solution of the stationary radiative transfer equation is particularly challenging in such situations, because standard numerical methods may perform very inefficiently in the absence of local smoothness. However, a rigorous investigation of the numerical treatment of the radiative transfer equation in discontinuous media is still lacking. The aim of this work is to expose the limitations of standard convergence analyses for this problem and to identify the relevant issues. Moreover, specific numerical tests are performed. These show that discontinuities in the atmospheric physical parameters effectively induce first-order discontinuities in the radiative transfer equation, reducing the accuracy of the solution and thwarting high-order convergence. In addition, a survey of the existing numerical schemes for discontinuous ordinary differential systems and interpolation techniques for discontinuous discrete data is given, evaluating their applicability to the radiative transfer problem

    Math Active Learning Lab: Math 103 College Algebra Notebook

    Get PDF
    This course notebook has been designed for students of Math 103 (College Algebra) at the University of North Dakota. It has been designed to help you get the most out of the ALEKS resources and your time. Topics in the Notebook are organized by weekly learning module. Space for notes from ALEKS learning pages, e-book and videos directs you to essential concepts. Examples and “You Try It” problems have been carefully chosen to help you focus on these essential concepts. Completed Notebook is an invaluable tool when studying for exams.https://commons.und.edu/oers/1024/thumbnail.jp

    Efficient contact determination between geometric models

    Get PDF
    http://archive.org/details/efficientcontact00linmN
    • …
    corecore